
VideoEdge: Processing Camera Streams using Hierarchical Clusters

Chien-Chun Hung
Microsoft Research / University of Southern California

Ganesh Ananthanarayanan
Microsoft Research

Peter Bodik
Microsoft Research

Leana Golubchik
University of Southern California

Minlan Yu
Harvard University

Paramvir Bahl
Microsoft Research

Matthai Philipose
Microsoft Research

ABSTRACT
Organizations deploy a hierarchy of clusters – cameras,

private clusters, public clouds – for analyzing live video
feeds from their cameras. Video analytics queries have
many implementation options which impact their resource
demands and accuracy of outputs. Our objective is to select
the “query plan” – implementations (and their knobs) – and
place it across the hierarchy of clusters, and merge common
components across queries to maximize the average query
accuracy. This is a challenging task, because we have to
consider multi-resource (network and compute) demands
and constraints in the hierarchical cluster and search in an
exponentially large search space for plans, placements, and
merging. We propose VideoEdge, a system that introduces
dominant demand to identify the best tradeoff between mul-
tiple resources and accuracy, and narrows the search space
by identifying a “Pareto band” of promising configurations.
VideoEdge also balances the resource benefits and accuracy
penalty of merging queries. Deployment results show that
VideoEdge improves accuracy by 25.4× and 5.4× compared
to fair allocation of resources and a recent solution for
video query planning (VideoStorm [69]), respectively, and
is within 6% of optimum.

I. INTRODUCTION

Major cities like New York and Beijing are deploying
thousands of cameras. Analyzing live video streams from
these cameras is of considerable importance to organizations.
Traffic departments analyze video streams from cameras
at intersections for traffic control, and police departments
analyze city-wide cameras for surveillance.

Organizations commonly deploy a hierarchy of clusters
to analyze their video streams. Every organization, e.g., a
traffic department, runs its private cluster to pull in the
video feeds from its cameras (with dedicated bandwidths).
The private cluster contains compute for analytics while also
tapping into public clouds (like Amazon EC2) for overflow
compute. The uplink bandwidth between the private cluster
and the public cloud, however, is not sufficient to stream
all the camera feeds to the cloud for analytics, and the
available network capacity could vary [1]. Some newer
cameras also have compute capacity on them. Major video

analytics providers like Genetec [8] and Avigilon [4], market
studies [15], as well as cloud providers like Amazon and
Microsoft [13] indicate that the hierarchical architecture –
camera, private cluster, cloud – is indeed common and the
only feasible approach for large scale analytics of video
streams. The suitability of a hierarchical architecture is also
reflected in our partnership with the City of Bellevue, WA,
and City of Washington, DC that are deploying our traffic
video analytics solution [42].

Video analytics queries are a pipeline of computer vision
components. For example, the object tracking query consists
of a “decoder” component, followed by an object “detector”,
and an “associator” component. Each component has many
implementation choices that provide the same abstraction.
For example, object detectors take a frame and output a list
of detected objects. Detectors can use background subtrac-
tion to identify moving objects against a static background
or a deep neural network (DNN) to detect objects based on
visual features. Components and their implementations are
analogical to logical and physical operators in SQL queries.

Different implementations have different resource de-
mands and produce outputs of varying accuracies. To detect
objects, background subtraction requires fewer resources
than a DNN but is also less accurate because it misses
stationary objects. Core vision components have tens of
different implementations but no single one that is cheapest
and most accurate across all scenarios. Components can
also have many knobs (like frame resolution or frame rate)
to set. Higher resolution or frame rate leads to higher
accuracy due to more information provided, but requires
more resources to process, which further impacts resource-
accuracy trade-off. Video queries have thousands of combi-
nations of implementations and knob values that impact their
“resource-accuracy” relationship. We define query planning
as selecting the best combination of implementations and
knob values for a query.

While the accuracy of a query depends only on its plan,
its network and CPU resource demands are determined
by component placement across the hierarchy of clusters.
For example, placing the tracker’s detector on camera and
associator in the private cluster uses compute and network
of the camera and private cluster, but not the uplink to the

1

cloud and CPU in the cloud. However, only some of the
placements are feasible, depending on the available resource
capacities.

Finally, multiple queries analyzing video from the same
camera often have common components – e.g., queries
to count cars and monitor pedestrians both need an ob-
ject detector and associator [42]. The common components
are typically the core vision building blocks, and such
commonality is especially prevalent among video queries
because extracting visual features of objects is central to
all video analytics. Merging these common components
among queries by running single instance of the common
components and sharing it allows for significant savings in
resources, but would also constrain them to the same choice
of plan and placement, among the queries.
Objective: Our objective is to build a video query optimizer
that takes as input: a) pipeline of components along with
the different implementation options and knobs, b) cluster
hierarchy with resource capacities, and c) representative
video that can be used to estimate component cost and ac-
curacy. The optimizer then automatically, (i) determines the
query plan for each video query, (ii) places its components
across the hierarchy of clusters, and (iii) merges common
components across queries, to maximize the average query
accuracy.

Although query optimization has been extensively studied
in traditional database community [36], [37], [52], [54], they
cannot be directly applied to optimizing for video queries
for the following reasons: (i) cost of video processing
components cannot be easily estimated as it depends both
on their configuration and video content, (ii) both accuracy
and resources are important in video query optimization, and
(iii) while merging is similar to multi-query optimization, it
does not jointly solve merging with placement and accuracy
of the queries.

Recent work on video processing, VideoStorm [69], se-
lects video query knobs to maximize accuracy, but ignores
three important issues that we tackle. First, VideoStorm
assumes that all the videos are streamed into a single cluster
and hence ignores component placement in hierarchical
settings. As a result, it does not deal with multiple resources
(network and compute) or dynamic network bandwidths.
Second, it does not identify the opportunity to merge com-
mon components across queries. Finally, it does not consider
implementation choices of vision components (only knobs).

Achieving high accuracy when optimizing video analytics
queries requires addressing two challenges: 1) exponentially
large search space, and 2) conflicts in merging that save
resources but also lowers accuracy.
Challenge 1: exponentially large search space. To max-
imize accuracy, we need to jointly plan, place, and merge
across all the queries. If we separately determine a query’s
plan, we might not have enough resources to place its
components. Even if we plan and place queries together, we

might not be able to merge common components because
they may end up with different plans or placements. How-
ever, the joint optimization leads to an exponentially large
search space.

Our solution, VideoEdge, efficiently navigates the search
space of query planning, placement, and merging using an
efficient heuristic. We identify the most promising “configu-
rations” – combinations of a query plan and placement – and
filter out those that have low accuracy and large resource
demands. We call the promising configurations the Pareto
band of configurations since we extend the classic economic
concept of Pareto efficiency [61]. The spread in accuracy
and resource demands of configurations of video analytics
queries allows for the Pareto band to drastically reduce
the search space. Each configuration has specific resource
demands across different resources and clusters, making it
non-trivial to compare configurations. For each configura-
tion, we define its dominant demand: the maximum ratio of
demand to capacity across all resources and clusters in the
hierarchy. This allows us to directly compare configurations
across demand and accuracy and avoids lopsided drain of
any single resource. Our heuristic searches through the
configurations within the Pareto band and greedily switches
to configurations that increase accuracy with little increase
in dominant demand.
Challenge 2: merging conflicts. When merging common
query components, we have to consider potential merging
conflicts. While merging two components reduces resource
usage, the implementation choice and placement of the
merged component might not be the best for both queries,
which lowers the accuracy. For example, DNN-based de-
tector is better for pedestrian monitoring while background
subtractor is better for car counting. We resolve merging
conflicts by carefully considering the change in aggregate
accuracy against reduction in resource usage of different
merging options.

VideoEdge includes an efficient profiler that generates
the resource-accuracy profile by using 100× fewer CPU
cycles than an exhaustive exploration. VideoEdge accom-
modates user-specified cost budgets (§V-E) and is robust
in handling dynamic bandwidths over time (§VI-A). We
compare VideoEdge with VideoStorm [69], and fair sharing
of resources among queries [19], [34] that is commonly
employed by production systems [3], [25], [68]. Evaluation
using realistic video queries show that we outperform fair
sharing and VideoStorm by 25.4× and 5.4× respectively in
accuracy and are within 6% of optimum.

II. VIDEO ANALYTICS CLUSTERS & QUERIES

We describe hierarchical clusters for video processing
in §II-A and the query plans to run various implementations
of video processing in §II-B. Finally, we take object tracker
as an example to show the diverse trade-offs between CPU
and network resources, and accuracy in §II-C.

2

NYPD Cluster1

NYPD Cluster2 Public Cloud

Network

Compute

W
A

N

Figure 1: Hierarchical Video Analytics Architecture. Network
links between cameras, private clusters, and the public cloud
have diverse bandwidths (represented by the width of the
arrow). The compute at the locations also vary.

A. Hierarchical Clusters

Organizations with large deployment of cameras – e.g.,
cities, police departments, or agriculture farms – typically
use a hierarchy of clusters (or locations, interchangeably)
to process video streams [4], [8], [14], [62]. Figure 1 shows
that each organization (e.g., NYPD) runs private clusters that
pull video from their cameras.
Compute hierarchy: Compute capacities at the private
clusters vary significantly from just a handful of cores (as
in a small farm) to hundreds of cores (as in New York
City [14]), and can include GPUs or other hardware DNN
accelerators. Newer cameras themselves contain compute
capacity [5] for video analytics and organizations may also
tap into the public cloud like Amazon EC2 and Microsoft
Azure for compute.
Network: Connectivity between the cameras and private
clusters (via cellular, wireless [70] or fiber links) is a crucial
resource. The bandwidth required to support a single camera
stream ranges from a few hundred Kb/s to many Mb/s for
multi-megapixel cameras. We can control the bitrate of the
video stream by configuring the resolution and frame rate
directly on the camera. Typically, the uplink from private
clusters to the public cloud is a few tens of Mb/s [1]
and supports streaming only a small fraction of camera
streams to the cloud (per our conversations with Avigilon [4]
and Genetec [8], leaders in video analytics solutions). In
rural deployments, such as cameras for monitoring crops
in farms [62], uplink Internet connectivity is even more
restricted and expensive.

Trends of increased compute availability on the “edge”
(on cameras and private clusters) and bandwidth scarcity
in reaching the cloud [53] has made the “intelligent edge”
model a strong focus for many large industry players like
Microsoft and Amazon in their IoT product offerings [13].
Because of high bandwidth requirements, utilizing the com-
pute on the hierarchy of edges is the only feasible approach
for processing live videos at scale [15]. Our discussions with
many traffic jurisdictions in the USA that we partner with,
also indicate their keenness on utilizing compute on their
cameras to reduce the cloud expenditure.

B. Implementations for Vision Primitives

Video processing often involves core vision primitives
– object detection, objects association across frames, and
recognition of object class – each with many implemen-
tation choices. A common approach to object detection is
to extract moving objects using background subtraction or
using DNNs such as YOLO [51]. There are over 40 different
algorithms in the background subtraction library [7]. To as-
sociate objects across frames, one can use different metrics
such as color histograms, or the SIFT [11] or SURF [12]
features. The VOT 2016 object tracking challenge has 70
different associators [16]. The ImageNet object recognition
challenge [10] has up to 80 different recognizers. Finally,
for the primitives with DNN implementations, compression
techniques [33] can create tens of efficient variants from any
baseline DNN.

Each implementation has different resource demands and
accuracy because it targets different conditions (e.g., light-
ing, camera angle, object sizes) and based on different
statistical assumptions. The YOLO [51] object detector is
accurate in scenes with just a few big objects but not
otherwise, while background subtraction based detectors, a
much cheaper technique, only works for moving objects in
a fixed camera. In choosing associator implementations, the
expensive SIFT features work well even in the presence
of shadows, while the much cheaper color histogram is
well-suited to track turning objects because the colors will
likely be the same no matter their angle to the camera.
Further, tracking a single rigid object (e.g., a car) on a fixed
camera is simple, while tracking people in a dense crowd
requires more sophistication. For these reasons, there is no
implementation that is universally accurate and cheapest for
all conditions.

Query plans: A video processing query typically includes
multiple core vision primitives. Given that each primitive
has tens of implementations to choose from and can also
be configured with various knobs (e.g., different video
resolutions or frame rates) [69], there are often hundreds
or thousands of query plans – choice of implementations
and knobs.

Common vision components across queries: Organizations
often run tens of queries on each camera stream such as
counting of various object types (cars, buses, trucks, SUVs,
pedestrians), traffic violations like jay walking, and collision
analysis between vehicles and bicycles, with our traffic
video analytics partners [42]. These queries reuse the same
core primitives like detectors, associators, and recognizers.
Thus, we need to optimize across queries and allow merging
these common components to substantially reduce resource
demands. However, merging also constrains the common
component to have the same plan (implementation choice)
and placement across the many queries.

3

0

0.25

0.5

0.75

1

0 1 2 3

A
c
c
u

ra
c
y

CPU (Detector + Associator)

(a) Accuracy vs. Cores

0
0.25

0.5
0.75

1

0 1 2 3 4 5

A
c
c
u

ra
c
y

Network rate (Mb/s)
(Detector + Associator)

(b) Accuracy vs. Network rates
Figure 2: Resource-accuracy profile of the tracker.

0

1

2

camera

stream rate

detector

CPU

detector

output rate

associator

CPU

associator

output rate

d
e
m

a
n
d
 [

c
o
re

s
 o

r
M

b
p
s
]

A B

Figure 3: Network and CPU demands of the camera and the
two modules in the tracker pipeline for two different plans,
both with accuracy 0.73− 0.75.

C. Resource-accuracy Trade-off

Different query plans have different CPU and network
demands, and accuracy. We illustrate this using an object
tracker, which is a key building block for many video
queries. An object tracker consists of two components: a
detector detects objects in each frame of the video, while an
associator associates those objects to existing tracks or starts
new tracks. We use a representative traffic camera stream
from a large US city with an original bitrate of 3 Mb/s at
30 frames/second to compare 300 query plans that vary the
resolution, frame rate and different implementations of the
detector and associator.
Resource demand vs. accuracy: To compute accuracy,
we compare our output tracks against the ground truth
obtained via crowd-sourcing. An object’s track is a time-
ordered sequence of boxes across frames, and in each frame
we calculate the F1 score ∈ [0, 1] (the harmonic mean of
precision and recall [60]) between the box in the ground
truth and the track generated by the tracker. When computing
F1 score for a query result with lower frame rate, i.e.,
sampling, we compare the results on the sampled frame
with its corresponding frame in the ground truth. We define
accuracy of the track as the average of the F1 scores across
all the frames. Figure 2 reports the trade-off between the
resource demands – CPU and network demand (sum of
output data rate of the detector and associator but exclude
the input stream rate) – against accuracy. The wide range
of demands and accuracies is caused by differences in
implementations (§II-B). Factors like the light (shadows or
overcast) and direction of the car (straight or making a turn)
affect the accuracy.

0.4
0.5
0.6
0.7
0.8

1 10 100 1000

Object (Server GPUs) Object (Mobile GPUs)

Scene (Server GPUs) Scene (Mobile GPUs)

Face (Server GPUs) Face (Mobile GPUs)

GPU Cycles (Millions)

A
c
c
u

ra
c
y

Figure 4: Profiling DNN recognizers – object, scene, face – on
server-class and mobile GPUs.

CPU demand vs. network demand: Figure 3 shows that
the compute demands and data rates for two example plans
with similar accuracy. Plan A is based on a DNN detector,
while plan B uses background subtraction. A’s CPU demand
is much higher than B’s, but A’s detector output and camera
input is much lower. Depending on the resource constraints,
both plans might be useful in optimizing for accuracy.
Object Recognizer DNNs: Resource-accuracy profiles are
integral to video queries including license plate readers,
DNN recognizers, etc. Figure 4 plots the resource-accuracy
profile for different DNN recognizer implementations on
GPUs: each for scene (AlexNet/MITPlaces [71]), face
(DeepFace [58]), and object (the VGG16 model [56]) recog-
nizers. We ran each model on a server-class GPU (NVIDIA
K20) as well as a mobile GPU (NVIDIA Tegra K1) that is
likely to be available in cameras. We generate less accurate
but faster models using lossy techniques as in [33].

To select the best plan, ideally, we would like to establish
an analytical model to estimate the accuracy and demand of
a given plan, similar to SQL query operators [27]. However,
this is infeasible because the demand and accuracy depend
not only on the implementations, but also on the specific
characteristics of the camera feed and even time of day.
Instead, to estimate both accuracy and demand, we use
an efficient profiler which is 100× cheaper than a naive
exhaustive exploration of the multi-dimensional space of
query plans (§VI).

III. MOTIVATING EXAMPLE

In this section, we motivate the need for careful query
planning, placement, and merging across a hierarchy of
clusters using an illustrative example. Our objective is to
maximize the average accuracy of video queries.

A. Queries and Cluster Setup

Consider the tracking query from §II-C with detector D
and associator A; Figure 5a. The components have CPU
demands CD and CA and input data rates BD and BA.
Figure 5b presents the setup with two cameras connected
to a private cluster. The private cluster has 3 cores and
is connected to the public cloud with practically unlimited

4

Object

Associator

[A]

Object

Detector

[D]
Camera

BD
BA

(a) Object Tracker Pipeline

Public CloudPrivate

Cluster

Compute

3 cores

Network

3 Mb/s

1

2

(b) Hierarchical Setup

Query

Plan
BD BA CD CA Accuracy

Q1080p 3 1.5 3 3 0.9

Q480p 1.5 1 2 2 0.6

Q240p 1 0.5 0.5 0.5 0.2

(c) Query plans for the tracker

C
D

1080p B
D

480p

B
A

1080p

3 Mb/s
3 cores

CPU Network

1.5

1.5

(d) Utilization at private cluster
for best plans & placement

Figure 5: Illustrative Example with two tracker queries (Fig.
(a)) running on a hierarchical setup (Fig. (b)). Both queries Q1

and Q2 have the same profile of plans (Fig. (c)).

compute capacity; for ease of illustration, we assume no
compute on the camera. The private cluster has a 3 Mb/s
link to the public cloud and each camera has a dedicated 3
Mb/s link to the private cluster.

We consider three queries to execute on each of the
camera streams – car counting, jay walking, and collision
analysis. All the three queries build atop a tracker (detector
→ associator, Figure 5a). To simplify the example, we
assume that the query components that consume the associ-
ator’s output to count cars, identify jay walkers and analyze
collisions consume negligible resources, and hence all the
resource consumption is by the detector and associator
components. The accuracy of the tracker’s output directly
translates to the accuracy of the outputs of each of these
queries.

Assume that the only knob we control in the query plans is
the frame resolution (which is configurable on the camera).
Figure 5c shows the profile of the query plans. Both the
accuracy of the tracker’s outputs as well as its resource
demands (data rates BA and BD, and CPU demands CD

and CA) drop with the frame resolution.

B. Planning, Placement, and Merging

Each query has three query plan options (1080p, 480p,
or 240p) and three placement options: (a) both components
in the private cluster, (b) detector in the private cluster and
associator in the cloud, (c) both in the cloud.1 Hence, in our
example, each query has 9 configurations (combinations of
query plans and placements).
Merging: The only choice to run the six queries (three
queries off each camera stream) is picking the 240p resolu-
tion for each query, Q240p, leading to an average accuracy
of only 0.2. Any other combination of query plans makes

1Placing the detector in the cloud and associator in the private cluster is
clearly wasteful and we do not consider this placement option.

AssociatorDetector
Car

Counter

AssociatorDetector Jay

Walkers

AssociatorDetector

Car

Counter

Jay

Walkers

Collision

Analysis
Figure 6: Merging the detector and associator of the “car
counter”, “jay walker”, and “collision analysis” queries on the
same camera stream.

it infeasible to place the components due to insufficient
compute or network capacity. However, in contrast to the
current practice of treating these queries independently, we
can merge their common components and run only one
instance of the detector and associator for each camera’s
video stream, see Figure 6. Merging saves us network and
compute; we avoid redundant streaming from the camera
and execution of the components.

Planning and placement: For each of the two merged
tracking pipelines, Q1 and Q2, picking 1080p resolution
maximizes the accuracy (Q1

1080p and Q2
1080p), but we cannot

pick 1080p for both simultaneously because it is infeasible
to place the components. Placing all the components in the
cloud requires a bandwidth of 6 Mb/s (BD + BD) against
the available 3 Mb/s. If one tracker’s detector (needing 3
cores) is placed in the private cluster (capacity of 3 cores),
the network link of 3 Mb/s between the private cluster and
the cloud is still insufficient to support the aggregate data
rate of 4.5 Mb/s (BD + BA for 1080p). At the same time,
the private cluster’s compute is insufficient to support all the
components locally.

Picking Q1
480p and Q2

1080p (or Q1
1080p and Q2

480p) is feasible
and leads to the best average accuracy of (0.9 ∗ 3 + 0.6 ∗
3)/6 = 0.75. However, this is feasible only if we place the
detector of Q2

1080p in the private cluster and its associator
in the cloud, while forwarding Q1

480p’s camera stream up
to the cloud for executing both its detector and associator.
Figure 5d shows the resulting utilizations at the private
cluster. This illustrates the need to determine query plans and
placements jointly, across all queries, and consider multiple
resources (unlike current database optimizers [2], [20]).

Note that while the above example for merging was
simplified, the decision is non-trivial in practice. This is
because we need to select the same plan for the merged
components which may often lead to conflicting accuracies.
Car counting works better with background subtraction
based object detector, while we need a DNN detector to
identify pedestrians for jay walking. We have to resolve such
merging conflicts and ensure that the best merged plan is not
overly resource intensive.

5

Ai,j accuracy of plan j of query i
Mi minimum accuracy of query i
Cl capacity of resource l

Dl
i,j,k demand on resource l of query i when using plan

j and placement k
Si,j,k dominant resource demand of query i when using

plan j and placement k
xi,j,k binary variable equal to 1 iff query i is using plan

j and placement k
Table I: Notations for query i.

C. Desirable Features

To summarize, these are the desirable properties of a
video query planner towards maximizing query accuracy:
(i) jointly plan for multiple queries using their resource-
accuracy profiles, (ii) consider component placement when
selecting query plans to identify resource constraints, and
(iii) account for multiple resources at the hierarchy of
locations, (iv) merge common components across queries
that process the same video stream. Achieving these proper-
ties is computationally complex owing to the combinatorial
number of options.

IV. PROBLEM FORMULATION

We begin with formulating our problem with an opti-
mization model as well as an approximate, highlighting
the challenges of applying them to solving our problem,
and motivating the need for an efficient heuristic solution
(explained in §V).

A. Notations and Definitions

Let Ai,j represent the accuracy of plan j for query i. Our
profiler provides us with the accuracy and resource demands
for each plan and placement (covered in §VI-B). Let Mi be
the minimum accuracy required for query i.

We model each cluster (e.g., camera or private cluster;
Figure 1) as an aggregate bin of resources (CPU and
network uplink and downlink) and only consider placement
of query components across the clusters. We refer to each
combination of resource type (e.g., uplink) and cluster (e.g.,
the camera) as a “resource” l. Let Cl be the capacity of
resource l and Dl

i,j,k be the demand on resource l from query
i when running with plan j and placement k. We refer to
each (plan, placement) pair as a configuration. Table I lists
the relevant notations.

For the example in §III (Figure 5), placing the detector
at the private cluster and the associator in the cloud uses
the following resources: uplink of the camera and downlink
of the private cluster (for the video), CPU and uplink of
the private cluster (running the detector and shipping its
output), downlink and CPU of the cloud (ingesting the
detector’s output and running the associator). 2 We deal with
fluctuations in bandwidths in §VI-A.

2Downlink bandwidths usually far exceed the uplink bandwidths.

B. Binary Integer Program

Without modeling the merging of queries, this problem
can be considered as a Binary Integer Program (BIP):

max
∑

i,j,k Ai,j · xi,j,k (1)

s.t., ∀l :
∑

i,j,kD
l
i,j,k · xi,j,k ≤ Cl (2)

∀i :
∑

j,k Ai,j · xi,j,k ≥Mi (3)
∀i :

∑
j,k xi,j,k = 1 (4)

xi,j,k ∈ {0, 1} (5)

where xi,j,k is a binary variable equal to 1 iff query i runs
using plan j and placement k. The optimization maximizes
the sum (equivalently, average) of query accuracies (Eq. 1),
while meeting the capacity constraint for all resources l
(Eq. 2) and ensuring a specified minimum accuracy Mi

for each query (Eq. 3). Eq. 4 ensures that exactly one
configuration is selected for each query. Despite providing
optimal solution to the problem, solving BIP requires expo-
nential time complexity, and is therefore not ideal for online
solution.

Our formulation maps directly to the multiple-choice
multi-dimensional knapsack problem (MMK) [46]. In the
regular multi-dimensional knapsack problem, we are given
n items, each with a specific size in D dimensions and a
weight. The goal is to maximize the total weight of items
that fit into a D-dimensional cube. In MMK, additionally,
each item has up to m incarnations. In selecting the items,
we can pick any of the incarnations of each item. [46] shows
a polynomial 2-approximation algorithm in m and n with
complexity of O((m·n)D), where n is the number of queries
and m is the number of configurations each query could
have.

We could apply this algorithm to our setting with each
each query being an item and each configuration of a
query being its incarnation. Each resource corresponds to
a dimension of the bin and the size of each incarnation
(configuration) in dimension l is the demand on resource
l. If we set the weight of an incarnation as the accuracy
of the corresponding query configuration, solving MMK
will maximize total accuracy within the resource capacities
– exactly our BIP formulation. Note that we can remove
all configurations which have accuracy below Mi to ensure
that each query achieves its minimum accuracy.However, the
algorithm described in [46] is impractical in our scenario for
two reasons. 1) First, the number of resources D is very high
in our setting, often proportional to the number of queries
n because there are a only handful of queries processing
each camera stream; D = O(n). Recall that we define
the combination of resource type (e.g., cores) and cluster
(e.g., camera) as a resource. Hence, the uplink bandwidth
and compute of each camera is a unique resource. As the
number of cameras is O(n), so is the number of resource
types. The complexity of the approximation algorithm in

6

[46] thus becomes O((m·n)n), which is exponential with the
number of queries and is too slow in practice. 2) Second, the
description so far ignores merging of queries. We can extend
the formulation to handle query merging as follows. Only
the queries that process video from the same video stream
can merge; we thus logically group all queries on the same
stream into super-queries and enumerate all the different
configurations (or incarnations) of each super-query as all
combinations of possible ways to merge these queries, their
configurations and placement. However, this would make m
exponential in the number of queries per stream and number
of modules in the query DAGs, again making the algorithm
too slow to use in practice.

We are unaware of other (approximate) algorithms with
polynomial complexity that apply in this setting. Instead, we
develop an efficient heuristic next in §V.

V. VideoEdge’S VIDEO QUERY OPTIMIZATION

VideoEdge is a video query optimization framework that
jointly optimizes all queries to maximize the average query
accuracy within the available resources. Specifically, we
plan for each query (pick its implementations and knobs),
place components of the query across the hierarchy of
clusters, and merge identical components of queries that
process the same stream to save resources.

A. Dominant Resource Demand

VideoEdge’s profiler (§VI-B) estimates demands (Dl
i,j,k)

and accuracies (Ai,j) for each query configuration. To decide
between two configurations c0 and c1, we need to compare
their accuracies and resource demands. Is c1 improving the
accuracy enough for the amount of additional resources it
consumes? However, because the queries utilize multiple
resources across many clusters (see §IV-A), it is tricky to
compare resource demands.

Therefore, we define a dominant demand which converts
demand for multiple resources into a single value; specif-
ically, the dominant demand of placement k of plan j for
query i Si,j,k = maxlD

l
i,j,k/Cl. S is a scalar that measures

the highest fraction of resources l needed by the query across
resource types (CPU, network) and clusters (camera, private
cluster, cloud).

A nice property of the dominant demand metric is that,
by normalizing the demand D relative to the capacity C of
the clusters, it avoids lopsided drain of any single resource
at any cluster. As a critical insight, if the system runs out
of network bandwidth between two clusters, no more data
can go through them and their remaining CPU resources are
wasted. Also, by being dimensionless, it easily extends to
multiple resources, akin to DRF [31]. While we also con-
sidered defining Si,j,k using sum of the resource utilizations
(
∑

l instead of maxl) or just the absolute demands, they
performed worse in our evaluations.

1: U . Set of all (i, j, k) tuples of all queries i and the
available plans j and placements k

2: pi . Plan assigned to query i
3: ti . Placement assigned to query i
4: for all query i do
5: (pi, ti) = argmin(j,k) Si,j,k . Agg. demand S, §V-A

6: for each resource l: update Rl

7: while U 6= ∅ do
8: U’ ← U −{(i, j, k)where ∃l : Rl < Dl

i,j,k}
9: remove (i, j, k) from U if Ai,j,k ≤ Ai,pi,ti

10: (i?, j?, k?) = argmaxi,j,k∈U′ Ei(j, k)
11: pi? ← j?, ti? ← k?

12: for each resource l: update Rl based on Dl
i?,pi? ,ti?

Figure 7: Pseudocode for VideoEdge’s heuristic.

B. Greedy Heuristic

We first describe our heuristic without considering merg-
ing and then incorporate it in §V-C. To maximize average
accuracy, it is crucial to efficiently utilize the available
resources. We employ the intuitive principle of allocating
more resources to queries that can achieve higher accuracy
per unit resource allocated compared to other queries. To
achieve this, we use an efficiency metric that relates the
accuracy to the dominant demand of the query.

Our heuristic starts with assigning the configuration with
the lowest dominant resource demand to each query and
greedily considers incremental improvements to the queries.
3 When considering switching query i from its current plan
j and placement k to another plan j′ and placement k′,
we define the efficiency of this change as the improvement
in accuracy normalized by the required additional demand.
Specifically:

Ei(j
′, k′) =

Ai,j′ −Ai,j

Si,j′,k′ − Si,j,k

Defining Ei(j
′, k′) in terms of the “delta” in both accu-

racy and demand turns out to be the most suited to our
gradient-based search heuristic. It outperformed alternate
definitions that just used only the new values, e.g., only
Ai,j′ and/or Si,j′,k′ in our evaluations.

Figure 7 shows the pseudocode. U represents the set of
all (i, j, k) tuples of all queries i, the available plans j, and
placements k. The objective is to assign to each query i, a
plan pi and placement ti; lines 1 − 3. It first assigns each
query i the plan j and placement k with the lowest dominant
demand Si,j,k (lines 4−5). After that, it iteratively searches
across all plans and placements of all queries and selects
the query i? (and the corresponding plan j? and placement
k?) with the highest efficiency (lines 7−12). Line 9 ensures
that we only consider configurations that increase accuracy.
It switches query i? to new plan j? and placement k?,
and repeats until no query can be upgraded (either due to

3We only consider plans j with accuracy Ai,j ≥ Mi.

7

insufficient remaining resources, or no available plans with
higher accuracy).

In each iteration, we only consider configurations that fit
in the remaining resources Rl by constructing U ′ (line 8).
Note that we cannot remove such infeasible configurations
from U completely because they might become feasible
later as the heuristic moves components across clusters by
changing configurations of queries.

A subtle aspect is that in each iteration, we remove those
options from U that reduce a query’s accuracy relative to
its currently assigned plan and placement (line 9). Such
an explicit removal helps because even though the change
in accuracy of the removed options would be negative,
those options may also have negative difference in dominant
utilization (Si,j,k), thus making the efficiency positive and
potentially high.

Note that our heuristic can also work with other perfor-
mance goals. For example, if each query has the requirement
of minimum accuracy to be useful, our proposed heuristic
can first focus on getting all queries to a configuration that
meets minimum accuracy before further improving overall
accuracy by selecting other configurations with higher accu-
racy. Our heuristic can also work to achieve fairness across
queries: each iteration improves for the query with minimum
accuracy, until the resources are depleted.

The computational complexity of our heuristic without
merging is O((m · n)2). There are at most n ·m iterations
before the proposed heuristic terminates since each iteration
removes at least one configuration from consideration and
there are total n · m configurations. In each iteration, at
most n ·m configurations are explored, therefore the overall
time complexity is bounded by (m ·n)2. This is much more
efficient than [46] (§IV-B).

Note that we do not change the plan and placement of the
running queries in the system while the heuristic is running
but only when all its iterations complete.

C. Merging Peer Queries

When there are multiple queries processing the same
camera feed with common prefix in their pipeline, we have
the opportunity to eliminate running redundant components.
We refer to such queries as a peer set. Figure 6 shows an
example of peer set of queries. The directional car counting
query in traffic video uses a detector component for iden-
tifying the vehicle, then a mapper component for keeping
track of the same vehicle, and finally a counter component
to record the number of vehicles per direction. Anomaly
detections also rely on an object detector component and a
mapper component to understand trajectories and to identify
anomalous behaviors. Since both queries require the detector
and mapper components, running only one copy of these
components can save resources (Figure 6) which in turn can
be used to upgrade other queries’ plans. We call this as
merging.

Challenges: Despite the obvious resource benefits of merg-
ing, the decision is non-trivial. Merging two peer queries
processing the same camera feed with common components
is not always beneficial to their accuracies. This is because,
the merged components have to be assigned common im-
plementations and knob values. However, a query plan that
achieves good accuracy for one query may not do so for the
other query. When counting cars and humans in the same
camera stream, different implementations of detectors and
mappers are better suited. A background subtraction based
detector and distance based mapper are better suited for
cars. On the other hand, humans, owing to their smaller size
are often missed by a background subtracter and require a
richer SIFT metric for mapping. Hence, the decisions on
merging need to contend with such conflicts. Even when
there are no conflicts on accuracy, picking the plan with
the common maximum accuracy might not be optimal as
it might be too resource-intensive. Furthermore, whether to
merge the peer queries or not depend not just on the overall
accuracy they can achieve, but also depend on the available
resources and, most importantly, the trade-off between them.
While merging peer queries could reduce resource usage,
given sufficient resources, some of the peer queries may
end up having its own isolated module pipeline to gain
better aggregate quality. A key question in merging peer
queries is deciding the implementation and knobs for the
merged components. In addition, the decision of merging
is not just for the peer queries involved, but should also
consider the aggregate quality for all queries in the system
as the planning and placement of other queries would also
be affected. Finally, the possible merging combinations grow
exponentially for a peer set of z queries (any subset of
queries in a peer set can be merged). Jointly performing
planning, placement and merging is markedly different than
multi-query optimizers in databases [30], [54].

To reduce the search space, we make two simplifying
assumptions when considering merging: (a) we either merge
all the common components or nothing at all. For the
example in Figure 6, we either merge both the detector and
associator or neither of them; we do not consider merging
only the detector.Consider partial merging provides more
flexibility, yet it would increase the complexity significantly.
Exploring more merging potions at reasonable overheads is
part of our future work. (b) we avoid searching through
all possible plans for the components that are not common
(“counter”, “jay walker” and “collision” components in
Figure 6) and use their plans from the previous iteration
of the heuristic. The distinct components in vision queries
usually tend to not have many choices in their plans, and
hence assumption (b) does not hurt our solution.

To realize merging peer queries, we make the following
change to line 10 of Figure 7. When considering switching to
configuration (p?i , t

?
i) of query i?, we also consider merging

this query with all subsets of its peer queries. Let R be one

8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Resource Demand

A
c
c
u

ra
c
y

Figure 8: Illustration of Pareto band (shaded) for a single
query. Note that for each accuracy (plan), there is a horizontal
stripe of placement options with different demands.

of the subsets of i?’s peer queries. We merge all queries in R
with i and apply the (p?i , t

?
i) configuration to all components

in i?. Any remaining components in the merged query (that
are not in i?) remain in their current plan and placement.
For each such merged query, we compute the efficiency
metric E relative to all peer queries of i?, i.e., ratio of
the aggregate increase in accuracy to the aggregate increase
in the resource demand. The computational complexity of
our heuristic, after incorporating merging queries, becomes
O((n·m)2 ·2z), in which z is the number of queries in a peer
set: for each configuration considered in each iteration, the
exploration is extended to consider all 2z possible subsets
of a query’s peer queries. 4

D. Pareto Band

To speed up the heuristic, we significantly reduce the
size of the exponentially-large set U by explicitly filtering
out query configurations that have low accuracy and high
resource demand. For example, the configurations in the
bottom-right corners of the tracker query in Figures 2a
and 2b are unlikely be selected by the heuristic.

We build upon the classic economic concept of Pareto
efficiency [61] to first identify the Pareto boundary of
query configurations. Figure 8 plots an illustrative resource-
accuracy space for a query with the left green line being the
Pareto boundary. For a particular query i, a configuration c
is on the Pareto boundary if there does not exist any other
configuration with lower demand and higher accuracy. For
every point not on the Pareto boundary, there is at least one
point on the boundary that beats it in both accuracy (higher)
and demand (lower).

However, limiting our search to only the configurations
on the Pareto boundary can be problematic when optimizing
for multiple queries. Note that the dominant demand S in
§V-A is defined in terms of the resource capacities and
not availabilities. Thus, when VideoEdge tries to select a
better configuration for a query, all the configurations on

4In practice z’s value is usually a small constant and far less than n.

the Pareto boundary may be infeasible due to insufficient
resource capacity (line 8 in Figure 7).

Therefore, to reduce the size of set U but not restrict
the heuristic too much, we define a “band” relative to the
boundary, which we refer to as Pareto band. We first define a
δ-boundary to consist of points (δd, a) for all points (d, a)
on the Pareto boundary. The Pareto band thus consists of
configurations between the Pareto and the δ-Pareto bound-
aries. See an illustration with δ = 2 in Figure 8 (red line is
the δ-Pareto boundary). Making the band’s width relative
to the Pareto boundary provides a cluster of placements
with comparable demands. We only search among the query
configurations within the band using our heuristic (set U
in §V-B). The big variation of the configurations in the
resource-accuracy space, endemic to video queries, typically
results in considerable reduction in the search space.

We see in our evaluations that δ = 2 provides over 90% of
the accuracy as with using all the configurations (δ → ∞).
While we considered specializing δ values per query, a single
uniform value suffices for our workload.

E. Resource Pricing

Using certain resources like cellular bandwidths out of
the cameras and compute cores in the public cloud incurs
monetary costs proportional to their usage. We allow the user
to specify total budget in terms of $/month, after which we
convert it to budget B per unit time, such as per minute. We
then run VideoEdge’s heuristic in each small time unit with
the following modification. 5 Having a fast heuristic allows
such frequent runs.

Assume that the resources Q1, . . . , Qv have prices
W1, . . . ,Wv per unit demand and unit time. A configuration
for query i with plan j and placement k has demand Dl

i,j,k

on resource l. Thus, the total cost of this configuration is
WT

i,j,k =
∑

l(Wl ·Dl
i,j,k). Thus, before running VideoEdge,

we create a new virtual resource with capacity B, i.e., the
total budget. The demand on this new resource will be
WT

i,j,k. After this, we run the regular VideoEdge heuristic,
thereby ensuring that the budget will be met.

VI. SYSTEM DESIGN

We now describe VideoEdge’s systemic design details.

A. Handling Bandwidth Changes

Video queries usually run continuously and the available
bandwidths are likely to fluctuate while the queries are
running. For example, if the up-link capacity reduces, we
might not be able to stream the video from the camera at
the chosen resolution and frame rate.

We handle bandwidth fluctuations by constantly moni-
toring the available bandwidths (using techniques used in
prior work [39], [44]); if any of the bandwidths changes

5While we will never overshoot the budget but may under-utilize it.

9

significantly for a certain amount of time, VideoEdge recom-
putes its query optimizations. To minimize the disruption,
we only recompute the query plan selection, while retaining
the current placement and merging decisions. In addition,
the complete version of VideoEdge is periodically re-run to
update the queries’ plans, placements and merges to ensure
high resource utilization.

Also, we constantly run golden queries to monitor and
calibrate the accuracy of the queries. Our system can be
configured to re-run the scheduling heuristic periodically
(e.g., every 3 hours) to account for any dynamics and
therefore maintain high accuracy.

B. Resource-Accuracy Profiler

The profiler is a key component of VideoEdge. For each
query, it estimates accuracy and per-component resource
demands (CPU and bandwidths). Note that the profiler
does not consider placement; the optimizer in §V jointly
incorporates placement with planning and merging.

The profiler estimates the query accuracy by running the
query on a labeled video dataset obtained via crowd-sourcing
or by labeling the dataset using a “golden” query plan which
might be resource-intensive but is known to produce highly
accurate outputs. When a user submits a new query, we start
profiling it while submitting it to the scheduler with the
default query plan.

Since a query can have thousands of plans which we have
to execute on the labeled videos, the main goal in profiling
is to minimize the CPU demand of the profiler. We use two
simple tricks: (1) eliminating common sub-expressions by
merging multiple query plans and (2) caching intermediate
results of query components.

Assume that both components in the tracking query D →
A have two implementations; D1, D2 and A1, A2. We thus
have to profile four query plans: D1A1, D1A2, D2A1, and
D2A2. If we run each plan separately, implementations D1

and D2 would run twice on the same video data. Instead,
we merge plans of profiled queries, similar to §V-C, to avoid
redundant runs.

While we could merge all the plans into one, executing
this would require large number of concurrent compute
slots which might not be available. In such cases, we
resort to caching of intermediate results. Note that while
caching alone will eliminate redundant executions, it has
dramatically high requirement on storage space. In profiling
the tracker on a 5-minute traffic video, the storage space for
caching is 78× the size of the original video.

Hence, we assign a caching budget per query. We pref-
erentially cache the outputs of those components that take
longer to generate. In addition, we also like to cache the out-
puts of those components which are to be used more. These
are components with many downstream components each
with many implementations and knob choices. We encode
these in a metric for each intermediate result, M = n × T

S

where n is the number of times this output will be accessed,
T is the time taken to generate the output, and S is the
size of the output. Our profiler uses the caching budget for
intermediate outputs with higher value of the M metric.
Benefit: For the tracking query, our profiler uses 100× fewer
CPU cycles compared to exhaustive exploration of all plans.
We use cache budget of 900MB per machine, which we
believe is practical in modern machines. On a 16-core ma-
chine, our profiler took 10 minutes to complete, which could
be parallelized across more machines. Such improvement in
efficiency, allows us to run the profiler periodically and use
the most recent resource-accuracy profile in our optimizer
in §V.

VII. EVALUATION

We evaluate VideoEdge with an Azure deployment em-
ulating a hierarchy of clusters using representative video
queries, and complement it using large-scale simulations.

1) VideoEdge outperforms state-of-the-art solutions by
up to 25.4× better average accuracy, while being
within 6% of the optimal accuracy.

2) Merging queries with common component accounts
for an additional 1.6× better accuracy.

3) Searching only the configurations in the Pareto band
drops the heuristic’s running time by 80% while still
achieving ≥ 90% of the original accuracy.

A. Setup

Azure deployment. We use a 24 node Azure cluster
to emulate a hierarchical setup; each node is a D3v2
instance with 4 cores and 14GB of memory. Ten of the
nodes are the “camera compute”; two cameras per node.
The 20 cameras “play” feeds from 20 recorded streams
from many cities in the USA at their original resolution
and frame rate. Two nodes act as a private cluster. Each
camera has a 600Kb/s link to the private cluster, resembling
the bandwidths available today. The cloud consists of 12
nodes with a 5Mb/s uplink from the private cluster. These
bandwidths are based on measurements at our partner traffic
jurisdictions at the City of Bellevue, WA and elsewhere.
They are also consistent with recent studies from Akamai
[1]. We also use simulations to evaluate larger settings under
varying resource capacities.

Video queries. We profile and evaluate using the fol-
lowing queries: tracker, DNN object classifier (trained in
advance), car counter, and license plate reader – a typical
combination of queries. The queries have 300, 20, 10, and
30 query plans, respectively, from different implementation
and knob choices. These queries are pre-defined in our
experiments so that we can profile them to obtain the
resource-accuracy profiles with various configurations. Each
query has two components and among the three clusters in
the hierarchy there are six placement options per query: both
components in the same cluster or each in a different cluster

10

(a) Small-scale Setting. (b) Comparison with Baselines. (c) Impacts of Merging.
Figure 9: Improvement in Accuracy.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5Ac
cu

ra
cy

 /
 A

cc
ur

ac
y

of
 B

IP

Average Number of Queries Per Camera

VideoEdge w/o Merging VideoStorm
VideoSotrm_Random VideoStorm_Camera
VideoStorm_Cluster VideoStorm_Cloud

Figure 10: Comparing VideoEdge to VideoStorm with different
placement options

(we avoid placements that go “down” from the cloud).
We use 200 video clips (each 5-minutes long) from many
locations and times of day, and thus generate 200 resource-
accuracy profiles for our experiments. The groundtruth for
these video queries are obtained by manually labeling. Each
query has 300 configurations; 5 resolution and 5 sampling
rate values, 3 object detector implementations (two based on
background subtraction and one on DNN) and 4 different
tracking metrics. Since there are 6 different placements for
the tracker query components, our heuristic considers 1800
total configurations. Each experiment is run 5 times, and the
median result reported.

Baselines. We compare against four approaches.
(1) Fair Allocation, since it is widely used in production

clusters [19], [34]. We extend the definition of fairness used
within a cluster (1

n of the resources in a cluster given n
queries) to multiple clusters by allocating 1

n of each resource
in each cluster. Within this fair allocation, each query picks
the configuration (query plan and placement) that achieves
the highest accuracy. 6

(2) Recent work on video analytics, VideoStorm [69],
a single-cluster, single-resource video query planner. We

6While we considered using DRF [31] as our fair allocation baseline, the
DRF algorithm is intertwined with component placement unlike a simple
fair allocation. This is because, DRF requires the demand at each cluster
even to define the dominant fair share, which in turn is a function of
placement and not known beforehand.

use the aggregate CPU of all the clusters for its planning.
Being a single-cluster solution, VideoStorm does not in-
clude placements and may selects query configurations that
are supported by bandwidth capacity. We place its query
components starting in the cameras, and move on to place
them at private clusters if the cameras do not have sufficient
compute CPU resources, and eventually move to the cloud
if both the cameras and the private clusters run out of CPU
resources. Such placement method for VideoStorm may not
be ideal, but provides fair insights in comparison without
deviating from its design spirits. We also ensure that it avoids
infeasible placements (e.g., insufficient network or compute
resource). In our experiments we also compare VideoEdge
to VideoStorm with additional placement options.

(3) To compute the optimal plan and placement without
merging, we solve the BIP optimization (§IV-B) with the
Gurobi solver [9]. We compute the optimal results with
merging using brute-force computation.

Performance metric. Our performance metric is the
average accuracy across all queries. We report the rel-
ative improvement over the baseline; given accuracies of
VideoEdge and a baseline are Ac and Ab, we report Ac

Ab
.

B. Improvement in Accuracy

We begin with presenting the improvement in accuracy
using our Azure deployment. We run the tracking queries
and assign them uniformly to the cameras; each camera runs
a randomly chosen video from the 200 options. We compare
against the two optimal strategies: 1) brute-force, which
considers merging but only scales to small deployments, and
2) BIP, which does not consider merging but scales to our
default deployment.

First, we use the brute-force optimum in a small-scale
setting with just one camera, one private cluster, and cloud
and vary the number of queries from two to four.7 Even at
this small scale with four queries, brute force takes 400 CPU
days to complete, compared to VideoEdge completing in 1.5
CPU seconds. Figure 9a shows that, although the average

7To quantify gains from merging, we only include queries with the same
components, e.g., a detector and an associator.

11

accuracy decreases with more queries sharing the resources,
VideoEdge achieves within 93%− 96% of optimum.

Next, we compare against the BIP optimum that does not
consider merging in our default-scale setting, see Figure 9b.
We also include VideoEdge without merging since the base-
lines do not merge queries. We make several observations.
First, VideoEdge w/Merging constantly outperforms BIP
when merging queries is possible (i.e., more than 1 query
per camera), and the gap increases as there are more queries
in the system. This suggests that VideoEdge’s considera-
tion of merging queries plays a key role in VideoEdge’s
effectiveness. Second, VideoEdge significantly outperforms
VideoStorm and Fair Allocation and the gains increase as the
number of queries increases: its accuracy is 5.4× and 25.4×
better than VideoStorm and Fair Allocation, respectively,
with 5 queries executing on every camera stream. Finally,
without the consideration of merging queries, the accuracy
of VideoEdge w/o Merging is within 94% of BIP even
with the increasing number of queries in the system, and is
3.3× and 15.7× better than VideoStorm and Fair Allocation,
respectively, with 5 queries executing on every camera
stream.

Figure 10 further compares VideoEdge to VideoStorm
with different placement options. The additional placement
options for VideoStorm in this experiment include: (a)
placing all query components in the cameras (VideoStorm-
Camera), (b) placing all query components in the private
clusters (VideoSotrm-Cluster), (c) placing all query com-
ponents in the cloud (VideoStorm-Cloud), and (d) placing
query components randomly across the locations, while
making sure it does not exceed bandwidth capacity. The
results suggest that VideoEdge outperforms VideoStorm in
all the cases, including the hierarchical placement option we
described earlier. We use the hierarchical placement option
for VideoStorm in our experiments since it provides the best
accuracy for VideoStorm. From the experiments in Figure 10
we learn that “retrofitting” query placement after query plans
are selected is less beneficial as compared to VideoEdge’s
approach of making joint decision on the two factors.
Merging conflicts. While merging queries can reduce re-
source usage and improve accuracy by 1.6× (see Figure 9b),
recall that it can lead to “conflicts” between queries when
they have different resource-accuracy profiles, thus needing
us to weigh the resource gains from merging against any loss
in accuracy. To highlight this, we compare against a “Merge
Everything” heuristic that merges all possible components
without considering conflicts, see Figure 9b; it achieves
much smaller gains.

C. Characterizing the Gains

Next, we characterize VideoEdge’s gains against the base-
lines in the scenario of no-merging consideration.
Resource efficiency. Figure 11a presents the distribution
of the absolute query accuracies with the “2-queries-per-

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Ac
cu

ra
cy

CDF (%)

BIP VideoEdge

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

D
om

in
an

tD
em

an
d

of

Ch
os

en
 C

on
fig

ur
at

io
n

CDF (%)

VideoStorm Fair

(a) Accuracy.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

A
cc

ur
ac

y

CDF (%)

Optimal CascadeBIP

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

D
om

in
an

tD
em

an
d

of

Ch
os

en
 C

on
fig

ur
at

io
n

CDF (%)

VideoStorm Fair

(b) Dominant Demand.
Figure 11: CDF of Accuracy And Dominant Demand.

Figure 12: Choice of placements for components.

camera” setting. VideoEdge’s CDF closely matches BIP,
which shows that VideoEdge’s greedy heuristic search in
the Pareto band is near-optimal even at a per-query level,
not just in aggregate. The key to VideoEdge’s performance
is effective utilization of resources. The CPU and network
utilizations are all above 85%, thus showing the effectiveness
of VideoEdge in balancing the load across clusters and
avoiding bottlenecks. This is mainly due to our metric of
dominant demand (§V-A) that prevents any single resource
from being disproportionately utilized. This is supported by
Figure 11b that shows that the queries’ dominant demands
achieved by VideoEdge are significantly higher than with fair
allocation and VideoStorm, and similar to BIP, thus leading
to higher utilizations and accuracies.
Placement decisions. Figure 12 presents the distribution of
the six options for placing the detector and associator. For
93% of queries, VideoEdge places both components of a
query at the same location, i.e., ”Camera-Camera”, ”Cluster-
Cluster”, and ”Cloud-Cloud”. As a result, the intermediate
data between the components does not use the network
between clusters, thus avoiding contention. VideoStorm’s
random placement strategy places 23% of the query com-
ponents across clusters which adversely impacts its query
plans and accuracies.

Next, we evaluate VideoEdge with constrained query
placement – like in many production video analytics de-
ployments – to one level in the hierarchy. All the queries
run (i) on their corresponding camera, (ii) in the private
cluster, or (iii) in the cloud. Figure 13 shows the ratio
of VideoEdge’s accuracies (without merging) over each of

12

Figure 13: VideoEdge’s gains over restricted placements.

the three constrained approaches. Note that each query
configuration could have different knob values, e.g., video
resolution, which requires decoding differently at the cam-
eras. Hence the same video source could be transmitted with
multiple streams each with different decoding scheme, and
this depends on the number of queries running over the same
camera. As the number of queries (per camera) increases,
the compute or network resources become saturated and they
cannot support the queries at high accuracies. For example,
with just one query per camera, we can stream all video to
the cloud and process it there; however, as the load increases,
this becomes harder and VideoEdge can run the queries
with up to 3× higher accuracy. We achieve the largest
gains against the camera-only constraint because the cameras
have the least compute available. These results highlight the
value in jointly utilizing the hierarchy of clusters for video
analytics.
Gains by query type. We also evaluate a wider (equal)
mix of query types – object tracker, DNN classifier, car
counter, license plate reader – in our simulator. We profile
these queries using our profiler (§VI-B) and feed these
to the simulator. The cluster settings are similar to the
deployment. We measure that the license plate reader and
car counter are farther from the optimal (87% of BIP) unlike
the other two that are near-optimal. This is explained by
the resource-accuracy profiles of the queries. The license
plate reader and car counter, beyond a certain accuracy,
have inefficient profiles (see §V-B). The additional resources
needed to improve their accuracy are higher compared to
the object tracker and DNN queries which have many more
efficient configurations. As a result, our heuristic assigns
more resources to the latter two.

D. Scalability with Pareto Band

In §V, we narrow down our search space by using a Pareto
band of promising configurations. The smaller the width of
the band (δ), the faster the running time of the heuristic
at the expense of lower accuracy. Figure 14a presents the
impact of δ on the accuracy and running time normalized
to considering all the configurations (i.e., δ → ∞). Even
with δ = 1, of the Pareto boundary, we see that the relative
accuracy is 80% of searching through the entire space. With
δ = 2, we achieve a relative accuracy of over 90% in under

0

0.2

0.4

0.6

0
0.2
0.4
0.6
0.8
1

1 2 3 4 5 6

Relative Running Tim
eRe

la
tiv

e
A

cc
ur

ac
y

Pareto Band Width (δ)

Accuracy Time

(a) Accuracy achieved and running time with Pareto band width
δ, relative to using all the configurations.

0

1

2

3

4

1.E+0

1.E+2

1.E+4

1.E+6

40 80 160 320 640

Running Tim
e (%

)
of Cascade over BIP Ru

nn
in

g
Ti

m
e

(s
ec

)

Number of Queries

BIP's Running Time VideoEdge (Right Y-Axis)

(b) Running Time.
Figure 14: Scheduling Overhead And Scalability.

a fifth of the time. Thus, we use the Pareto band with δ = 2
in our system.

We also compare the running time of the heuristic. Fig-
ure 14b compares VideoEdge’s running time to the BIP
(§IV-B). The left Y-axis stands for the BIP’s time while
the right Y-axis stands for VideoEdge’s relative running
time. The BIP optimization’s complexity grows considerably
faster than our heuristic (O(n2 ·m2) for n queries each with
m configurations. VideoEdge takes only 0.09% − 3.7% of
the time taken to solve the BIP.

E. Resource Pricing Budget

To evaluate how VideoEdge incorporates cost constraints
(§V-E), we use cloud CPU as the paid-resource. We first
run VideoEdge without any cost constraint, and obtain its
cost based on its cloud CPU usage and the Azure pricing
info [6]; we consider this cost as the maximum cost. We
then apply a cost budget on VideoEdge ranging from 0%
to 100% of this maximum cost, and measure the change in
accuracies.Two main characteristics stand out. First, as the
budget shrinks all the way to one-fifth of the maximum cost,
the license plate and DNN classifier queries see far more
drop in their accuracies (by 4×) because they are much more
compute-intensive while the accuracy of the tracker and
counter queries drops by only 26%. The latter two queries
switch from the expensive DNN object detector to cheaper
background subtractor. Second, the placement of the license
plate and DNN classifiers shift more to the private cluster
instead of using the public cloud. Overall, we observe that
even in the face of shrinking budgets, VideoEdge smartly
adapts with alternate choices on query plans and placements.

13

F. Adapting to Resource Capacity Changes

Recall from §VI-A that VideoEdge adapts to changing
bandwidths in the hierarchy of clusters. Our experiments in
monitoring uplink bandwidths out of private clusters (from
city jurisdictions) as well as between VM instances on Azure
showed that the bandwidth can vary by up to a factor of
2×. Based on these measurements, we evaluate VideoEdge’s
reaction to changes in bandwidth from its normal value of
X to between 0.5X and 1.5X .

We notice that increase in bandwidth capacity does not
lead to much increase in accuracy (by 10%) of the queries,
while decrease in bandwidth capacity drastically drops ac-
curacy by 41%. Since the selection of query plans depends
on the multi-resource allocation, increasing only the network
resources may not significantly improve the overall accuracy
due to the bottleneck at compute resources. On the other
hand, decreasing network capacity creates bottlenecks in
the network, which directly forces the selection of query
plans with lower accuracy. Also, as the bandwidth becomes a
constraint, VideoEdge selects the DNN object detector which
outputs fewer object boxes and thus uses less bandwidth,
instead of using background subtractor.

VIII. RELATED WORK

Big data jobs: Placement of VMs (e.g., Oktopus [23],
FairCloud [48]) or tasks of big data jobs (e.g., Yarn [19],
Mesos [34], Apollo [24], Borg [64]) has been an important
research direction. In this line of work, a set of tasks make
exact resource requests and is placed in the cluster to maxi-
mize utilization. However, such schedulers are typically de-
ployed in a single cluster. Recent work on wide-area analyt-
ics ([37], [49], [65], [66]) propose query optimization across
geo-distributed clusters. Recent work on wide-area analytics
– such as Geode [66], Iridium [49], Clarinet [65], Pixida [37]
– propose query optimization across geo-distributed clusters.
They, however optimize batch queries, not stream-processing
queries. Specifically, none of the above mentioned works
address the joint decision of query planning, placement and
merging as in our problem setting.
Databases: Streaming databases [17], [18], [38], [45], [63]
considered the resource-accuracy tradeoff but did not deal
with multiple plans (only sampling rate), multiple resources
(only memory), or a hierarchy of clusters. There exist many
works on multi-query optimization in database systems [26],
[29], [30], [52], [54], in which concurrent queries are jointly
considered for join order selection or placement across
distributed machines in order to either optimize for system
utilization or minimize query response time. However, none
of them addresses joint planning, placement and merg-
ing of multiple queries, especially merging queries is a
new challenge brought by running streaming video queries.
Works such as [47], [57] do joint placement and merging of
components to optimize network utilization, but ignore CPU
and do not consider a large number of query plans.

Video analytics has been increasing in popularity:
MCDNN [33] uses different versions of DNNs to trade off
resource usage and accuracy but does not consider placement
across a hierarchy. Optasia [43] writes video queries in
SQL and uses SQL optimizers but ignores the resource-
accuracy profiles in selecting the query plans; it does not
address placing query components across distributed ma-
chines either. VideoStorm [69] optimizes query knobs and
resource allocation to improve both query accuracy and
delay, however only considers the CPU resource in a single
cluster. Therefore, VideoStorm cannot be trivially applied to
our problem setting (i.e., hierarchical clusters) as we showed
in Section §VII. Chameleon [35] is the recent video analytics
work for continuously adjusting DNN configurations to
optimize accuracy or reduce resources costs based on the
temporal and spatial correlation among the video frames.
Such techniques could also be applied to our work, while
Chameleon does not address query merging opportunity,
which contributes to significant gains in accuracy as shown
in our work.
Mobile Offloading: Offloading expensive operations from
a resource-constrained mobile device to the cloud has been
a popular area [21], [22], [32], [40]. Previous works [28],
[32], [50] automatically provide a runtime to off-load meth-
ods to the cloud and adjust execution parallelism to im-
prove responsiveness and accuracy. Compared to offloading,
VideoEdge considers many queries together and optimizes
over its query plans and placements to resolve conflicts.
Starfish [41] eliminates redundant computation in vision
applications on a mobile device but our context also requires
jointly planning and placing all the queries while resolving
any conflicts.
Sensor networks is an area where multiple queries execute
in a hierarchical resource constraint environment [55], [59],
[67]. TTMQO [67] proposes a two-tier query optimization
framework, where multiple queries are first merged offline
and their execution is further optimized in the network by
minimizing the number of messages sent (sampling rate).
Our context, however, differs in that we have to optimize
over many query plans and placement of query components.

IX. CONCLUSION

Analyzing live video streams over hierarchical clusters
has become an important problem. Video analytics queries
have multiple implementations and knobs that decide their
accuracy and resource demand. We devise VideoEdge to
decide these choices, place the queries across the hierarchy,
and merge queries with common processing. To navigate
the exponentially large search space, we identify the most
promising options in a “Pareto band” and search only
within the band. We also devise an aggregate multi-resource
multi-cluster metric to compare configurations within the
band. Our evaluations with real-world video queries show
promising results of being within 6% of optimal planning.

14

REFERENCES

[1] Akamai’s state of the internet report. https://www.akamai.
com/us/en/multimedia/documents/state-of-the-internet/
q1-2017-state-of-the-internet-connectivity-report.pdf.

[2] Apache Calcite - a dynamic data management framework.
http://calcite.incubator.apache.org. Accessed 04-27-2015.

[3] Apache Storm. https://storm.apache.org/.

[4] Avigilon. http://avigilon.com/products/.

[5] AXIS camera application platform. https://goo.gl/tqmBEy.
Accessed 01-25-2016.

[6] Azure pricing. https://azure.microsoft.com/en-us/pricing/.
Accessed 08-30-2017.

[7] bgslibrary. https://github.com/andrewssobral/bgslibrary. Ac-
cessed 08-23-2017.

[8] Genetec. https://www.genetec.com/.

[9] Gurobi Optimization. http://www.gurobi.com/.

[10] imagenet. www.image-net.org/challenges/LSVRC/. Accessed
09-19-2017.

[11] Introduction to SIFT (Scale-Invariant Feature Transform).
http://docs.opencv.org/3.1.0/da/df5/tutorial py sift intro.
html.

[12] Introduction to SURF (Speeded-Up Robust Features).
http://docs.opencv.org/3.0-beta/doc/py tutorials/py
feature2d/py surf intro/py surf intro.html.

[13] Meet the intelligent edge. https://www.microsoft.com/en-us/
internet-of-things/intelligentedge.

[14] NYPD expands surveillance net to fight crime as well as
terrorism. https://goo.gl/Y9OKh0. Accessed 01-25-2016.

[15] Top video surveillance trends for 2016. https://technology.
ihs.com/api/binary/572252/.

[16] Visual object tracking challenge 2016. http://www.
votchallenge.net/vot2016. Accessed 08-23-2017.

[17] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, et al. The design of the borealis stream
processing engine. In CIDR, volume 5, pages 277–289, 2005.

[18] S. Agarwal, B. Mozafari, A. Panda, M. H., S. Madden,
and I. Stoica. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In ACM
EuroSys, 2013.

[19] Apache Hadoop NextGen MapReduce (YARN). Retrieved
9/24/2013, URL: http://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html.

[20] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark SQL: Relational data processing in Spark.
In SIGMOD, 2015.

[21] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb.
Simplifying cyber foraging for mobile devices. In Proceed-
ings of the 5th International Conference on Mobile Systems,
Applications and Services, MobiSys ’07, pages 272–285, New
York, NY, USA, 2007. ACM.

[22] R. K. Balan, M. Satyanarayanan, S. Y. Park, and T. Okoshi.
Tactics-based remote execution for mobile computing. In
Proceedings of the 1st International Conference on Mobile
Systems, Applications and Services, MobiSys ’03, pages 273–
286, New York, NY, USA, 2003. ACM.

[23] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. To-
wards predictable datacenter networks. In ACM SIGCOMM
Computer Communication Review, volume 41, pages 242–
253. ACM, 2011.

[24] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou. Apollo: Scalable and coordinated
scheduling for cloud-scale computing. In 11th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 285–300, Broomfield, CO, 2014. USENIX
Association.

[25] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. Wernsing, and D. Rob. Trill: A High-
Performance Incremental Query Processor for Diverse An-
alytics. In USENIX NSDI, 2014.

[26] B. Chandramouli, S. Nath, and W. Zhou. Supporting dis-
tributed feed-following apps over edge devices. 2013.

[27] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine.
Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends in Databases, 4(1-3):1–
294, 2012.

[28] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. Maui: making smart-
phones last longer with code offload. In Proceedings of the
8th international conference on Mobile systems, applications,
and services, pages 49–62. ACM, 2010.

[29] A. Deshpande and J. M. Hellerstein. Decoupled query
optimization for federated database systems. In IEEE Inter-
national Conference on Data Engineering, 2002.

[30] M. N. Garofalakis and Y. E. Ioannidis. Parallel query schedul-
ing and optimization with time-and space-shared resources.
1997.

[31] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: Fair
allocation of multiple resource types. In USENIX NSDI, 2011.

[32] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milo-
jicic. Adaptive offloading for pervasive computing. IEEE
Pervasive Computing, 3(3):66–73, 2004.

[33] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy. Mcdnn: An approximation-based execu-
tion framework for deep stream processing under resource
constraints. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services,
MobiSys ’16, 2016.

15

[34] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A platform
for fine-grained resource sharing in the data center. In NSDI,
2011.

[35] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Sto-
ica. Chameleon: Scalable adaptation of video analytics. In
Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM ’18, 2018.

[36] T. Karnagel, D. Habich, and W. Lehner. Adaptive work
placement for query processing on heterogeneous computing
resources. In VLDB, 2017.

[37] K. Kloudas, M. Mamede, N. Preguica, and R. Rodrigues.
Pixida: Optimizing Data Parallel Jobs in Wide-Area Data
Analytics . In VLDB, 2015.

[38] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing
for streamed aggregation. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data,
pages 623–634. ACM, 2006.

[39] A. Kumar and et al. Bwe: Flexible, hierarchical bandwidth
allocation for wan distributed computing. In SIGCOMM,
2015.

[40] Z. Li, C. Wang, and R. Xu. Task allocation for distributed
multimedia processing on wirelessly networked handheld
devices. In Parallel and Distributed Processing Symposium.,
Proceedings International, IPDPS 2002, Abstracts and CD-
ROM, pages 6–pp. IEEE, 2001.

[41] R. LiKamWa and L. Zhong. Starfish: Efficient concurrency
support for computer vision applications. In Proceedings of
the 13th Annual International Conference on Mobile Systems,
Applications, and Services, pages 213–226. ACM, 2015.

[42] F. Loewenherz, V. Bahl, and Y. Wang. Video analytics
towards vision zero. In ITE Journal, 2017.

[43] Y. Lu, A. Chowdhery, and S. Kandula. Optasia: A relational
platform for efficient large-scale video analytics. In Proceed-
ings of the Seventh ACM Symposium on Cloud Computing,
pages 57–70. ACM, 2016.

[44] M. Luckie, A. Dhamdhere, D. Clark, B. Huffaker, and
K. Claffy. Challenges in inferring internet interdomain
congestion. In IMC, 2014.

[45] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, resource management, and approximation
in a data stream management system. CIDR, 2003.

[46] B. Patt-Shamir and D. Rawitz. Vector bin packing with
multiple-choice. CoRR, abs/0910.5599, 2009.

[47] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator placement
for stream-processing systems. In Data Engineering, 2006.
ICDE’06. Proceedings of the 22nd International Conference
on, pages 49–49. IEEE, 2006.

[48] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. Faircloud: Sharing the net-
work in cloud computing. In Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication,
SIGCOMM ’12, pages 187–198, New York, NY, USA, 2012.
ACM.

[49] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica. Low latency geo-distributed data an-
alytics. ACM SIGCOMM Computer Communication Review,
45(4):421–434, 2015.

[50] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall,
and R. Govindan. Odessa: enabling interactive perception
applications on mobile devices. In Proceedings of the 9th
international conference on Mobile systems, applications, and
services, pages 43–56. ACM, 2011.

[51] J. Redmon and A. Farhadi. YOLO9000: Better, Faster,
Stronger. In CVPR, 2017.

[52] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and
extensible algorithms for multi query optimization. In ACM
SIGMOD Record, volume 29, pages 249–260. ACM, 2000.

[53] M. Satyanarayanan, V. Bahl, R. Careres, and N. Davies. The
Case for VM-based Cloudlets in Mobile Computing. In IEEE
Computer, 2009.

[54] T. Sellis and S. Ghosh. On the multiple-query optimization
problem. IEEE Transactions on Knowledge and Data Engi-
neering, 2(2):262–266, 1990.

[55] A. Silberstein and J. Yang. Many-to-many aggregation for
sensor networks. In Data Engineering, 2007. ICDE 2007.
IEEE 23rd International Conference on, pages 986–995.
IEEE, 2007.

[56] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proceedings
of the International Conference on Learning Representations
(ICLR), 2015.

[57] U. Srivastava, K. Munagala, and J. Widom. Operator place-
ment for in-network stream query processing. In Proceedings
of the twenty-fourth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 250–258.
ACM, 2005.

[58] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace:
Closing the Gap to Human-Level Performance in Face Ver-
ification. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[59] N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajara-
man. Multi-query optimization for sensor networks. In
International Conference on Distributed Computing in Sensor
Systems, pages 307–321. Springer, 2005.

[60] C. J. Van Rijsbergen. Information Retrieval. Butterworth, 2nd
edition, 1979.

[61] H. Varian. Equity, envy, and efficiency. In Journal of
Economic Theory, volume 9, pages 63–91, 1974.

16

[62] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra,
S. Sinha, and A. Kapoor. Farmbeats: An iot platform for
data-driven agriculture. USENIX, March 2017.

[63] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J.
Franklin, and I. Stoica. The power of choice in data-aware
cluster scheduling. In Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation,
OSDI’14, pages 301–316. USENIX Association, 2014.

[64] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management at
Google with Borg. In Proceedings of the European Con-
ference on Computer Systems (EuroSys), Bordeaux, France,
2015.

[65] R. Viswanathan, G. Ananthanarayanan, and A. Akella. Clar-
inet: Wan-aware optimization for analytics queries. In 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 435–450. USENIX Association,
2016.

[66] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye,
and G. Varghese. Global analytics in the face of bandwidth
and regulatory constraints. In NSDI, pages 323–336, 2015.

[67] S. Xiang, H. B. Lim, K.-L. Tan, and Y. Zhou. Two-
tier multiple query optimization for sensor networks. In
Distributed Computing Systems, 2007. ICDCS’07. 27th In-
ternational Conference on, pages 39–39. IEEE, 2007.

[68] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized Streams: Fault-Tolerant Streaming Computation
at Scale. In ACM SOSP, 2013.

[69] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose,
V. Bahl, and M. J. Freedman. Live Video Analytics at Scale
with Approximate and Delay-Tolerant Processing. In NSDI,
2017.

[70] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Baner-
jee. The design and implementation of a wireless video
surveillance system. In ACM MOBICOM, 2015.

[71] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.
Learning deep features for scene recognition using places
database. In Proceedings of the Twenty-eighth Annual Con-
ference on Neural Information Processing Systems (NIPS),
2014.

17

