
A Line in the Sand: Recommendation or Ad-hoc Retrieval?∗
Submission Report for RecSys 2018 Spotify Challenge by Team BachPropagate

Surya Kallumadi
Kansas State University
Manhattan, Kansas, USA

surya@ksu.edu

Bhaskar Mitra
Microsoft AI & Research
Montreal, Québec, Canada
bmitra@microsoft.com

Tereza Iofciu
mytaxi

Hamburg, Germany
t.iofciu@mytaxi.com

ABSTRACT
The popular approaches to recommendation and ad-hoc retrieval
tasks are largely distinct in the literature. In this work, we argue
that many recommendation problems can also be cast as ad-hoc
retrieval tasks. To demonstrate this, we build a solution for the Rec-
Sys 2018 Spotify challenge by combining standard ad-hoc retrieval
models and using popular retrieval tools sets. We draw a parallel
between the playlist continuation task and the task of finding good
expansion terms for queries in ad-hoc retrieval, and show that stan-
dard pseudo-relevance feedback can be effective as a collaborative
filtering approach. We also use ad-hoc retrieval for content-based
recommendation by treating the input playlist title as a query and
associating all candidate tracks with meta-descriptions extracted
from the background data. The recommendations from these two
approaches are further supplemented by a nearest neighbor search
based on track embeddings learned by a popular neural model. Our
final ranked list of recommendations is produced by a learning to
rank model. Our proposed solution using ad-hoc retrieval models
achieved a competitive performance on the music recommendation
task at RecSys 2018 challenge—finishing at rank 7 out of 112 partic-
ipating teams and at rank 5 out of 31 teams for the main and the
creative tracks, respectively.

CCS CONCEPTS
• Information systems → Learning to rank; Combination,
fusion and federated search; Recommender systems;

KEYWORDS
Recommender systems, federated search, learning to rank
ACM Reference Format:
Surya Kallumadi, Bhaskar Mitra, and Tereza Iofciu. 2018. A Line in the Sand:
Recommendation or Ad-hoc Retrieval?: Submission Report for RecSys 2018
Spotify Challenge by Team BachPropagate. In RecSys ’18: The 12th ACM Rec-
ommender Systems Conference, October 2–7, 2018, Vancouver, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗“A Line in the Sand” is a reference to the song by Linkin Park from
the album “The Hunting Party” (2014). URL: https://open.spotify.com/track/
4BRvD5QdauTo8EuUvYchu3?si=pPGeCtYoSLSKFVcPzexA4Q

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys ’18, October 2–7, 2018, Vancouver, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recommendation and ad-hoc retrieval are two important infor-
mation retrieval tasks. Given a list of previously viewed items, a
recommender system may suggest new items to the user by consid-
ering past interactions between all users and all items (collaborative
filtering [2]), or it may suggest new items that share similar at-
tributes to the already viewed items (content-based filtering [3])—or
it may adopt a hybrid approach. In contrast, in ad-hoc retrieval [26]
the user expresses an explicit information need—typically in the
form of a short text query—and the retrieval system responds with
a ranked list of relevant information resources (e.g., documents or
passages) based on the estimated match between the query and the
document text. The popular approaches to recommendation and
ad-hoc retrieval tasks are largely distinct in the literature, although
the two tasks share many similar properties.

The 2018 edition of the RecSys Challenge [20] featured the Spo-
tify automatic playlist continuation task. The goal is to recommend
additional tracks for a playlist for which (either or both of) the title
and a number of existing tracks are known. A dataset containing one
million Spotify playlists1 is provided. This million playlist dataset
(MPD) can be used as background data, as well as for generating
training examples and for offline evaluation. Looking through the
lens of a typical recommender system, we may approach this task
as a collaborative filtering problem considering the playlist-track
membership matrix derived from the background data. A track
may also be described by its own title, the primary artist name, the
parent album name, and even the names of the playlists in which
it occurs in the background data. These descriptions can be use-
ful for content-based filtering. However, as the title of the paper
suggests, in this work we explore how standard ad-hoc retrieval
methods and tools can be useful to solve this recommendation task,
using similar signals as collaborative filtering and content-based
recommendation models.

We generate a collection of pseudo-documents where each docu-
ment corresponds to a playlist in the background data. The tracks in
the playlist are treated as the terms in the document. We use a stan-
dard retrieval system to index these pseudo-documents. An input
playlist—for which we should recommend new tracks—is treated as
a query with its member tracks as the query terms. Using pseduo-
relevance feedback (PRF) [8, 9] we generate new expansion tracks
for the query and present these as our recommendations for the
input playlist. As this approach only considers past track-playlist
membership information, we expect this method to recommend
tracks similar to the collaborative filtering approach.

1Million Playlist Dataset, official website hosted at https://recsys-challenge.spotify.
com/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://open.spotify.com/track/4BRvD5QdauTo8EuUvYchu3?si=pPGeCtYoSLSKFVcPzexA4Q
https://open.spotify.com/track/4BRvD5QdauTo8EuUvYchu3?si=pPGeCtYoSLSKFVcPzexA4Q
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://recsys-challenge.spotify.com/
https://recsys-challenge.spotify.com/

The title of the input playlist, if provided, can also be an im-
portant relevance signal. For example, if the input playlist title
is “running music”, then tracks from other playlists titled “run-
ning jams” or “running mix” may be good candidates for recom-
mendation. Therefore, we create a second collection where each
pseudo-document corresponds to a track in the background data.
We concatenate the titles of all the background playlists that con-
tain the track to generate the content for these pseudo-documents.
Meta-descriptions about the track—such as, its title, its primary
artist name, and its parent album name—can be similarly useful
for matching against the input playlist title, and be included as
part of the pseudo-documents. We index this second collection and
produce additional candidates by considering the input playlist title,
if available, as a query to an ad-hoc retrieval system.

Finally, we learn track embeddings using the popular word2vec
model [12] and generate additional recommendations by a nearest-
neighbour search in the learned latent space. The candidates from
all three approaches are combined and re-ranked using a Lamb-
daMART model [28]. By using only standard IR tools and methods,
we built a solution that is competitive with other top performing
submissions at the RecSys 2018 Spotify Challenge.

2 THE RECSYS 2018 CHALLENGE
Spotify—an online music streaming company2—co-organized the
RecSys 2018 challenge. The goal of this year’s challenge was music
recommendation—to suggest new tracks for playlist continuation.
As part of this challenge, Spotify released a dataset containing
one million randomly sampled user generated playlists that are
publicly available to any users of the music streaming platform.
The dataset includes playlists that were created between January 1,
2010 and November 1, 2017 by users who are at least 13 years old
and resident in the United States. Any private user information is
excluded from the dataset, and adult and offensive content scrubbed.
Additional constraints placed on the inclusion of any playlist in this
dataset include: (i) a minimum number other playlists that should
contain the same title, (ii) a minimum of three distinct artists and
two distinct albums in the playlist, (iii) at least one follower other
than the creator, and (iv) no less than five and no more than 250
tracks in the playlist. The demographic distribution of the users who
contributed to the dataset—according to the challenge website3—is
reproduced in Figure 1.

The challenge dataset contains ten thousand playlists. For each
playlist Φ = ϕseed∪ϕheld, a set of tracks ϕseed = {tr1, tr2, . . . , trm }
are provided as seed tracks and the remaining tracks ϕheld =
{tr1, tr2, . . . , trn } have been heldout. Optionally, the title TΦ of
the playlist Φ is also provided. The recommendation task involves
predicting the heldout tracks in ϕheld given ϕseed and optionallyTΦ.
The number of heldout tracks n for each playlist Φ is known and
each playlist in the challenge set belongs to one of the following
ten categories based on the information provided. (i) the title only,
(ii) the title and the first track, (iii) the title and the first five tracks,
(iv) the first five tracks only, (v) the title and the first ten tracks,
(vi) the first ten tracks only, (vii) the title and the first 25 tracks,
(viii) the title and 25 random tracks, (ix) the title and the first 100

2https://www.spotify.com/
3https://recsys-challenge.spotify.com/dataset

Male Female Unspecified Nonbinary

45 %

54 %

0.5 % 0.5 %0
10

20
30

40
50

60

%
 o

f u
se

rs

(a)

18−24 25−34 35−44 45−54 55+ Other

43 %

31 %

9 %
4 % 3 %

10 %

0
10

20
30

40
50

60

%
 o

f u
se

rs
(b)

Figure 1: Demographics of users who contributed to the
MPD by (a) gender and (b) age.

tracks, and (x) the title and 100 random tracks. When track infor-
mation is provided, each track tr is described by: (i) its position in
the playlist, (ii) the track name, (iii) the track URI, (iv) the primary
artist name, (v) the primary artist URI, (vi) the album name, (vii) the
album URI, and (viii) its duration. The challenge set is sampled
following the same guidelines as the MPD. For each playlist, the
recommender system needs to generate a ranked list of exactly
500 distinct tracks ϕpred with no overlap with the seed tracks ϕseed
provided as part of the playlist information.

Submissions are accepted under two different tracks—the main
track and the creative track. For the creative track, participants are
allowed to use external data for making the recommendations. The
use of external data, however, is restricted to those that are publicly
available to all participants.

Each submission is evaluated based on three different metrics:

(1) R-precision [25], with partial credit for artist match even if
the track is incorrect

(2) Normalized Discounted Cumulative Gain (NDCG) [7]
(3) Recommended songs clicks, computed as:

clicks =min{⌊(r − 1)/10⌋, 51} (1)
where, r is the highest rank of a relevant track, if any.

The challenge leaderboard ranked each participants based on
the Borda Count [4] election strategy over all the three specified
metrics. During the submission stage, the leaderboard reflected
the ranking based on a fixed 50% random sample of the actual
challenge set. However, at the end of the competition the final
ranking was computed based on the full set. For more details, we

https://www.spotify.com/
https://recsys-challenge.spotify.com/dataset

point the readers to the official rules as listed on the challenge
website: https://recsys-challenge.spotify.com/rules.

3 OUR APPROACH
Our proposed solution consists of a candidate generation stage and
a re-ranking stage. To recall a diverse set of candidates for ranking,
we employ three different candidate generation strategies. Two of
these approaches depend on track co-occurrence information, and
the other approach models the relationship between tracks and the
titles of parent playlists. Two of the approaches are implemented
using Indri4—a standard ad-hoc retrieval system—while the other
employs a nearest neighbor based lookup. We describe all three
candidate generation methods and the re-ranking model next.

3.1 Candidate generation
Playlist completion as query expansion (QE). In PRF [8, 9], given

a query q of m terms {t1, t2, . . . , tm }, first a set of k documents
D = {d1,d2, . . . ,dk } are retrieved and based on these retrieved
documents D the query is updated to q′. The translation from q to
q′ typically involves addition of new terms from D to the original
query q. A new round of retrieval is performed using q′ and the
newly retrieved documents presented to the user.

Let us consider individual tracks as terms and playlists as text—
like a document or a query—containing one or more terms. Let
us also assume that we have an incomplete playlist ϕseed which is
derived from an original playlist Φ. Let C be the collection of all
playlists in the MPD and let C ′ = C ∪ {Φ} be an imaginary collec-
tion created by adding Φ toC . Now, say, we want to retrieve Φ from
C ′ but we are only provided ϕseed as a query. We know that we can
obtain a smoother estimate of the unigram distribution of terms (or
tracks) in Φ—and hence a better retrieval performance on this re-
trieval task—by first expanding ϕseed to ϕexp = ϕseed∪ϕnew, where
ϕnew is the set of additional “query terms” identified by performing
PRF over the collectionC . While we do not, in fact, haveC ′ and nor
are we interested in retrieving Φ from this imaginary collection, it
is interesting to note that PRF over C starting from ϕseed can help
us identify a set of terms (or tracks) that are potentially from Φ
but missing in ϕseed. Estimating ϕnew accurately is similar to our
playlist completion task. We note that a similar approach has been
previously proposed for collaborative filtering [16, 24].

Motivated by this, we use Indri to index a collection of all the
the playlists in the MPD, where each playlist is a sequence of track
identifiers. Given an incomplete playlist ϕseed, we retrieve a set of
k playlists c from the collection and identify good expansion terms
(or tracks) using RM1 [1].

p(tr |θΦ) =
∑
ϕ∈c

p(tr |θϕ)
∏

t̄ r ∈ϕseed

p(t̄r |θϕ) (2)

p(tr |θϕ) =
|ϕ ∩ {tr }|

|ϕ | , without smoothing (3)

The top candidate tracks ranked by p(tr |θΦ) are considered for
recommendation. We refer to this candidate generation strategy as
QE in the rest of this paper.

4http://www.lemurproject.org/indri/

Ad-hoc track retrieval using meta descriptions (META). In ad-
hoc retrieval, a document representation may depend on its own
content—e.g., title or body text— or external sources of descriptions—
e.g., anchor text or clicked queries [19, 30]. Similarly, we can de-
scribe a track by its own title, the primary artist name, and the
parent album name—or by the titles of all the playlists in which it
appears. All of these meta information about the track may be use-
ful for our recommendation task. Given an input playlist titleTΦ, we
can query a collection of pseudo-documents—where each document
contains meta descriptions for a track—using a standard retrieval
system, such as Indri. The retrieved ranked list of tracks can be con-
sidered as candidates for the playlist completion task. Based on this
intuition, we generate two collections—one that describes tracks
by their parent playlist titles and another that describes a track
by its own title, primary artist name, and album name. Separate
set of candidates retrieved based on each of these two collections
are referred to as META1 and META2, respectively, in the rest of
this paper. In our specific implementation, we use BM25 [18] as the
retrieval model and each document is generated by concatenation
of the constituent text descriptions, similar to Robertson et al. [19].

Nearest neighbor search using track embeddings (EMB). Instead
of comparing the query and the document text in the term space,
some ad-hoc retrieval models—e.g., [10, 15, 29]—compute the query
and the document representations as a centroid of their term em-
beddings and estimate their similarity in the latent space. A similar
strategy may be useful for the playlist completion task. We experi-
ment with a number of unsupervised approaches to learn the track
embeddings that do not require any additional manual annotations.

First, we consider tracks as terms and playlists as documents
containing a sequence of tracks. We employ the popular CBOW
model fromword2vec [12] to learn track embeddings on this pseduo-
document collection C . A fixed size window is moved over each
playlist and the model is trained by trying to predict the track in
the middle of the window correctly given all the other tracks within
the same window. This translates to minimizing the following loss,

LCBOW =
∑
ϕ∈C

|ϕ |∑
i
−log

(
p(®vi |

∑
i−k≤j≤i+k, j,i

®vj)
)

(4)

Where, ®vi is the embedding of the ith track in the playlist ϕ.
Similar to Mikolov et al. [13], our track embeddings are trained
with negative sampling instead of the full softmax over the complete
track collection.

A playlist representation can be derived from both its member
tracks {tr1, tr2, . . . , trm , } as well as its titleTϕ . An analogy can be
drawn to two collections in two different languages with document
aligned across the collections. Vulić and Moens [27] consider a sim-
ilar scenario in the context of cross-lingual retrieval and propose to
learn a shared embedding space for terms from both languages by
merging the two versions of each document from respective lan-
guages into a single pseudo-document. Motivated by their approach,
we generate a collection of playlists where each pseudo-document
is constructed by interspersing the member tracks and the playlist
title terms. We train a CBOWmodel on this collection as our second
approach to learn track embeddings.

https://recsys-challenge.spotify.com/rules
http://www.lemurproject.org/indri/

Table 1: The full list of features that our learning to rankmodel considers. The features are categorized based on whether they
depend only on the input playlist or the candidate track, or both.

Features Types

Input playlist only features
Is playlist title available Binary
Number of total tracks Integer
Number of held out tracks Integer
Ratio of number of unique albums to number of tracks Float
Ratio of number of unique artists to number of tracks Float
Ratio of frequency of most frequent album to number of tracks Float
Ratio of frequency of most frequent artist to number of tracks Float
Playlist title contains any of the words: top, best, popular, hot, or hits Binary
Playlist title contains any of the words: latest, new, or recent Binary
Playlist title contains any of the words: remix, remixed, or remixes Binary

Candidate track only features
Ratio of number of background playlists containing this track to total number of background playlists Float
Ratio of number of background playlists containing this artist to total number of background playlists Float
Ratio of number of background playlists containing this album to total number of background playlists Float
Track title contains any of the words: remix, remixed, or remixes Binary
Ratio of number of background parent playlists with title containinng any of the words: top, best, popular, hot, or hits to total number of background playlists Float
Ratio of number of background parent playlists with title containing any of the words: lates, new, or recent to total number of background playlists Float
Ratio of number of background parent playlists with title containing any of the words: remix, remixed, or remixes to total number of background playlists Float

Input playlist and candidate track dependent features
Rank in top 1000 candidates from QE, set to 1001 if not present Integer
Rank in top 500 candidates from META1, set to 501 if not present Integer
Rank in top 500 candidates from META2, set to 501 if not present Integer
Rank in top 250 candidates from EMB1, set to 251 if not present Integer
Rank in top 250 candidates from EMB2, set to 251 if not present Integer
Rank in top 250 candidates from EMB3, set to 251 if not present Integer
Rank in top 250 candidates from EMB4, set to 251 if not present Integer
Ratio of number of tracks in playlist from same artist to number of tracks in playlist Float
Ratio of number of tracks in playlist from same album to number of tracks in playlist Float

The MPD contains four different types of entities—playlists,
tracks, artists, and albums. Alternatively, we can view this dataset
as a Heterogeneous Information Network (HIN). A HIN is defined
as a directed graph G = {V ,E} with an entity mapping function
ξ : V → A and a edge type mapping function ψ : E → R where
each node v ∈ V belongs to one particular entity type ξ (v) ∈ A
and each edge e ∈ E belongs to a relationship typeψ (e) ∈ R. The
edge weights associated between vertices with the relationship
contextψ (c) ∈ R is captured as a preference matrix Wc . Finally, a
meta-path defines a composite relationship by an ordered sequence
of edge types specified in the HIN schema SG = (A,R). A number
of previous studies have explored methods to learn node embed-
dings in homogeneous [6, 17, 22] and heterogeneous [5, 21] graphs.
In particular, Dong et al. [5] propose meta-path based random
walks in heterogeneous networks to generate neighborhood repre-
sentations that capture semantic relationships between different
types of nodes in the graph followed by training a word2vec model
on this neighborhood data to learn node embeddings. We adopt
a similar approach based on two different meta-path definitions:
artist→track→playlist→artist (ATPA) and track→playlist→track
(TPT). In summary, we learn track embeddings based on four dif-
ferent approaches:

• EMB1: CBOW over playlists as documents and tracks as
terms

• EMB2: CBOW over interspersed member tracks and title
terms for a playlist

• EMB3: CBOW over the ATPA meta path
• EMB4: CBOW over the TPT meta path

After training, we represent an input playlist ϕseed as the aver-
age of its member track embeddings ®vseed. New recommendation
candidates are identified by finding tracks that have high cosine
similarity with ®vseed. The embedding size is fixed to 200 dimensions
for all four approaches and the window size for word2vec at 20 for
EMB1 and EMB2 and at 5 for EMB3 and EMB4.

3.2 Learning to rank
We take the union of all the candidates generated by each of the
approaches described in Section 3.1. More precisely, we take the
top 1000 candidates from QE, top 500 candidates each from META1
and META2, and top 250 candidates each from EMB1, EMB2, EMB3,
and EMB4. We re-rank these candidates using a learning to rank
(LTR) [11] model. We choose LambdaMART [28] with 100 trees
and 50 leaves per tree as our model. We use the publicly available
implementation in RankLib5 for our experiments. We train the
model with a learning rate of 0.1 and optimize for NDCG@10 for
our main track submission and for NDCG@500 for our submission
to the creative track. The full list of features used by the LTR model
is specified in Table 1.

During the LTR model training, we use 75% of the MPD for
candidate generation and feature computation. From the remaining

5https://sourceforge.net/p/lemur/wiki/RankLib/

https://sourceforge.net/p/lemur/wiki/RankLib/

Table 2: Offline evaluation results for individual candidate sources and the combined LTR model output. For the combined
model, we only measured the metrics at rank 500. The combined model achieves the best performance while QE emerges as
the best candidate source. Note that for the clicks metric a lower value indicates a better performance.

Recall RPrec NDCG Clicks
Model @10 @250 @500 @1000 @10 @250 @500 @1000 @10 @250 @500 @1000 @500

QE 0.072 0.392 0.497 0.596 0.063 0.129 0.129 0.129 0.204 0.264 0.303 0.337 05.129
META1 0.033 0.232 0.309 0.393 0.032 0.100 0.100 0.100 0.160 0.181 0.217 0.252 08.839
META2 0.001 0.012 0.016 0.018 0.001 0.003 0.003 0.003 0.003 0.007 0.009 0.010 47.857
EMB1 0.025 0.129 0.174 0.234 0.022 0.038 0.038 0.038 0.065 0.084 0.099 0.118 21.740
EMB2 0.031 0.156 0.200 0.250 0.028 0.049 0.049 0.049 0.087 0.104 0.119 0.135 17.531
EMB3 0.042 0.174 0.214 0.261 0.038 0.065 0.065 0.065 0.116 0.126 0.140 0.155 21.112
EMB4 0.048 0.219 0.268 0.320 0.043 0.078 0.078 0.078 0.138 0.155 0.173 0.190 17.174
All candidate sources + LTR - - 0.513 - - - 0.134 - - - 0.313 - 04.380

portion we use 50K playlists to train the LTR model and 5K playlists
for offline evaluation. For each playlist in both the train and the
evaluation, we hold out some of the member tracks—and optionally
the playlist title—to generate a dataset with similar distributions
as the challenge set. After finalizing the LTR model, we regenerate
the candidates and recompute the features using the full MPD for
the final challenge submission.
An open source implementation of our framework is available at
https://github.com/skallumadi/BachPropagate.

4 RESULTS
Table 2 shows the offline evaluation results for the individual candi-
date generation strategies and the final combined output of the LTR
model. Among the different candidate sources, QE demonstrates the
strongest performance across all four metrics and all rank positions.
While META1 shows reasonable performance, META2 achieves
modest results most likely because the challenge set is designed
such that each playlist containts a diverse set of artists and albums.
So matching the input playlist title with the candidate track’s title
or its album/artist name does not add enough value. EMB4 fares
the best among all the track embedding based approaches. The
LTR model that re-ranks a combined set of candidates from all the
different sources performs best and shows significant improvement
over the strongest individual source QE.

The final standing on the RecSys 2018 challenge for the main
and the creative tracks are shown in Table 3. Our submission based
on the framework described in this paper features among the top
ten teams out of 112 participants on the main track and among the
top five teams out of 31 teams on the creative track. Our submission
also ranked among the top five teams based on the clicks metric
alone on both tracks. We achieved this competitive performance
based on simple applications of standard IR models. Our approach
may be improved even further by incorporating more advanced
retrieval models, including those based on recent neural and other
machine learning based approaches [14].

5 CONCLUSION
In this paper, we have argued that ad-hoc retrieval models can be
useful for recommendation tasks. However, so far we have based
our argument solely on retrieval performance. Another important

Table 3: The final RecSys 2018 spotify challenge leader-
boards. Our submissions are highlighted in bold. Only the
top 10 teams from the leaderboards are shown. The total
number of participating teams was 112 and 31 for the main
and the creative tracks, respectively. For the clicks metric a
lower value indicates a better performance.

RPrec NDCG Clicks
Team name Value Rank Value Rank Value Rank Borda

1 vl6 0.224 1 0.395 1 1.784 2 329
2 hello world 0.223 2 0.393 2 1.895 6 323
3 Avito 0.215 6 0.385 4 1.782 1 322
4 Creamy Fireflies 0.220 3 0.386 3 1.934 7 320
4 MIPT_MSU 0.217 4 0.382 5 1.875 4 320
6 HAIR 0.216 5 0.380 6 2.182 13 309
7 KAENEN 0.209 11 0.375 8 2.054 10 304
7 BachPropagate 0.209 12 0.374 12 1.883 5 304
9 Definitive Turtles 0.209 13 0.375 7 2.078 11 302
10 IN3PD 0.208 14 0.371 14 1.952 8 297

(a) Main track

RPrec NDCG Clicks
Team name Value Rank Value Rank Value Rank Borda

1 vl6 0.223 1 0.394 1 1.785 1 90
2 Creamy Fireflies 0.220 2 0.385 2 1.925 4 85
3 KAENEN 0.209 3 0.375 3 2.048 6 81
4 cocoplaya 0.202 7 0.366 6 1.838 2 78
5 BachPropagate 0.202 6 0.366 5 2.003 5 77
6 Trailmix 0.206 4 0.370 4 2.259 9 76
7 teamrozik 0.205 5 0.361 7 2.164 8 73
8 Freshwater Sea 0.195 9 0.350 9 2.130 7 68
9 Team Radboud 0.198 8 0.356 8 2.293 11 66
10 spotif.ai 0.192 10 0.339 11 2.267 10 62

(b) Creative track

consideration in this debate is the runtime efficiency. Using inverted
index and other specialized data structures, typical web scale IR
systems can retrieve the relevant results under a second from collec-
tions containing more than billions of items [23]. The Recsys 2018
challenge does not consider runtime efficiency. It is likely that our

https://github.com/skallumadi/BachPropagate

argument for applying ad-hoc retrieval models to recommendation
tasks may be strengthened if we consider model response times.

Finally, because our main goal in this work was to achieve a com-
petitive performance at this year’s RecSys challenge, the current
study is focused primarily on empirical results. However, a theoret-
ical comparison of ad-hoc retrieval models and recommender sys-
tems may reveal more insights and opportunities in the intersection
of these two research communities. We conclude by highlighting
this as an important direction for future work in this area.

REFERENCES
[1] Nasreen Abdul-Jaleel, James Allan, W Bruce Croft, Fernando Diaz, Leah Larkey,

Xiaoyan Li, Mark D Smucker, and Courtney Wade. 2004. UMass at TREC 2004:
Novelty and HARD. Computer Science Department Faculty Publication Series
(2004), 189.

[2] John S Breese, David Heckerman, and Carl Kadie. 1998. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc., 43–52.

[3] Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl. 2007. The adaptive web.
Springer-Verlag Berlin Heidelberg.

[4] Jean C de Borda. 1781. Mémoire sur les élections au scrutin. (1781).
[5] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable representation learning for heterogeneous networks. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 135–144.

[6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[7] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[8] Victor Lavrenko. 2008. A generative theory of relevance. Vol. 26. Springer Science
& Business Media.

[9] Victor Lavrenko and W Bruce Croft. 2001. Relevance based language models.
ACM, 120–127.

[10] Quoc V Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents.. In ICML, Vol. 14. 1188–1196.

[11] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundation and
Trends in Information Retrieval 3, 3 (March 2009), 225–331.

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[14] Bhaskar Mitra and Nick Craswell. 2018. An introduction to neural information
retrieval. Foundations and Trends® in Information Retrieval (to appear) (2018).

[15] Bhaskar Mitra, Eric Nalisnick, Nick Craswell, and Rich Caruana. 2016. A Dual
Embedding Space Model for Document Ranking. arXiv preprint arXiv:1602.01137
(2016).

[16] Javier Parapar, Alejandro BellogíN, Pablo Castells, and Álvaro Barreiro. 2013.
Relevance-based language modelling for recommender systems. Information
Processing & Management 49, 4 (2013), 966–980.

[17] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[18] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[19] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. 2004. Simple BM25
extension to multiple weighted fields. In Proc. CIKM. ACM, 42–49.

[20] Alan Said. 2016. A Short History of the RecSys Challenge. AI Magazine 37, 4
(2016).

[21] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,
1165–1174.

[22] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067–1077.

[23] Jaime Teevan, Kevyn Collins-Thompson, Ryen WWhite, Susan T Dumais, and
Yubin Kim. 2013. Slow search: Information retrieval without time constraints. In
Proc. HCIR. ACM, 1.

[24] Daniel Valcarce, Javier Parapar, and Álvaro Barreiro. 2016. Efficient Pseudo-
Relevance Feedback Methods for Collaborative Filtering Recommendation. In
European Conference on Information Retrieval. Springer, 602–613.

[25] Ellen M Voorhees and Donna Harman. 2003. Common evaluation measures. In
The twelfth text retrieval conference (TREC 2003). 500–255.

[26] Ellen M Voorhees, Donna K Harman, et al. 2005. TREC: Experiment and evaluation
in information retrieval. Vol. 1. MIT press Cambridge.

[27] Ivan Vulić and Marie-Francine Moens. 2015. Monolingual and cross-lingual in-
formation retrieval models based on (bilingual) word embeddings. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. ACM, 363–372.

[28] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao. 2010.
Adapting boosting for information retrieval measures. Information Retrieval 13,
3 (2010), 254–270.

[29] Hamed Zamani and W Bruce Croft. 2016. Estimating embedding vectors for
queries. ACM, 123–132.

[30] Hamed Zamani, Bhaskar Mitra, Xia Song, Nick Craswell, and Saurabh Tiwary.
2018. Neural ranking models with multiple document fields. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining. ACM,
700–708.

	Abstract
	1 Introduction
	2 The RecSys 2018 Challenge
	3 Our approach
	3.1 Candidate generation
	3.2 Learning to rank

	4 Results
	5 Conclusion
	References

