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Abstract. Coreness represents solution concepts related to core in co-
operative games, which captures the stability of players. Motivated by
the scale effect in social networks, economics and other scenario, we study
the coreness of cooperative game with truncated submodular profit func-
tions. Specifically, the profit function f(-) is defined by a truncation of
a submodular function o(-): f(-) = o(:) if o(-) > n and f(-) = 0 other-
wise, where 7 is a given threshold. In this paper, we study the core and
three core-related concepts of truncated submodular profit cooperative
game. We first prove that whether core is empty can be decided in poly-
nomial time and an allocation in core also can be found in polynomial
time when core is not empty. When core is empty, we show hardness
results and approximation algorithms for computing other core-related
concepts including relative least-core value, absolute least-core value and
least average dissatisfaction value.

1 Introduction

With the wide popularity of social media and social network sites such as Face-
book, Twitter, WeChat, etc., social networks have become a powerful platform
for spreading information among individuals. Thus, influential users always play
important role in a social network. Motivated by this background, influence dif-
fusion in social networks has been extensively studied [9,15,3]. Most of previous
works focus on exploring influential nodes. To the best of our knowledge, there
is no study about the “stability” of influential nodes (seed set) when they are
treated as a coalition.

Consider the following scenario. A group of influential people in a social
network are considering forming a coalition so that they can better serve many
advertisers through viral marketing in the social network. To make the coalition
stable, we need to design a fair profit allocation scheme among the members
of the coalition, such that no individual or a subset of people have incentive to
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deviate from this coalition, thinking that the allocation to them is unfair and
they could earn more by the deviation and forming an alliance by themselves.
A useful and mature framework of studying such incentives for stable coalition
formation is the cooperative game theory, and in particular the coreness (core
and its related concepts) of the cooperative games [7,17].

In the above social influence scenario, the typical way of measuring the con-
tribution of any set S of influential people is by its influence spread function
o(S), which measures the expected number of people in the social network that
could be influenced by S under some stochastic diffusion model. Extensive re-
searches have been done on stochastic diffusion models, and it has been shown
that under a large class of models ¢(S) is both monotone and submodular?
[15,18,3]. However, the advertisers would only be interested in the coalition as a
viral marketing platform when the influence spread reaches certain scale level.
In other words, the coalition can only receive profit after the influence spread
is above a certain scale threshold 7. Therefore, the true profit function for the
coalition is f(S) = o(S) when o(S) > n, and f(S) = 0 otherwise. We call such f
truncated submodular functions. This motivate us to study the coreness of the
cooperative games with truncated submodular profit functions.

Both submodularity and scale effect are common in economic behaviors be-
yond the above example of viral marketing in social networks. Therefore, con-
sidering truncated submodular functions as the profit functions is reasonable. In
this paper, we study the computational issues related to the coreness of cooper-
ative games with truncated submodular profit functions.

Solution Concepts in Cooperative Games. A cooperative game [’ =
(V,7) consists of a player set V = {1,2,--- ,n} and a profit function v : 2V — R
with y(@) = 0. A subset of players S C V is called a coalition and V is called
the grand coalition. For each coalition S, v(S) represents the profit obtained by
S without help of other players. An allocation over the players is denoted by a
vector & = (x1,%2, -+ ,Z,) € R™ whose components are one-to-one associated
with players in V| where z; € R is the value received by player i € V under
allocation x. For any player set S C V| we use the shorthand notation z(S) =
> ics Ti- A set of all allocations satisfying some specific requirements is called a
solution concept.

The core [11,21] is one of the earliest and most attractive solution concepts
that directly addresses the issue of stability. The core of a game is the set of
allocations ensuring that no coalition would have an incentive to split from the
grand coalition, and do better on its own. More precisely, the core of a game I’
(denoted by C(I")), is the following set of allocations: C(I")={z € R" : (V) =
~y(V),z(S) > v(S), V S C V}. Intuitively, the requirement of x(S) > ~(95)
means that the coalition S receives profit allocation x(.S) that is at least their
profit contribution v(.S), so they would prefer to stay with the grand coalition. In
practice, core is very strict and may be even empty in some cases. When C(I") is
empty, there must be some coalition becoming dissatisfied since they can obtain

4 A set function f is monotone if f(S) < f(T) for all S C T, and is submodular if
fFSU{u}) = f(S) > f(TU{u}) — f(T) forall SCT and u ¢ T.
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more benefits if they leave the grand coalition and work as a separated team.
In this case, we use the dissatisfaction degree (or dissatisfaction value), defined
as dv(S,x) = max{y(S) — z(5),0}, to capture the instability of player set S
with respect to the allocation z. Then, the overall stability of the game can
be measured as either the worst-case or average-case dissatisfaction degree, for
which we consider the following three versions.

The first one is the relative least-core value (RLCY) [10], which reflects the
relative stability, i.e. the minimum value of the maximum proportional difference
between the profits and the payoffs among all coalitions.

Definition 1. Given a cooperative game I, the relative least-core value of I’

(RLCV(I')) is min, maxg dq;((i:)x). Technically, RLCV(I') is the optimal solution

of the following linear programming:

x(V) = V(V) (1)
s.t. ()zu M(S) VSCV
z({i}) = VieV

The second one is the absolute least-core value (ALCV) [16], which reflects the
absolute stability, i.e. the minimum value of the maximum difference between the
profits and the payoffs among all coalitions. The formal definition is as following.

Definition 2. Given a cooperative game I', the absolute least-core value of I’
(ALCV(I)) is min, maxg dv(S, ). Technically, ALCV(I") is the optimal solu-
tion of the following linear programming:

min &
z(V)=~(V)

ot da(S)>(S)—e VYSCV (2)
2({i}) >0 VieV

The above two classical least-core values capture the stability from the per-
spective of the most dissatisfied coalition i.e. the worst-case stability. Sometimes
the worst case is too extreme to reflect the real stability. Thus, we introduce the
least average dissatisfaction value (LADYV), which reflects the minimum value
of average dissatisfaction degree among all coalitions.

Definition 3. Given a cooperative game I', the least average dissatisfaction
value of I' (LADV(I")) is ming, Eg(dv(S, x)). Technically, LADV(I") is the op-

timal value of the following linear programming:

min 2% ngv max{vy(S) — z(S5),0}
o {ED =) Q
Tl z({i}) >0 VieV

In this paper, we consider the following computational problems in the con-
text of truncated submodular functions: (a) Whether the core of a given coop-
erative game is empty? (b) How to find an allocation in core if the core is not
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empty? (c) If the core is empty, how to compute the relative least-core value,
the absolute least-core value and the least average dissatisfaction value of a co-
operative game?

Contributions. We study the coreness of truncated submodular profit coop-
erative game I'y. We consider computational properties of the core, the relative
least-core value, the absolute least-core value and the least average dissatis-
faction value of I'y, which are denoted by C(Iy), RLCV(I[y), ALCV(Iy) and
LADV(I'}), respectively.

We first prove that checking the non-emptiness of C(Iy) can be done in
polynomial time. Moreover, we can find an allocation in the core if the core is
not empty. Next, we consider the case when the core is empty. For the problem of
computing the relative least-core value (RLCV(Iy)), we show that it is in general
NP-hard, but when truncation threshold n = 0, there is a polynomial time
algorithm. Along the way, we also find an interesting partial result showing that
there is no polynomial time separation oracle for the RLCV(I't)’s linear program
unless P=NP, which is of independent interest since it reveals close connections
with a new class of combinatorial problems. For the absolute least-core value
problem ALCV(I'y), we prove that finding ALCV(Iy) is APX-hard even when
o(+) is defined as the influence spread under the classical independent cascade
(IC) model in social network. We also prove that there exists a polynomial time
algorithm which can guarantee an additive term approximation. Finally, for the
least average dissatisfaction value problem LADV(Iy), we show that we can use
the stochastic gradient descent algorithm to compute LADV(I'y) to an arbitrary
small additive error.

Related Work. Cooperative game theory is a branch of (micro-)economics
that studies the behavior of self-interested agents in strategic settings where
binding agreements between agents are possible [2]. Numerous classical studies
about cooperative game provide rich mathematical framework to solve issues
related to cooperation in multi-agent systems [8,6]. Schulz and Uhan study the
approximation of the absolute least core value of supermodular cost cooperative
games [19], the results of which can be generalized to submodular profit coop-
erative games. An important application of our study is to analyze the stability
of influential people in social networks. Almost all the existing studies focus on
selecting the seed set [5,12,22]. To the best of our knowledge, there is no study
considering the stability of the selected seed set. We utilize cooperative game the-
ory to analyse the stability of seed set, and generalize it to a generic cooperative
game with truncated submodular functions. The truncated operation represents
the “threshold effect” which has been studied widely in literature [13,1].

2 Model and Problems

2.1 Cooperative Games with Truncated Submodular Profit
Functions

A truncated submodular profit cooperative game is denoted by I'y = (V, f(-)).
In Iy, V is the player set and f(-) is the profit function which is defined as
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follows:

_Jo(8), ifa(S)=n
J(8) = {0, if 0(S) <7

Note that o(+) is a nonnegative monotone increasing submodular function with
o@) =0 and 0 < 5 < o(V) is a nonnegative threshold. To make it explicit,
henceforth, a truncated submodular profit cooperative game is denoted by a
triple (V,o(-),n). Note that the explicit representation of o(-) might be expo-
nential in the size of V. The standard way to bypass this difficulty is to assume
that o(-) is given as a value oracle.

2.2 Computational Problems on the Coreness

Given a truncated submodular profit cooperative game Iy, we focus on the
following problems:
CORE: Is C(I'f) # ) and how to find an allocation in C(I'y) when C(Iy) # 07?
ALCV: When C(I'y) = 0, how to compute ALCV(If)?
RLCV: When C(I'y) = 0, how to compute RLCV(I'f)?
LADV: When C(I'y) = 0, how to compute LADV(I'f)?

Before we analyze the above problems, we introduce a specific instance of

truncated submodular profit cooperative game (see Section 2.3).

2.3 Influence Cooperative Game (Iins)

As the description in our introduction, an important motivation of our model is
influence in social networks. In this section, we introduce a specific instance of
truncated submodular profit cooperative game, influence cooperative game.

Social graph. A social graph is a directed graph G = (V U U, E; P), where
V' UU is the vertex set and E is the edge set. P = {p.}ecr and p, is the influence
probability on each edge e € E. Note that, V and U denote the vertex set of
influential people and target people in G, respectively.

Influence diffusion model. The information diffusion process follows the
independent cascade (IC) model proposed by [15]. In the IC model, discrete
time steps ¢ = 0,1,2,--- are used to model the diffusion process. Each node in
G has two states: inactive or active. At step 0, nodes in seed set S are active and
other nodes are inactive. For any step ¢ > 1, if a node u is newly active at step
t — 1, u has a single chance to influence each of its inactive out-neighbor v with
independent probability p,., to make v active. Once a node becomes active, it
will never return to the inactive state. The diffusion process stops when there is
no new active nodes at a time step. For any S C V, we use ¢'°(S) to denote the
influence spread of S, the expected number of activated nodes in U from seed
set S C V, at the end of an IC diffusion. According to [15], '(-) is a monotone
submodular function.

Definition 4. An influence cooperative game Ins = (V,d'(+),n) is a special
form of the truncated cooperative game, with V as the player set, and the trun-
cation of influence spread function o'C(-) as the profit function.
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In the rest of this paper, we analyze problems defined in Section 2.2 one by
one. Note that our positive results (properties and algorithms) could apply to all
truncated submodular profit cooperative games including influence cooperative
game. Our hardness results are established for the influence cooperative games,
so it is stronger than the hardness results for general truncated submodular
cooperative games.

3 Computing Core

We start by considering the core of I'y (C(I'y)). In Iy, we say a player i € V is a
veto player if 0(S) < n for any S C V' \ {i}. That is to say, a successful coalition
must include all veto players.

Lemma 1. C(Iy) # 0 if and only if:

1) There exists at least one veto player in Iy, or
pray fs

(ii) o(S) = > ;cgo{i}), for any S C V.

Proof. Suppose the player set of I'y is V' = {1,2,--- ,n}. We first prove the
sufficiency of Lemma 1. On one hand, suppose 7 is a veto player of Iy, then
we can find a trivial allocation x in C(Iy): z({i}) = o(V) and z({j}) = 0,
vV j € V\ {i}. On the other hand, x({i}) = o({i}) ( Vi € V) is an allocation in
e(Iy) it o(S) = Yyeq o({i).

Now we prove the necessity. Suppose C(I'y) # 0 and = €C(I'y). Let o(V) =
Yo, M;, where M; = o({1,2,---,i}) — 0({1,2,--- ,4 — 1}) is the marginal
increasing of player i. If there is no veto player, then for any i € V, (V' \
{i}) > n since o(S) is monotone. Thus, f(V \ {i}) = o(V \{i}), Vi € V.
Suppose o(V '\ {i}) = Z;;ll Mj + 3700 My, where M, = o({1,2,--- ,i —
Li+1,---,5})—o({1,2,--+,i—1,i+1,---,j—1}). Note that M;; > M; since
o(S) is submodular. By the definition of the core, for any i € {1,2,--- ,n},
we have: z(V \ {i}) > f(V\ {i}) = o({V \ {i}}). That is, (V) — z({i}) >
S MY M VeV,

Summing up these inequalities for all i € V, we have, (n — 1) > 1, z({i}) >
27:1(22;11 MjJFZ?:i-H Mz,]) 2 ZL(Z;S Mj+2?:i+1 Mj) = Z?ﬂ(a(v)*
M;) = (n—1)a(V).

We have known that > x({i}) = 3>7_} M; = (V) and then M; = M/},
Vi,j € V. Thus, 0(S) = > ,cg0({i}).

An important application of Lemma 1 is Theorem 1.

Theorem 1. Deciding whether C(I'y) is empty can be done in polynomial time
and an allocation in C(I'y) can be computed in polynomial time if C(I'y) is not
empty.

Proof (Sketch). First, it takes polynomial time to check the non-emptiness of
C(I'y). When C(Iy) is not empty, then (z; = o(V),0¢.5253) € C(I'y) when j is
a veto player and (o({1}),--- ,0({n})) € C(I'y) when (i) is satisfied.

The detail proof of Theorem 1 is shown in our full version [4].
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4 Computing Relative Least-Core Value

From Lemma 1, C(I'y) may be empty in many cases. It is obvious that RLCV(I'y)
> 0if C(I'y) = 0 and RLCV(Iy) = 0 otherwise. In this section, we study compu-
tational properties of the RLCV problem. The linear programming correspond-
ing to RLCYV(Iy) (LP-RLCV) is as follows:

#(V) = o(V) "
st. Sx(S)>(1—=r)o(S)VSCV, a(S)>n
x({i}) >0 VieV

A special case of computing RLCV(Iy) is when n = 0. It captures the sce-
nario that the profit of any coalition exactly equals to its influence spread under
influence cooperative game. In Theorem 2 we show that, although there are ex-
ponential number of constraints, LP-RLCV can be solved in polynomial time by
providing a polynomial time separation oracle when n = 0. A separation oracle
for a linear program is an algorithm that, given a putative feasible solution,
checks whether it is indeed feasible, and if not, outputs a violated constraint. It
is known that a linear program can be solved in polynomial time by the ellipsoid
method as long as it has a polynomial time separation oracle [14].

Theorem 2. There exists a polynomial time separation oracle of LP-RLCV
when n = 0. Therefore, RLCV can be solved in polynomial time when n = 0.

Proof. Given any solution candidate of LP-RLCV (2/,7'), we need to either
assert (z/,77) is a feasible solution or find a constraint in LP-RLCV such that
(a’,r") violates it. Note that, checking «/(V) = o(V) and 2'({i}) > 0 (Vi € V)
can be done in polynomial time. Thus, we only need to check whether g(S) £
1—2/(S)/o(S) <r', VS CV.

An important property is that g(S) achieves its maximum value when S con-

tains only one single player. This is because g(S) =1— ff,((g)) <1- Zii;;(ﬁ}) <

1-— mini;ies{%%})} = max;;cs{g({i})}. The first inequality is due to the sub-
i @i

i=1bi’
Va;,b; € R. Thus, the exponential number of constraints can be simplified tlo n
constraints on all single players. Then, we can find a polynomial time separation
oracle of LP-RLCV directly.

modularity of o(S) and the second inequality is due to mini;ie[n]{‘g—;} <

When 1 = 0, RLCV can be solved in polynomial time is mainly because the
most dissatisfaction coalition is a single player. However, when 7 # 0, it becomes
intractable to find the most dissatisfaction coalition.

Theorem 3. There is no polynomial time separation oracle of LP-RLCV for
some n > 0, unless P=NP.

Theorem 3 can not imply the NP-hardness of RLCV. However, the proof
of Theorem 3 reveals an interesting connection between RLCV problem and a
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0

Fig. 1. The reduction from SAT to RLCV(If)

series of well defined combinatorial problems. The proof of Theorem 3 and the
generalized combinatorial problem is shown in our full version [4].

In the left of this section, we prove the NP-hardness of RLCV, a stronger
hardness result than which in Theorem 3.

Theorem 4. It is NP-hard to compute RLCV(Iy), even under influence coop-
erative game.

Proof (Sketch). We construct a reduction from the SAT problem. A boolean
formula is in conjunctive normal form (CNF) if it is expressed as an AND of
clauses, each of which is the OR of one or more literals. The SAT problem is
defined as follows: given a CNF formula F', determine whether F' has a satisfiable
assignment. Let F' be a CNF formula with m clauses C1,Cy,--- ,C),, over n
literals 21, 29, - , z,. Without loss of generality, we set m > 4n.

We construct a social graph G as follows: G = (V; UV, UV3, E) is a tripartite
graph (see the sketch graph in Figure 1). In the first layer (V7), there are two
nodes S; and T; corresponding to each i € {1,2,--- ,n}, n + 1 dummy nodes
labeled as wi,us2, -+ ,un+1 and n dummy nodes labeled as vy,vs,- - ,v,. In
the second layer (V2), there are two nodes z; and T; corresponding to each
i € {1,2,---,n}, one node ¢; for each j € {1,2,--- ,m} and a dummy node
w. The third layer (V3) contains only node Q. Edges exist only between the
adjacent layers. For each i € {1,2,--- n}, S; sends an edge to every node in
{z;,T;} U{c; : clause C; contains literal z;,j € {1,2,---,m}}. Similarly, for
each i € {1,2,---,n}, T; sends an edge to every node in {z;,7;} U {¢; : clause
C; contains literal Z;,j € {1,2,---,m}}. The probabilities on edges sent from
S; and T; are 1. There is an edge with influence probability 1 from wu; to ¢;
for any ¢ € {1,2,--- ,n} and m — n edges form wuny1 tO Chi1,Cni2, ", Cm.
There is an edge from u; to w with influence probability 1 — ”+{/7 for any
i€ {1,2,--- ,n+ 1}. There is also exists an edge from v; to w with influence
probability 1— /1/2 for any i € {1,2,--- ,n}. The left edges are from Q to all
nodes in the second layer. The influence probability on edge (Q,w) is 1/2 and
all other probabilities on edges sent from @ is 1. The influence cooperative game
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defined on G is I'(G) = (V =V, UV3,0'¢(:),n = 2n +m +1/2). For convenient,
we set N = 2n + m.

Suppose r* is the optimal solution of the relative least-core value of I'(G).
We can prove that r* > 1 — (N + %)/(N + 1) if F is satisfiable and r <
1—2(N+3)/(N+ 1) if F is un-satisfiable. The proof of this part is shown in
the full version [4].

5 Computing Absolute Least-Core Value

5.1 Hardness of ALCV

Theorem 5. ALCYV problem of influence cooperative game cannot be approxi-
mated within 1.139 under the unique games conjecture.

Proof (Sketch). We construct a reduction from MAX-CUT problem. Under our
construction, for any instance of MAX-CUT problem, we can construct an in-
stance of ALCV problem such that the optimal solution of these two instances
are equal. The detail proof is shown in our full version [4].

5.2 Approximating ALCY(I)

In this section, we approximate ALCV(I'y) by approximating the following linear
programming (LP-PRIME):

min &
z(V)=0(V)

st. ¢ x({S}) > o({S}) —¢ VSCV,0(S)>n
x({u}) >0 Yu eV

The intractability of LP-PRIME lies on the exponential number of constraints
and the hardness of identifying all successful coalitions. We use a relaxed version
LP-RE and a strengthen version LP-STR of LP-PRIME to design an approxi-
mation algorithm of ALCV(I't). (5) and (6) are formal definitions of LP-RE and
LP-STR, respectively.

min €
z(V)=0o(V )
st. z(S)>n—e VSCV,o(S)>n
z({u}) >0 VueV
min €
z(V) =o(V)
st. { x(S)>0(S)—e VSCV (6)
z({u}) >0 VueV

Intuitively, LP-RE and LP-STR denote absolute least-core values of two
cooperative games with new profit functions. Specifically, LP-RE relaxes the
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constraints in LP-PRIME by reducing the profits of all successful coalitions ex-
cepting V' to n. Formally, the profit function in LP-RE is g(5): g(V) = o(V),
VS cV,g(lS) =nif o(S) > nand g(S) = 0 otherwise. The profit function in
LP-STR is h(S) = o(5), VS C V. Clearly, LP-STR strengthens LP-PRIME by
increasing the profits of all unsuccessful coalitions.

Our main result in this section is shown in Theorem 6.

Theorem 6. V¢ > 0, there exists an approzimate algorithm A of the ACCV(Iy)
problem with running time in poly(n,1/d,logo(V)), A outputs e, such that €}, <
e, <min{ey + 0 (V) —n+ 25, max{3e;,n}}.

We prove Theorem 6 by show Lemma 2, Lemma 3 and Lemma 4 in order.

Lemma 2. Suppose the optimal value of LP-PRIME, LP-RE and LP-STR are

*

€, &, and g5, respectively. Then, we have
e, <ert(o(V)—n) e+ (o(V)—n), (7)
g, < 5 < max{e,,n}. (8)

Lemma 3. There exists a polynomial time approximate algorithm of LP-STR
outputting €', such that et < &/, < 3e*.

Lemma 4. YV 6 > 0, there exists an algorithm of LP-RE outputting €). such that
er <el <ef 425, with runs time in poly(n,1/d,logo(V)).

The proofs of Lemma 2 - Lemma 4 rely heavily on mathematical computation
and we report them in our full version [4].

6 Computing Least Average Dissatisfaction Value

Based on Definition 3, LADYV(I'y) equals the optimal value of the following linear
program:

min F(z) = 5~ > scy max{f(S) —z(5),0}

ot {x(V_) =oV) 9)

z({i}) >0 VieV

Where f(S) = o(5) if 0(S) > n and f(S) = 0 otherwise. There are exponential
terms in F'(x), however, we can utilize stochastic gradient algorithm to approx-
imate the optimal solution of (9). This is because the object function F(z) is a
convex function (Lemma 5) and the feasible solution area in (9) is a convex set.

Lemma 5. F(z) is a convex function.

The proof of Lemma 5 is shown in our full version [4]. The stochastic gradi-
ent descent algorithm (SGD, cf. [20]) can be used to compute LADV(I}) (see
Algorithm 1).

Let F* be the optimal solution of LADV(I), F' be the output of Algorithm 1
and the profit of grand coalition o(V') = V. Then, the performance of Algorithm
1 can be formalized in the following theorem.
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Algorithm 1 Stochastic gradient descent for LADV

1: Parameters: Scaler a > 0, integer T' > 0

2: Initialize: X' =0, t = 0.

3: Set D={X:X;>0VicV), >, Xi=0(V)}

4: fort=1to T do

5:  /*choose a random Y" such that E[Y*|X'] is a subgradient of F.*/
6:  Uniformly at random choose a set S € 2V.

7 if f(S) > X'(S) then

8: Set Y! = (—15,0\/\5).

9: else
10: Set Y! = 0.
11: end if

12:  update Xt: = Xt — aY?.

13:  /*Project X'*2 to D*/

14: X" = argminxep | X — Xtz II%.
15: end for

16: return F = min{F (X"} eq1,2,. 7}

Theorem 7. V ¢ > 0, ]E[F] —F*<eifT > ”(‘/5)24"4 and o = ”}‘224 n
Algorithm 1.

Following the standard analysis of SGD (e.g. in Chapter 14 of [20]), Theorem 7
holds since it is easy to check that E[Y!|X'] is a subgradient of F(X) at node
X?, for any t € [T] (lines 6-11 in Algorithm 1).

7 Conclusion and future work

In this paper, we study the core related solution concepts of truncated submod-
ular profit cooperative game. One possible future work is to change the way
of truncating a function. For example, we can set f(S) = o(9) if |S| > k and
f(S) = 0 otherwise. This setting is a special case of the setting in our paper and
thus it may allow efficient algorithms. In this paper, we prove that computing
the relative least-core value is NP-hard. We also prove that the relative least-core
value can be solved in polynomial time in a special case. A directly future work
is to design an approximate algorithm of RLCV under general case.
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