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Abstract

Across the globe, it is now commonplace for educators to
engage in the making (design and development) of embed-
ded systems in the classroom to motivate and excite their
students. This new domain brings its own set of unique re-
quirements. Historically, embedded systems development
requires knowledge of low-level programming languages, lo-
cal installation of compilation toolchains, device drivers, and
applications. For students and educators, these requirements
can introduce insurmountable barriers.

We present the motivation, requirements, implementation,
and evaluation of a new programming platform that enables
novice users to create software for embedded systems. The
platform has two major components: 1) Microsoft MakeCode
(www.makecode.com), a web app that encapsulates an entire
beginner IDE for microcontrollers; and 2) CODAL, an effi-
cient component-oriented C++ runtime for microcontrollers.
We show how MakeCode and CODAL provide an accessible,
cross-platform, installation-free programming experience
for the BBC micro:bit and other embedded devices.

CCS Concepts · Software and its engineering → Em-

bedded software; Runtime environments; Integrated and vi-
sual development environments;
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Figure 1. Example projects undertaken within education:
Rishworth School sent a micro:bit to space [19] (left); The
micro:bit placed in a custom-built rocket car for teleme-
try [20, 21] (right).

1 Introduction

Recent years have witnessed expansive growth in the popu-
larity and ubiquity of embedded systems. This growth can
be primarily attributed to the emergence of new application
domains ranging fromwearables, to home automation, indus-
trial automation, and smart grids ś a phenomenon broadly
referred to as the Internet of Things (IoT). As the IoT con-
tinues to grow, it has become more pervasive ś far beyond
the realm of domain experts and into the everyday lives of
the public. This has led to growth in non-expert developers
actively creating software for embedded systems. Small to
medium sized businesses now create new products through
rapid prototyping of embedded devices. Hobbyist makers cre-
ate novel technical projects to inspire themselves and society.
And now, more than ever before, educators are making exten-
sive use of physical computing devices as a direct means to
teach and inspire a generation of students ś and to prepare
them for a society where IoT will be the norm. These new
developers all share a common characteristic: they are not

professional software developers [9, 10, 16].
To address this trend, in 2015 a consortium of industry

and academic partners came together to develop the BBC
micro:bit ś an embedded device designed specifically for
education. One million of these devices were delivered to
UK school children in 2016. The micro:bit is a highly capable
IoT device containing a 32-bit ARM Cortex-M0 processor, in-
tegrated light level, temperature, acceleration and magnetic
sensors, touch sensitive inputs, and USB and 2.4GHz radio
communications.
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Figure 1 highlights two example educational projects based
on the BBCmicro:bit. The first is a data gathering experiment,
where multiple sensor data was recorded to non-volatile
memory as the device was launched into near space (32.5km
altitude), along with an externally interfaced camera and
GPS unit. The second highlights a live data telemetry appli-
cation, where acceleration data was streamed in real-time via
Bluetooth Low Energy to enable the profiling of chemical-
rocket powered model vehicles. These projects are highly
sophisticated and were undertaken by high school educators
and their students.
We introduce an open-source1 platform for embedded

devices such as the micro:bit that enables the development
of embedded applications by non-expert programmers. This
platform consists of two major components: 1) Microsoft
MakeCode (www.makecode.com), a web app providing a
beginner IDE for embedded systems; and 2) CODAL
(Component-Oriented Device Abstraction Layer), an efficient
C++ runtime with high-level programming abstractions.

In the remainder of the introduction, we present the major
design challenges in bringing embedded systems into edu-
cation, briefly describe the architecture of our solution, and
give an overview of the paper and our results.

1.1 Design Challenges

Enabling novice programmers to successfully develop em-
bedded applications is a non-trivial task. Throughout our
research we have identified a number of design challenges
that we address through MakeCode and CODAL.

High Level Languages: Programming languages for micro-
controller units (MCUs) have not kept pace with advances
in hardware. Despite active research in the field, the C/C++
languages remain the standard for embedded systems: they
provide a familiar imperative programmingmodel, with com-
pilers that produce highly efficient code, and enable low level
access to hardware features when necessary. The Arduino
project (www.arduino.cc), started in 2003, and ARM’s Mbed
platform (www.mbed.org) both rely heavily on a C/C++ pro-
gramming model [6, 24]. However, the limitations of using
C/C++ as an application programming language for inexpe-
rienced developers are well understood [8]. To address this,
higher level languages such as JavaScript, Python, and even

visual programming languages are required.

Zero Installation Architecture: The development environ-
ment for existing embedded systems typically requires the
installation of code editors, custom device drivers, com-
piler toolchains, and even additional programming hardware
(such as a JLink programmer). For many, particularly in the
field of education, this presents a high adoption barrier as in
many schools, custom hardware and software is simply not

1 MakeCode is open-source at https://github.com/microsoft/pxt; CODAL is

open-source at https://github.com/lancaster-university/codal.

Table 1. Example microcontroller devices in relationship
to a typical PC. Device abbreviations: Uno (Arduino Uno),
micro:bit (BBC micro:bit), CPX (Adafruit Circuit Playground
Express), PC (Personal Computer).

Word CPU

Device RAM Flash Size Speed CPU

Uno 2 kB 32 kB 8 16MHz AVR

micro:bit 16 kB 256 kB 32 16MHz ARMv6-M
CPX 32 kB 256 kB 32 48MHz ARMv6-M

PC 16 GB 1 TB 64 3GHz x86-64

permitted by policy and/or access to the necessary technical
support is not present. An effective solution must therefore

provide a fully transparent, platform agnostic, zero installation

experience to developing embedded software.

Optimization for Code Efficiency: The projects of Figure 1
are enabled by small, highly resource-limited programmable
MCUs, which may have as little as a few kilobytes of RAM
and FLASH memory. Table 1 compares the core capabilities
of the class of MCU-based devices typically used in the edu-
cation domain to a typical PC. Note that these devices have a
proportionally large amount of processing power, relative to
their storage. Consider the BBCmicro:bit vs. a typical PC: the
micro:bit has about 100 times less CPU power, but 106 times
less RAM, and 106 times less storage. A language/runtime

should therefore not only seek to provide high code density and

spatial efficiency, but actively trade off temporal for spatial

efficiency where possible.

Asynchronous and Concurrent Programming: It is al-
ready well understood that novice programmers benefit from
event-based programming paradigms [17, 18, 26]. This is in-
creasingly relevant for embedded systems due to the typically
asynchronous nature of their hardware. MCUs still follow
Moore’s law, but this additional capacity is not typically in-
vested in speeding up processors. Instead, more independent
peripherals (such as Bluetooth/WiFi radio modules, audio
inputs/output processors, etc.) are integrated onto the same
package as the CPU as a system-on-chip. Such peripherals
often operate independently of the main CPU. An effective

language/runtime should directly support an asynchronous

interaction model designed to cooperate with the independent

nature of peripherals while remaining highly intuitive to the

programmer.

Intuitive andExtensible APIs: Intuitive APIs and program-
ming models are required to support novice users, yet it is
equally important that these APIs remain complete enough
to realise the ambitious projects that may be undertaken as
students advance: simplification via the reduction of func-
tionality is not a valid approach. An effective solution must

provide APIs that are consistent, easy to understand/use, and

progressive, to address the growing capabilities of the program-

mer.
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Figure 2. The MakeCode and CODAL Architecture

1.2 Architecture

Figure 2 illustrates the architecture of our platform. The
MakeCode web app is the primary entry point for the end-
user. MakeCode supports the simplified programming of
MCUs via editors for visual blocks and the textual Type-
Script2 language. CODAL is a component-oriented, event-
driven, fiber-based C++ runtime environment that bridges
the semantic gap between the higher-level languages (such
as TypeScript) and the hardware (bottom-left of the Figure).
Enabling the flashing of the microcontroller is UF2, a new file
format and bootloader for the simplified transfer of binaries
to the device over USB (bottom-right).

MakeCode can be accessed from any modern web browser
and cached locally for entirely offline use. The MakeCode
web app incorporates the open-source Blockly3 andMonaco4

editors (upper-left), an in-browser device simulator (upper-
right) for testing programs before transferring them to the
physical device, as well as in-browser compilation of Type-
Script to machine code and linking against the pre-compiled
CODAL C++ runtime (lower-left).

MakeCode devices appear as USB pen driveswhen plugged
into a computer, thanks to UF2. After a user has finished de-
veloping a program, the compiled binary is “downloadedž
locally to the user’s computer (lower-right) and then trans-
ferred (flashed) to the MCU by a simple file copy operation.
This works out-of-the-box on any OS with built-in support
for USB pen drives (MacOS, Windows, Linux, ChromeOS).

1.3 Overview

The remainder of the paper describes the design, implemen-
tation, and evaluation of MakeCode (Section 2), the CODAL
C++ runtime (Section 3), and the UF2 bootloader (Section 4).

2https://www.typescriptlang.org
3https://github.com/google/blockly
4https://github.com/microsoft/monaco-editor

Figure 3. Screen snapshot of the MakeCode web app.

Section 5 shows that combined, these technologies enable
simplified programming while maintaining a relatively high
degree of temporal and spatial efficiency. We demonstrate
up to 50x better performance than other state-of-the-art im-
plementations, in some cases nearing the performance of
native C++. MakeCode has been live since the fall of 2016, at
first supporting just the micro:bit, but now supporting many
more devices, most of which are based on CODAL. Section 6
discusses related work and Section 7 concludes the paper.

2 MakeCode

The key technical contribution of MakeCode is to provide
users with a basic environment to write programs for MCUs,
enabling a simple progression from visual block-based pro-
gramming to text-based programming in Static TypeScript
(STS), while leveraging C++ on the backend for efficient use
of MCU resources. MakeCode uses the open-source Blockly
and Monaco editors to allow the user to code with visual
blocks or STS. The editing experience is parameterized by a
fully-typed device runtime, which provides a set of catego-
rized APIs to the end-user.
Figure 3 is a screenshot of the MakeCode web app for

Adafruit’s Circuit Playground Express (CPX) device5. The
web app has five sections: (A) the menu bar allows switching
between the two editors; (B) the simulator shows the CPX
board and provides feedback on user code executed in the
browser; (C) the toolbox provides access to device-specific
APIs and programming elements; (D) the programming can-
vas is where editing takes place; (E) the download button
invokes the compiler, producing a binary executable.
The web app encapsulates all the components needed to

deliver a programming experience for MCUs, free of the
need for a C++ compiler for the compilation of user code.
The web app is written in TypeScript and incorporates the
TypeScript compiler and language service as well. The app

5https://makecode.adafruit.com
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is built from a MakeCode “targetž which parameterizes the
MakeCode framework for a particular device. The remaining
subsections describe the essential components of the web
app in Figure 2.

2.1 Static TypeScript

TypeScript is a typed superset of JavaScript designed to en-
able JavaScript developers to take advantage of code comple-
tion, static checking and refactoring made possible by types.
As a starting point, every JavaScript program is a TypeScript
program. Types can be added gradually to JavaScript pro-
grams, supported by type inference. While TypeScript pro-
vides classes and interfaces with syntax like Java/C#, their
semantics are quite different as they are based on JavaScript.
Classes are simply syntactic sugar for creating objects that
have code associated with them, but these objects are indeed
JavaScript objects with all their dynamic semantics intact.

Static TypeScript (STS) is closely related to StrongScript [23],
which extends TypeScript with a type constructor for con-
crete types, allowing the programmer to choose between
untyped, optionally-typed, and concretely typed code. This
provides traditional type soundness guarantees, as in Java
and C#. STS can be seen to be StrongScript where every vari-
able and expression has a concrete type. As in StrongScript,
classes are nominally typed, which permits a more efficient
and traditional property lookup for class instances. Currently,
STS goes further than StrongScript by outlawing downcasts.

2.2 Device Runtime and Shim Generation

A MakeCode target is defined, in part, by its device runtime;
which is a combination of C++ and STS code, as shown
in the lower-left of Figure 2. All the target’s C++ files are
precompiled (by a C++ compiler in the cloud) into a single
binary, which is stored in the cloud as well as in the HTML5
application cache. Additional runtime components may be
authored in STS, which allows the device runtime to be
extended without the use of C++, and permits components
of the device runtime to be shared by both the device and
simulator runtimes. The ability to author the device runtime
in both STS and C++ is a unique aspect of MakeCode’s design.
Whether runtime components are authored in C++ or

STS, all runtime APIs are exposed as fully-typed TypeScript
definitions. A fully-typed runtime improves the end-user ex-
perience by making it easier to discover APIs; it also enables
the type inference provided by the TypeScript compiler to
infer types for (unannotated) user programs.
MakeCode supports a simple foreign function interface

from STS to C++ based on namespaces, enumerations, func-
tions, and basic type mappings. MakeCode uses top-level
namespaces to organize sets of related functions. Preceding
a C++ namespace, enumeration, or function with a comment
starting with //% indicates that MakeCode should map the
C++ construct to STS. Within the //% comment, attributes

specify the visual appearance for that language construct,
such as for the input namespace in C++ for the CPX:

1 / / % c o l o r = "# B4009E " we i gh t =98 i c o n = " \ u f 1 9 2 "

2 namespace i npu t { . . .

Figure 3(C) shows the toolbox of API and language cat-
egories, where the category INPUT corresponding to the
namespace input can be seen (second from the top).
Mapping of functions and enumerations between C++

and STS is straightforward and performed automatically by
MakeCode. For example, the following C++ function onLight-
ConditionChanged in the namespace input wraps the more
complex C++ needed to update the sensor and register the
(Action) handler with the underlying CODAL runtime:

1 / / % b l o c k =" on l i g h t % c o n d i t i o n "

2 void onLightCond i t ionChanged ( L i gh tCond i t i o n

cond i t i on , Ac t ion hand l e r ) {

3 auto s en so r = &getWLight ( ) −>sen so r ;

4 sensor −>updateSample ( ) ;

5 r e g i s t e rW i t hDa l ( sensor −>id , ( in t ) c ond i t i on ,

hand l e r ) ;

6 }

MakeCode generates TypeScript declaration file (here
called a shim file) to describe the TypeScript elements corre-
sponding to C++ namespaces, enumerations and functions.
Since the C++ function above is preceded by a //% comment,
MakeCode adds the following TypeScript declaration to the
shim file and copies over the attribute definitions in the com-
ment. MakeCode also adds an attribute definition mapping
the TypeScript shim to its C++ function:

1 / / % b l o c k =" on l i g h t % c o n d i t i o n "

2 / / % shim= i n pu t : : o nL i gh tCond i t i o nChang ed

3 f u n c t i o n onLightCond i t ionChanged ( c o n d i t i o n :

L i gh tCond i t i on , h and l e r : ( ) => void ) : void ;

Since the //% comment also contains a block attribute,
MakeCode creates a block (named “on lightž), which can be
seen in the upper-left of Figure 3(D).
To support the foreign function interface, MakeCode de-

fines a mapping between C++ and STS types. Boolean and
void have straightforward mappings from C++ to STS (bool
→ boolean, void → void). As JavaScript only supports num-
ber, which is a C++ double, MakeCode uses TypeScript’s
support for type aliases to name the various C++ integer
types commonly used for MCU programming (int32, uint32,
int16, uint16, int8, uint8). This is particularly useful for sav-
ing space on 8-bit architectures such as the AVR. MakeCode
also includes reference-counted C++ types for strings, lamb-
das (Action in C++, with up to three arguments and a return
type) and collections, with mappings to STS.
MakeCode does not yet include a garbage collector, so

advanced users who create cyclic data structures must be
careful to break cycles to ensure complete deallocation.
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2.3 Browser Compilation

When a user requests a download of the compiled binary,
MakeCode first invokes the TypeScript language service to
perform type inference and type checking on the user’s pro-
gram, the device runtime written in STS, and the TypeScript
declarations corresponding to the C++ device runtime. It
then checks that the combined TypeScript program is within
the STS subset through additional syntactic and type checks
over the typed AST. Assuming all the above checks pass,
MakeCode then performs tree shaking of the AST to remove
unused functions. The reduced AST is then compiled to an
intermediate representation (IR) that makes explicit labelled
control flow among a sequence of instructions with condi-
tional and unconditional jumps, heap cells, field accesses,
store operations, and reference counting.
There are three backends for code generation from the

IR. The first backend generates JavaScript, for execution
against the simulator runtime. A second backend, parameter-
ized by processor type, generates assembly code. Currently
supported processors include ARM’s Cortex class (Thumb in-
structions) and Atmel’s ATmega class (AVR instructions). A
separate assembler, also parameterized by an instruction en-
coder/decoder, generates machine code and resolves runtime
references, producing a final binary executable. A third back-
end generates bytecode instructions. MakeCode can encode
the resulting binary in several formats, including Intel’s HEX
format [13] and the UF2 format, documented in Section 4.

TheMakeCode compiler supports the STS language subset
of TypeScript with two compilation strategies: untagged and
tagged. Under the untagged strategy, a JavaScript number
is interpreted as a C++ int by default and the type system
is used to statically distinguish primitive values from boxed
values. As a result, the untagged strategy is not fully faithful
to JavaScript semantics: there is no support for floating point,
and the null and undefined values are represented by
the default integer value of zero. The untagged strategy is
used for the micro:bit and Arduino Uno targets.
In the tagged strategy, numbers are either tagged 31-bit

signed integers, or if they do not fit, boxed doubles. Special
constants like false, null and undefined are distin-
guished by specific values. The tagged execution strategy
has the capability to fully support JavaScript semantics and
is used by all ATSAMD21 targets, including the CPX.

3 The CODAL Runtime

CODAL is a lightweight, object-oriented, componentized
C++ runtime for microcontrollers designed to provide an
efficient abstraction layer for higher level languages, such
as JavaScript. CODAL has five key elements:

1. a unified eventing subsystem (common to all compo-
nents) that provides a mechanism to map asynchro-
nous hardware and software events to event handlers;

1 # i n c l u d e " C i r c u i t P l a y g r ound . h "

2 C i r c u i t P l a y g r ound cp l ay ;

3

4 void onBr igh t ( ) { / / u s e r d e f i n e d c od e }

5

6 in t main ( ) {

7 cp l ay . messageBus . l i s t e n ( ID_LIGHT_SENSOR ,

LIGHT_THRESHOLD_HIGH , onBr i gh t ) ;

8 }

Figure 4. Example of the CODAL MessageBus.

2. a non-preemptive fiber scheduler that enables concur-
rency while minimizing the need for resource locking
primitives;

3. a simple memory management system based on refer-
ence counting to provide a basis for managed types;

4. a set of drivers, that abstract microcontroller hardware
components into higher level software components,
each represented by a C++ class;

5. a parameterized object model composed from these
components that represents a physical device.

There are discussed in detail below.

3.1 Message Bus and Events

CODAL offers a simple yet powerful model for handling
hardware or user defined events. Events are modeled as a
tuple of two integer values - specifying an id (namespace)
and a value. Typically, an id correlates to a specific software
component, which may be as simple as a button or some-
thing more complex as a wireless network interface. The
value relates to a specific event that is unique within the id
namespace. All events pass through the CODALMessageBus.
Application developers can then listen to events on this bus,
by defining a C/C++ function to be invoked when an event
is raised. Events can be raised at any time simply by creating
an Event C++ object, which then invokes the event handlers
of any registered listeners.
Continuing the example of detecting the brightness of a

room used in Section 2.2, a listen call to the MessageBus
with a component ID of the light sensor and a threshold
event is the underlying mechanism enabled by the runtime,
as illustrated by the equivalent C++ code snippet in Figure 4.
Unlike simple function pointers, CODAL event handlers

can be parameterized by the event listener to provide decou-
pling from the context of the code raising the event. The
receiver of an event can choose to either receive an event in
the context of the fiber that created it, or can be decoupled
and executed via an Asynchronous Procedure Call (APC).
The former provides performance, while the latter provides
decoupling of low level code (that may be executing, say, in
an interrupt context) from user code. Each event handler may
also define a threading model, so they can be reentrant or
run-to-completion depending upon the semantics required.
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3.2 Fiber Scheduler

CODAL provides a non-preemptive fiber scheduler with asyn-
chronous semantics and a power efficient implementation.
CODAL fibers can be created at any time but will only be
descheduled as a result of an explicit call to yield(), sleep()
or wait_for_event() on the MessageBus. The latter enables
condition synchronization between fibers through a wait/no-
tify mechanism. A round-robin approach is used to schedule
runnable fibers. If at any time all fibers are descheduled, the
MCU hardware is placed into a power efficient sleep state.
The CODAL scheduler makes use of two novel mecha-

nisms to optimize for MCU hardware. Firstly, CODAL adopts
a stack paging approach to fiber management. MCUs do not
support virtual memory and are heavily RAM constrained,
but relatively cycle rich. Therefore, instead of overprovision-
ing stackmemory for each fiber (which would waste valuable
RAM), we instead dynamically allocate stack memory from
heap space as necessary and copy the physical stack into
this space at the point at which a fiber is descheduled (and
similarly restored when a fiber is scheduled). This copy oper-
ation clearly incurs a small CPU overhead, but brings greater
benefits of RAM efficiency - especially given that MCU stack
sizes are typically quite small (~200 bytes is typical).

Secondly, the CODAL scheduler supports transparent APCs.
Any function can be invoked as an APC. Conceptually, this is
equivalent to calling the given function in its own fiber. How-
ever, the CODAL runtime provides a common-case transpar-
ent optimization for APCs we call fork-on-block - whereby
a fiber will only be created at the point at which the given
function attempts a blocking operation such as sleep() or
wait_for_event(). Functions which do not block therefore do
not incur all of the context switch overhead.

When invoking an APC, the scheduler snapshots the cur-
rent processor context and stack pointer (but not the whole
stack). If the scheduler is re-entered before the APC com-
pletes, a new fiber context is created at the point of deschedul-
ing, and placed on the appropriate wait queue. The previ-
ously stored context is then restored, and execution contin-
ues from the point at which the APC was first invoked. This
mechanism provides potentially high RAM savings for the
processing of MessageBus event handlers in particular.
CODAL’s scheduling and eventing models are shared by

both high and low level languages, and therefore handled
uniformly. As a result, when a foreign function call is mapped
to C++, that C++ function is capable of blocking the calling
fiber without infringing on the concurrency model of the
higher level language. This enables, for example, a C++ de-
vice driver to block a JavaScript program when awaiting
data without changing the behavior of other JavaScript code
acting asynchronously (as in Figure 3).

3.3 Memory Management

CODAL implements its own lightweight heap allocator, in-
troducing reentrant versions of the libc malloc family of
functions, permitting universal access to heap memory in
user or interrupt code. The heap allocator is flexible and
reconfigurable, allowing the specification of multiple heaps
across memory and it is optimized for repeat allocations of
memory blocks that are commonplace in embedded systems.
CODAL also makes use of simple managed types, built

using C++ reference counting mechanisms. C++ classes are
provided for common types such as strings, images, and data
buffers. A generic base class is also provided for the creation
of other managed types. This simple approach brings the
benefits of greater memory safety for application code, but
with the expense of suffering from the issues related to circu-
lar references. We take the view that such scenarios are rare
in MCU applications, justifying this approach over a more
complex garbage collection scheme and its overhead.

3.4 Device Driver Components

CODAL drivers abstract away the complexities of the under-
lying hardware into reusable, extensible, easy-to-use compo-
nents. For every hardware component there is a correspond-
ing software component that encapsulates its behavior in a
C++ object. CODAL has three types of drivers:

1. A hardware agnostic abstract specification of a driver
model (e.g. a Button, or an Accelerometer). This is
provided as a C++ base class.

2. The concrete implementation of the abstract driver
model, which is typically hardware specific. This is
implemented as a subclass of a driver model, such
as a LIS3DH accelerometer, as manufactured by ST
Microelectronics.

3. A high level driver that relies only on the interfaces
specified in a driver model (e.g. a gesture recognizer
based on an Accelerometer model).

This approach brings the benefits of abstraction and re-
usability to CODAL, without losing the hardware specific
benefits seen in flat abstraction models where every MCU
is made to look the same, even though their capabilities are
different (as in the Arduino and mbed APIs, for example).
Finally, we group together the components of a physi-

cal device to form a device model. This is a singleton C++
class that, through composition of device driver components,
provides a configured representation of the capabilities of
a device. Such a model allows: an elegant OO API for pro-
gramming a device, and a static representation that forms
an ideal target for the MakeCode linker to bind high level
STS interfaces to low level optimized code.
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MakeCode is further supported by an annotated C++ li-
brary (MakeCode wrappers) defining the mapping from CO-
DAL to TypeScript and Blockly. The use of MakeCode wrap-
pers ensures that different MakeCode targets that use CO-
DAL share a common TypeScript and block API vocabulary6.

4 UF2

The UF2 bootloader enables efficient, universal microcon-
troller programming through a USB pen drive interface Ð
no drivers are required, as operating systems support pen
drives out of the box. The UF2 bootloader builds upon the
work of DAPLink [3], but offers a simpler implementation
via a new flashing format, UF2.

DAPLink exposes a small virtual 512-byte block FAT file
system (VFS), with an empty file allocation table and root
directory. When the OS tries to read a block, DAPLink com-
putes what should be there. During file system writes, DAP-
Link detects blocks of files in Intel HEX format [13], decodes
them, and flashes the file’s contents into the target micro-
controller’s memory. Other file system writes are ignored.

DAPLink implements many heuristics to deal with quirks
of FAT file system implementations in various operating
systems (order of writes, various meta-data files that are
created and need to be ignored, etc.). However, we have
found that the heuristics are fragile with respect to operating
system changes, which are not infrequent.

Our new file format, UF2, consists of one or more 512-byte
self-contained blocks (aligned to the block size of the VFS),
removing the need for the complex heuristics. The blocks
have magic numbers, the payload data to be written to flash,
and the address where it should be written. Thus, on every
512-byte write via the USB controller, the bootloader can
quickly and easily check if the block being written is part of
a UF2 file (by comparing magic numbers) and if so, write it
immediately in a streaming fashion.
For simplicity, the 512-byte UF2 blocks usually contain

256 bytes of payload data. While 50% density might seem
low, the industry standard 16-byte-per-line HEX format has
a density of around 35%. However, the files are small by
modern computer standards (under 1000k) and we have not
found the lower density to be a problem. On the MCU side,
the bottleneck there is speed of flash erase, not the USB bus
(which reaches 1000k/s).

The minimal implementation of the UF2 bootloader con-
sumes just 1-2 kB of flash memory and less than 100 bytes

of RAM, with some variability due to the microcontroller
instruction set and USB hardware interfaces in use.

5 Evaluation

Our platform has been actively deployed for over a year,
bringing the benefits of a safe programming environment
for MCUs to hundreds of thousands of active users. In this

6See https://github.com/microsoft/pxt-common-packages

section we provide a broad, quantitative evaluation of the
cost at which these benefits are realized. We do this with
several micro-benchmarks that give insight into the perfor-
mance of MakeCode and CODAL across the Uno, micro:bit,
and CPX devices. We break down results by layer (CODAL
and MakeCode) to give an insight into how each performs.

5.1 Benchmarks, Devices, and Methodology

To analyze the performance of our solution, we have written
a suite of programs to evaluate different aspects ofMakeCode
and CODAL on a representative selection of real hardware
devices. Throughout, we use the C++ CODAL benchmarks as
a baseline; the STS benchmarks show the overhead added by
MakeCode. These programs were written in both C++ and
STS, and evaluated on the three devices listed in Table 1: The
micro:bit (Nordic nRF51 MCU), the CPX (Atmel ATSAMD21
MCU), and the Uno (Atmel ATmega MCU).

The Uno is the simplest of these devices, consisting of an 8-
bit processor running at 16 MHz, with only 2kB of RAM and
32kB of flash. The micro:bit has a 32-bit Cortex-M0 clocked
at 16MHz, with 16kB RAM and 256kB of flash. The CPX is
a 32-bit Cortex-M0+, which offers greater energy efficiency
and performance; it clocks at 48 MHz, has 32kB of RAM and
256kB of flash. The Uno and micro:bit MakeCode targets use
the untagged compilation strategy, while the CPX target uses
the tagged strategy (see Section 2.3). The benchmarks are
classified into two types, each with their own methodology:

1. Performance Analysis: Tests that capture time taken
to perform a given operation. For these benchmarks,
we toggle physical pins on the device at key points in
the test code. We then measure the time to execute the
operation, by using a calibrated oscilloscope observing
these pins. This allows us to derive highly accurate real
time measurements without biasing the experiment.

2. MemoryAnalysis: Tests that capture the RAMor FLASH
footprint of a certain operation. A map of memory is
logged before and after the execution of an operation,
allowing us to compute the cost. A serial terminal cap-
tures the output of these tests.

Note that memory and performance analysis are done in
separate runs to ensure logging does not affect time-related
measurements.

5.2 Tight Loop Performance

To place the performance of MakeCode in context, we per-
form a comparative evaluation of MakeCode against two
state-of-the-art solutions adopted by educators in the class-
room, using native C++ as our baseline. The two points of
comparison are MicroPython [12], an implementation of
Python for MCUs, and Espruino [29], an implementation of
JavaScript for MCUs. For the CPX, a fork of MicroPython
known as “CircuitPythonž was used. Both MicroPython and
Espruino use virtual machine (VM) approaches.
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Table 2. A comparison of execution speed between: native
C++ with CODAL; MakeCode compiled to native machine
code; MakeCode compiled to AVR VM; MicroPython; and
Espruino. The first line lists the C++ time, while subsequent
lines are slowdowns with respect to the C++ time. The 6.4x
slowdown of MakeCode VM compared to native MakeCode
on the Uno is compensated with 5x better code density.

UNO micro:bit CPX
CODAL 171ms 102ms 31ms

MakeCode 2.4x 2.1x 7.3x
MakeCode VM 15.3x - -

MicroPython - 101x 183x

Espruino - 1139x -

To give an indicative general case execution time cost
of each solution, we created a simple program that counts
from 0 to 100,000 in a tight loop in each solutions’ respective
language; the results are shown in Table 2. On AVR we count
to 25,000 (to fit within a 16 bit int) and scale up the results.

For MicroPython and Espruino on the micro:bit, the run is
two or more orders of magnitude slower than a native CODAL
program. MakeCode performs only 2x slower. The slowdown
reflects the simple code generator of our STS compiler. It
should be noted that MakeCode for the CPX uses the tagged
approach, which allows for seamless runtime switching to
floating point numbers, resulting in a further 3x slowdown.
For both devices, we can observe that MakeCode outper-
forms both the VM-based solutions of MicroPython and
Espruino by at least an order of magnitude.

MicroPython and similar environments cannot run on the
Uno due to flash and RAM size limitations. We also ran into
these limitations, and as a result, developed two compilation
modes for AVR. One compiles STS to AVR machine code,
and the other (MakeCode VM) generates density-optimized
byte code for a tiny (~500 bytes of code) interpreter. The
native strategy achieves code density of about 60.8 bytes per
statement, which translates into space for 150 lines of STS
user code. The VM achieves 12.3 bytes per statement allow-
ing for about 800 lines. For comparison, the ARM Thumb
code generator used in other targets achieves 37.5 bytes per
statement, but due to the larger flash sizes we did not run
into space issues.

5.3 Context Switch Performance

To evaluate the performance of CODAL’s scheduler we con-
ducted a test that created two fibers, continuously swapped
context, and measured the time taken to complete a context
switch. We performed this test in both STS and C++ and
the resulting profiles can be seen in Figure 5, which breaks
the context switch down into three phases: (1) CODAL, the
time it takes to perform a context switch in CODAL; (2)

Figure 5. Base context switch profiles per device.

Figure 6. Time taken to perform a context switch against
stack size.

Stack, the time taken to page out the MakeCode stack; and
(3) MakeCode, the overhead added by MakeCode.

From these results, we observe that context switches gen-
erally take tens of microseconds. The cost of CODAL’s stack
paging approach can also be a significant, but not dominant
cost. The cost of stack paging would of course grow with
stack depth. Figure 6 profiles the time a context switch takes
with an increasing stack size across all three devices in CO-
DAL. This is similar to the previous test, except we placed
bytes (in powers of 2) on the stack of each fiber, starting
from 64 and finishing at 1024. The difference in gradients,
and ranges of values can be put down to device capability.
For instance, the Uno has an 8-bit word size, which means
more instructions are required to copy the stack, this results
in a steeper gradient than the other two devices. The vertical
band indicates typical stack sizes for MakeCode programs
based on a representative set of examples.
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Table 3. Flash consumption of a MakeCode binary (kB)

CPX micro:bit Uno

MakeCode 20.46 12.14 7.79

CODAL 29.85 34.35 13.7
Supporting Libraries 14.99 24.28 -
C++ Standard Library 43.14 24 1.03

5.4 Performance of Asynchronous Operations

To gauge the cost of asynchronous operations in CODAL, we
tested three commonly used code paths, designed to deter-
mine the efficiency of CODAL’s fork-on-block Asynchronous
Procedure Call (APC) mechanism that underpins all event
handlers in MakeCode and CODAL. We measured the RAM
and processor cost of: (1) creating a fiber; (2) handling a non-
blocking APC call; and (3) handling a blocking APC call. We
used the CPX for this experiment.

Non-blocking APC calls, the best case, have a small over-
head of 32 bytes of RAM and 4.01 microseconds of processing
time. Blocking APC calls, the worst case, incur a large over-
head of 204 bytes of RAM and 32.4 microseconds of processor
time. Creating a fiber costs 136 bytes of RAM and 35.4 mi-
croseconds of processing time. These results highlight the
performance gains of the opportunistic fork-on-block mech-
anism over a naive approach that would execute every event
handler in a separate fiber.

5.5 Flash Memory Usage

MCUs make use of internal non-volatile FLASH memory to
store program code. Table 3 shows the per device flash con-
sumption of each software library used in the finalMakeCode
binary. To obtain these numbers, we analyzed the final map
file produced after compilation. The ordering of the table
aligns with the composition of the software layer: MakeCode
builds on CODAL which builds on the C++ standard library
and supporting libraries. MakeCode and CODAL consume
108 kB of flash, whereas CircuitPython consumes 201 kB,
MicroPython consumes 228 kB, and Espruino consumes 142
kB of flash. This means that users can write sizeable appli-
cations in MakeCode, without the worry of running out of
flash memory.
From the bottom up, the profile of the standard library

changes dramatically for each device: The Uno has a very
lightweight standard library; the micro:bit uses 64-bit inte-
ger operations (for timers) which requires extra standard
library functions; and the CPX requires software floating
point operations pulling in more standard library functions.
The size of CODAL and MakeCode scales linearly with

the amount of functionality a device has, due to the compo-
nent oriented nature of CODAL and transitively MakeCode.
For instance, the Uno has few onboard components when
compared to the CPX and micro:bit. The modular composi-
tion of CODAL allows us to support multiple devices with
a variety of feature sets, while maintaining the same API at
the MakeCode layer.

Table 4. Static RAM consumption of aMakeCode binary (kB)

CPX micro:bit Uno

MakeCode 0.612 1.069 0.074

CODAL 0.369 0.214 0.156
Supporting Libraries 0.312 0.923 -
C++ Standard Library 0.161 0.149 0.074

5.6 RAM Memory Usage

Table 4 shows the per device RAM consumption of each
software library used in the final MakeCode binary. To obtain
these numbers, we analyzed the final map file produced after
compilation. At runtime, MakeCode dynamically allocates
additional memory: 1.56 kB for the CPX, 560 bytes for the
micro:bit, and 644 bytes for the Uno. We also can see that in
all cases, the RAM consumption of MakeCode and CODAL
is well within the RAM available of each device.
MakeCode and CODAL consume a small amount of re-

sources in comparison: CircuitPython (a derivative of Mi-
croPython) consumes 12.8 kB, MicroPython consumes 9.5 kB,
and Espruino consumes 5.3 kB of RAM. On the micro:bit,
the Bluetooth stack requires 8 kB of RAM to operate. Due to
MicroPython’s RAM consumption this means that Bluetooth
is inoperable. Comparatively, Espruino does enable the Blue-
tooth stack, but users have just ~300 bytes available for their
programs due to the overhead incurred.

5.7 Compiling Static TypeScript

During compilation, the entire STS program (including the
STS runtime) is passed to the TypeScript (TS) language ser-
vice for parsing. Then, only the remaining part of the pro-
gram (after code shaking) is compiled to native code. On a
modern laptop, using Node.js, TS parsing and analysis takes
about 0.1ms per statement, and MakeCode compilation to
native code takes about 1ms per statement. While the TS
compiler has been optimized for speed, MakeCode’s native
compilation process has not. For example, the CPX TS pass
is dominated by compilation of the device runtime and takes
about 100ms, whereas the MakeCode pass typically only in-
cludes a small user program and a small bit of the runtime,
resulting in less than 100ms. Thus, compilation times are
under 200ms for typical user programs of 100 lines or less.

5.8 Extensibility

Adding a new device in CODAL is trivial once a MCU has
been ported. The porting of a MCU is where we observe the
largest development overhead, as low-level implementations
of drivers for I2C, Serial, and SPI may have to be re-written.
Due to CODAL’s abstraction model, once low-level drivers
have been implemented, drivers for higher level components
like Accelerometers (which depend on high-level interfaces
for low-level drivers) can be immediately adopted if hard-
ware is present. A similar technique is used in MakeCode
for simulators.
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6 Related Work

6.1 Novice Programming Environments

Arduino [24] is an environment for programming micro-
controllers, aimed at novices. However, its C++ based APIs
introduces barriers for novice programmers [8]. Scratch [22]
is a widely adopted, event-based visual programming en-
vironment designed to introduce novice programmers to
computer science concepts. Extensions enable the program-
ming of physical devices with Scratch. However, devices
require constant tethered connections to operate, restricting
potential projects [10]. ArduBlock [2] brings visual program-
ming to the Arduino, but it lacks the event-based blocks
Scratch users are familiar with.

With the environments above, additional software must be
installed Ð this creates barriers for novice users in restrictive
environments. MakeCode and CODAL require no installation
to support a diverse user base and support event-based higher-
level languages to help beginners get a head start in the world
of the microcontroller.

6.2 Virtual Machine-based Languages

Recently, virtual machines supporting most of the semantics
of higher level languages like JavaScript, Java, and Python,
have been ported to 32-bit microcontrollers by maker com-
munities [10]. Examples include: MicroPython [12], Circuit-
Python, and Espruino [29]. These VMs consume a large
amount of RAM and flash memory, and run significantly
slower than native languages.

The research community has worked to bring higher level
languages to microcontrollers [14, 25, 28]. Rather than run-
ning a full-featured VM, others enable higher level languages
to run efficiently by stripping out advanced language fea-
tures, in favor of efficient, native execution [27]. Comparing
these solutions to our solution is challenging due to a mis-
alignment in evaluation metrics and microcontrollers. For
example, the PICOBit uses an 8-bit MCU, and evaluates the
cost of a VM, without the cost of a runtime environment.
Simply accounting for a 32-bit MCU in this case, results in
factor of 4 multiplication of most metrics.
Our approach bears most similarity to [27], where we

compile higher level languages to an optimized, event-driven

C++ runtime (CODAL).

6.3 Embedded Runtime Environments

Arduino [24] is an example of a simple platform where the
developer uses high-level APIs to control hardware; there is
no scheduler and memory management is discouraged, with
a heavy emphasis on the use of global variables.

TinyOS [15], Contiki [11], RIOT OS [7], Mynewt [4], mbed
OS [6], and Zephyr [5] are RTOS solutions known widely in
the systems community. The majority focus on the network-
ing features of sensor based devices and commonly adopt a
preemptive scheduling model, which leads to competition

over resources resolved using locks and condition synchro-
nization primitives. Contiki has a cooperative scheduler but
uses proto-threads to store thread context Ð local variables
are not allowed as the context of the stack is not stored.
Although the platforms above are widely used by C/C++

developers, none of these existing solutions align well with
the programming paradigms seen in higher level languages.
CODAL bridges the semantic gap between the higher level

language and the microcontroller, offering appropriate ab-
stractions and higher level primitives written natively in
C++.

6.4 Flashing Microcontrollers

There are two common ways to transfer a program to the
flash of a microcontroller: for embedded developers, a spe-
cialized debugger chip; for hobbyists, a custom serial proto-
col [1]. Both approaches require operating system drivers.
ARM’s mbed platform provides DAPLink [3], firmware that
presents itself to an external computer as a USB pen drive.
DAPLink exposes a virtual file system that caters for normal
file system behavior and handles the decoding of Intel HEX
files [13] Ð the firmware consumes 66 kB of flash and 13 kB
RAM. UF2 contributes a new file format that greatly simpli-

fies the virtual file system approach, reducing complexity of
the firmware and code size.

7 Conclusion

We have presented MakeCode: a no installation, web-based
programming environment, that supports novice program-
mers with block-based and text-based higher-level languages,
and compiles programs in the browser. So as to not compro-
mise the spatial efficiency of the microcontroller, we created
CODAL: a C++ runtime that bridges the semantic gap be-
tween higher level languages in MakeCode and C++. To
transfer programs compiled by MakeCode to the microcon-
troller without the installation of any drivers, we created UF2:
a new bootloader and file format that enables the simplified,
driverless programming of microcontrollers.

Combined, our approach to running higher level languages
on microcontrollers is up to 50x more performant compared
to other approaches. Further, by using modern tooling, and
higher level languages, our approach lowers the barrier to
entry for microcontroller programming.

Acknowledgements

The authors would like to thank the members of the Make-
Code team for their many contributions to the success of
the platform: Abhijith Chatra, Sam El-Husseini, Caitlin Hen-
nessy, Guillaume Jenkins, Richard Knoll, GalenNickel, Jacque-
line Russell, and Kesavan Shanmugam.

28



MakeCode and CODAL: Intuitive and Efficient Embedded... LCTES’18, June 19ś20, 2018, Philadelphia, PA, USA

A Artifact appendix

Submission and reviewing guidelines and methodology:
http://cTuning.org/ae/submission.html

A.1 Abstract

This artifact allows others to reproduce the results seen in
this paper for MakeCode and CODAL, using the BBC mi-
cro:bit. The artifact contains an offline build environment
for CODAL and MakeCode, allowing evaluators to test and
build programs locally. In addition, we also provide espru-
ino and micropython virtual machines to further increase
repeatability of our results. Evaluators should download the
virtual machine containing all pre-requisite tools, and use an
oscilloscope to observe wave forms (used for timing) gener-
ated by the micro:bit, and a serial terminal to observe results
reported from the micro:bit over serial.

A.2 Artifact check-list (meta-information)

• Program: MakeCode & CODAL
• Compilation: arm-none-eabi-gcc
• Binary: espruino, and micropython binaries included; others
compiled during testing

• Run-time environment: CODAL
• Hardware: BBC micro:bit
• Output: Waveforms, and serial output
• Publicly available?: Yes
• Artifacts publicly available?: Yes
• Artifacts functional?: Yes
• Artifacts reusable?: Yes
• Results validated?: Yes

A.3 Description

A.3.1 How delivered

The artifact is available hosted on GitHub:

https://lancaster-university.github.io/lctes-artefact-evaluation/

Alternately, the latest release is available for download:

https://doi.org/10.5281/zenodo.1242627

Finally, a virtual machine, based on debian, containing all the re-
quired software to reproduce our results is available here:

https://doi.org/10.5281/zenodo.1242605

A.3.2 Hardware dependencies

• A BBC micro:bit
• An oscilloscope
• A computer capable of running a virtual machine

A.3.3 Software dependencies

• A virtual machine obtained from the URL above.
• A serial terminal.

A.4 Installation

Use virtual box to install the image located at:

https://drive.google.com/open?id=1nxiorz6NRqjen89G59RCOEMkl

qAyaUv7

and the VirtualBox extension pack:

https://www.virtualbox.org/wiki/Downloads

A.5 Experiment workflow

Tests generally follow the following sequence of steps:

1. Perform small program modifications.
2. Compile the program.
3. Transfer program to the micro:bit (flashing).
4. Observe either a waveform generated by the micro:bit using

an oscilloscope, or serial output from the micro:bit using a
serial program.

A.6 Evaluation and expected result

We expect the results to be the same as those reported in the pa-
per. The observed waveforms may differ in time due to different
compilers, oscilloscopes, and oscilloscope calibration.

A.7 Experiment customization

All tests provided have a clear set of corresponding instructions
that evaluators should follow to observe the same results. Any steps
involving customisation have been minimised.

A.8 Notes

The virtual machine contains a folder named ‘evaluators’ which is
placed in the home directory of the lctes user. The username for the
virtual machine is: lctes and the password is: lctes2018. To become
super user, type su in a terminal, and enter the same password
(lctes2018).

Once logged in, and in the ‘evaluators’ directory, you can view
the tests as markdown files in the ‘docs’ directory. Alternately, these
markdown documents can also be viewed on the web by running
‘mkdocs serve’ in the evaluators folder, or browsing to:

https://lancaster-university.github.io/lctes-artefact-evaluation/

Which is a pre-built, and hosted version produced from the same
source.

We recommend that you add the micro:bit usb device using the
machine settings tab in virtual box as shown in the image below:

We also have a convenience script for mounting a shared folder
between the host and the vm. Simply create a shared folder named
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‘lctes-vm-dir’ and run ‘sh mount.sh’ (contained in evaluators) as a
super user to mount the shared folder to vb-share (also contained in
evaluators). Shared folder creation in VirtualBox is pictured below:
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