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ABSTRACT
Web Search Engine Result Pages (SERPs) are complex responses

to queries, containing many heterogeneous result elements (web

results, advertisements, and specialised “answers”) positioned in

a variety of layouts. This poses numerous challenges when trying

to measure the quality of a SERP because standard measures were

designed for homogeneous ranked lists.

In this paper, we aim to measure the utility and cost of SERPs. To

ground this work we adopt the C/W/L framework which enables

a direct comparison between different measures in the same units

of measurement, i.e. expected (total) utility and cost. Within this

framework, we propose a new measure based on information forag-
ing theory, which can account for the heterogeneity of elements,

through different costs, and which naturally motivates the devel-

opment of a user stopping model that adapts behaviour depending

on the rate of gain. This directly connects models of how people
search with how we measure search, providing a number of new

dimensions in which to investigate and evaluate user behaviour

and performance.

We perform an analysis over 1000 popular queries issued to a

major search engine, and report the aggregate utility experienced by

users over time. Then in an comparison against common measures,

we show that the proposed foraging based measure provides a

more accurate reflection of the utility and of observed behaviours

(stopping rank and time spent).

CCS CONCEPTS
• Information systems → Retrieval effectiveness; • Human-
centered computing → User models;
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1 INTRODUCTION
Most Information Retrieval (IR) evaluation measures focus on esti-

mating the quality of a ranked list of results, where each result is a

simple link to another web page [32]. However, modern web search

engine result pages (SERPs) are complex, composite, responses with

curated and computationally selected elements, consisting of algo-

rithmic web results, advertisements and a variety of answer cards.

Furthermore, result elements are positioned in different layouts on

the SERP: e.g. in the header, left rail, core, right rail, or footer. Con-

sequently, the assumptions implicit in many retrieval measures no

longer hold in the context of evaluating modern SERPs [2]. While

there has been a number of studies investigating which special-

ist answers (“verticals”) to include [1, 3, 39], which verticals are

preferred [2], and how they affect search behaviour and satisfac-

tion [11, 23], in this work we attempt to directly measure the quality

of a whole SERP. To do so a number of sub-questions first need to be

addressed: (i) what are the different elements on a SERP, (ii) in what
order are the elements examined, (iii) what is the cost of inspecting
different elements, (iv) what is the benefit of those elements, and

ultimately, (v) what is the expected (total) utility of a SERP?

To start addressing these questions, we studied SERPs from a

major web search engine analysing the different types of elements

shown for one thousand popular queries, and evaluated different

possible “orderings” given the layout of the SERPs. From this analy-

sis, we were then able to estimate the time spent per element type,

which was used to estimate the cost of processing SERPs. Given rel-

evance assessments for the elements appearing on the top thousand

queries, we then inferred an aggregate utility curve experienced

over time—that is, the total utility experienced by the population

of users given the cost they incurred (time spent). We argue that

a “good” measure will approximate observed behaviours (e.g. time

spent and stopping rank) and inferred utility.

Since different measures provide different perspectives, and are

in different units, it is not possible to directly compare them to the

inferred utility curves. To address this problem, this paper draws

upon the recent theoretical developments regarding the measure-

ment and modelling of IR systems [9, 25, 26] where measures can be

expressed as either the expected utility (EU) or expected total utility

(ETU) [9], depending on how the stopping/continuation function

that defines the user stopping model is expressed [25, 26]. We then

draw upon Information Foraging Theory [30] to develop a forager
based user stopping model that adapts its stopping behaviour based

on the gain accrued during the search process: directly connecting
the theory of how we model people’s search behaviour with how we
measure it. We show that our forager-based user model provides

a better approximation of the utility experienced than do other

common models.

https://doi.org/10.1145/3209978.3210027
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2 BACKGROUND
Evaluation has played a central role in the development of IR sys-

tems. Over the years, increasingly sophisticated measures have

been developed to use test collections—document collections labelled

for relevance—to approximate the system’s performance and the

user’s search satisfaction (see e.g. Sanderson [32] for an excellent

overview). Measures have evolved from precision- and recall-based

to utility- and cost-based—with more focus being directed towards

how the user interacts with the search results, what they gain and

at what cost. In conjunction with these developments numerous

efforts have shown how the different measures are mathematically

related [9, 18, 26, 38], and how they can be housed within a utility
based framework [25]. This is an important development, meaning

that we are in the process of standardising the units of measurement,

and that it is possible to compare measurements directly (which

we capitalised on in this work). Also, the utility based framework

naturally connects with Information Foraging Theory, which we

draw upon to develop a new adaptive foraging based measure. First,

we describe how evaluation measures have evolved over the years,

before introducing our new measure.

2.1 Developing Models and Measures
Over the past decade or so, measures have evolved to be gain/utility

based, focusing on the user stopping model and how users adapt to

the benefits received and costs incurred during the process.

Gain andDiscounts. Rather than considering precision and recall,
one of the first measures to explicitly consider gain

1
was discounted

cumulative gain or DCG [16]. The inclusion of graded relevance and

discounting provided the motivation for the development of many

future measures—along with a more explicit focus on quantifying

the benefit that searchers accrue during the search process, and on

discounting that benefit depending on rank. It has been pointed out

that the discount implicitly encodes a user stopping model where it

is assumed either that: users are less likely to examine documents

further down the ranked list, or that they obtain less value from

documents further down the list [9, 18]. Either way, the total or

cumulative discounted gain is the sum of gains over the ranked list.

Utility and User Models. Moffat and Zobel [28] argued that the

log-based discount function of DCGwas not grounded, and does not

best characterize how users actually browse through the ranked list.

Instead they propose a utility based measure, rank biased precision

(RBP), which explicitly encodes a user stopping model defined by

the probability of a user examining a document—providing a more

principled approach to measurement. Carterette [9] takes this a

step further and describes how measures are composed of three

models:

• a user stoppingmodel that encodes how a user interacts with

the ranked list,

• a document utility model that encodes how a user derives

utility from individual relevant documents, and

• a utility accumulation model that encodes how a user ac-

crues utility from the said relevant documents during the course

of browsing.

1
We will use “gain”, “benefit” and “utility” interchangeably, depending on the context.

Carterette shows that different measures can be formulated in this

framework, depending on how the different models are instanti-

ated. Relevant to the present work are “model 1” measures such as

Carterette’s interpretation of RBP that estimate the expected utility,
and “model 2” measures such as DCG that estimate the expected
total utility. The difference is whether the utility is either extracted

from one of the documents, or from all the documents found. Put

another way, model 1 measures assume the user gets value from

only one document, while model 2 measures assumes the user gets

some value from all documents. In terms of estimating the utility

of a SERP, model 1 measures are likely to underestimate the actual

utility (unless there is only one click), while model 2 measures

are likely to overestimate actual utility (unless a user clicks on

everything).

C/W/L. Moffat et al. [26] further formalize the relationship be-

tweenmeasures, such that the Expected Utility (EU) of any arbitrary

“weighted precision” measureM can be generalized as:

EU = M(r) =
∑

i=1...∞
WM,i ri (1)

where r is the relevance (gain) vector for each rank i , and WM
is a metric specific weighting vector. WM,i can be interpreted

as the expected proportion of attention a user gives to rank i .
For example, for precision at rank 5, the weight vector would be

WP@5 = (0.2, 0.2, 0.2, 0.2, 0.2, 0, . . . ), while for RBP with persis-

tence parameter ϕ we haveWRBP, i = (1 − ϕ)ϕi−1.M(r) is thus the
expected utility per document inspected.

The W vector
2
can be interpreted in the user model shown

in Figure 1. In this model, a user reads the document at rank i;
accumulates some gain, e.g. ri ; then chooses either to continue to

rank i + 1, or stop. This decision can be captured in a vector C, for
continue. The conditional probability of continuing past rank i , Ci ,
directly relates to the weight vector such that:

Ci =
Wi+1
Wi
. (2)

This continuation probability is easy to interpret and to reason

about. For example, CRBP is the constant ϕ; C
P@k is 1 for ranks

1 . . .k − 1, and 0 thereafter; and CRR is 1 when ri = 0, and 0 when

ri = 1. Finally we can derive the probability that the ith document

in the ranking is the last one observed by the user with Li :

Li =
©­«

∏
j=1...i−1

Cj
ª®¬ (1 −Ci ) =

Wi −Wi+1
W1

. (3)

Later, we will use Li in our evaluations to predict the stopping rank.

Here we also note how the C/W/L Framework can be extended to

estimate the Expected Total Utility (ETU) using L as follows:

ETU = Mtotal (r) =
∑
i

©­«Li
∑

j=1...i
r j
ª®¬ : (4)

that is, the sum over all ranks of the gain accrued by reading that

far, times the probability that this is where they will stop. The

distributions defined by C, W, and L are mathematically related,

and can be defined to instantiate a variety of measures including

precision, RBP, RR, and AP [25]. In this paper, we build our measure

2
In what follows, for simplicity we drop the subscriptM unless context requires it.



Figure 1: The C/W/L user model, generalising the models of
“weighted precision”metrics. Ametric is entirely defined by
C, the chance of continuing past each rank.

within the utility based C/W/L framework—because it: (i) provides
a way to represent the different user stopping models of different

measures and (ii) means we can directly compare measurements in

the same units, i.e. compare expected (total) utility.

Effort and Time. The next major evolution in IR measures has

been the introduction of costs—as it has been argued and shown

that the effort required and/or time spent during the search process

affects user interaction and search satisfaction [5, 18, 30, 34, 35, 37].

Smucker and Clarke [34] formalize the idea within Time Biased

Gain to create a measure that reports the amount of (discounted)

gain experienced over time (i.e. the rate of gain). They introduce

a reading model where the time taken to reach a particular rank i
is based upon the cost of reading result elements and the cost of

reading each document up to and including i . Of note is that the
time spent on result elements in this model is fixed, while the time

spent reading a document is proportional to its length.

Rather than focus on time, Sakai and Dou [31] present a related

measure based on text trails. Again a reading model is based upon

an exponential decay function, such that as user reads through text

they are less and less likely to continue to the end of the document.

The U-measure is essentially the rate of gain over that text that gets

read. More recently, Jiang and Allan [18] propose measures that

also consider the costs (as approximated by time), by calculating the

ratio of gain to cost. They show that by including the cost, a higher,

but only moderate, correlation to session based user satisfaction can

be achieved. While these measures can be seen as different ways

to consider the cost within the evaluation measure, they assume

that documents are homogeneous (e.g. all news documents), and

that the benefit is spread across the text. However, in the context of

measuring a SERP, which is composed of heterogeneous elements

(text, images, etc.) which link to pages and other resources, the

time spent on landing pages is quite varied and dependent on the

result element in question (i.e. news, video, game, homepage, etc.).

Consequently, in this work, we focus solely on evaluating the SERP

elements, the time taken to process those elements, and the value

that each element adds to the SERP—in order to predict the utility

and cost of the SERP itself.

Adaptive and Constrained Models. More recently proposed IR

measures include adaptive (also referred to as dynamic) user stop-

ping models as well as incorporate constraints. Rather than the

naive assumption that users simply walk down a ranked list accord-

ing to some pre-defined and fixed probability distribution, adaptive

measures consider what has been encountered so far, what is de-

sired and what are the constraints [18, 24, 26, 38]. For example, the

key idea in the INST measure [24] is that the user has some idea of

the number of documents that they want, which can be considered

a soft constraint. As they examine documents, and find relevant

documents, then the probability of stopping increases as they get

closer to their targetT . Within the C/W/L framework, Moffat et al.

encode this idea with a new continuation function C that depends

on T , i , and the number of relevant documents found. A further

development by Moffat and Wicaksono [27] allows for “egregiously

non-relevant” results, which reduce the chance of further interac-

tion. This allows more nuance than simply modelling zero gain, and

in simulations it gives more plausible measurement in the presence

of notably poor-quality documents.

In the Bejeweled player model [38], a similar approach is taken,

but where both cost and gain constraints are imposed—which in-

fluences the user stopping probability. The proposed measures are

described in a manner similar to the C/W/L framework, and the

authors show that common IR measures can be derived using a

common framework. They propose two variants: (i) a static mea-

sure, where cost and gain are fixed constraints, and (ii) an adaptive

measure, where when a user encounters relevant documents, their

desire for relevant documents increases (i.e.T increases), and so too

does their willingness to spend more time; while if they encounter

non-relevant documents, their desire for relevance and tolerated

cost both decrease. While this stopping intuition may be relevant

in the context of a game, it is less intuitive for certain search tasks.

Zhang et al. [38] show that their measures correlate to session based

satisfaction substantially higher for informational queries, than for

navigational queries, but their adaptive measures only provided

marginally better correlations to user satisfaction judgements.

Session Based. Another innovation in the evaluation of search

systems has been the development of session based measures which

consider performance over a series of related queries [e.g. 4, 17,

20, 22]. Typically, standard measures are linearly combined with

a discount to formulate an overall measure. For example, one of

the first session based measures proposed was Session DCG [17],

where an exponent is introduced to discount subsequent queries,

such that if the user finds a relevant document on the nth query,

it is considered less valuable than if they found it at the (n − 1)th

query, assuming it was seen at the same rank.

In this paper, we will focus on evaluating individual queries,

and leave session based adaptations for future work. Instead, we

explain how the different constraints on searching and the adaptive

behaviours which have been introduced in the various measures

naturally arises within Information Foraging Theory, and how they

can be encoded within the user stopping model, to define the basis

of a family of new theoretically underpinned IR measures.

3 A FORAGING BASED STOPPING MODEL
Information Foraging Theory (IFT) [30] models how people search

for information by applying ideas from optimal foraging theory.

IFT assumes that when searching for information, people adopt

instinctive foraging mechanisms that evolved to help our ancestors

find food. IFT has been widely used within interactive information

retrieval [e.g. 7, 29, 33, 36] and provides an intuitive and formal

way to describe and predict search behaviour [7, 30].

A central component of IFT is the Information Patch model,

which considers how long a forager ought to stay in a “patch”—

here, a SERP—before moving on. The model predicts that a forager



Figure 2: Example of Charnov’s Marginal Value Theorem
showing that a searcher stops when the rate of gain falls be-
low the tolerated rate of gain A.

will move to a new patch when the rate of gain from the current

patch falls below some tolerated rate. This is Charnov’s Marginal

Value Theorem [10]. The intuition is as follows: if the yield from the

current patch is lower than what the forager could obtain elsewhere,

on average, then they shouldmove on. However, if the current patch

is yielding a higher rate of gain than average, then the forager

should keep exploiting the current patch. Of course, this is subject

to how much they require, and subject to how much time they have

available to forage. Given the patch model from IFT, we formalize a

foraging based user stopping model within the C/W/L framework—

connecting the theory on how we model people’s search behaviour

with how we measure search performance.

We first assume that a searcher wants to consume a certain

amount of gain and that once they reach that desired level, they are

more likely to stop (e.g. the model is goal-sensitive). However, sec-
ond, they won’t naively continue trying to reach this goal; instead

we assume that searcher will only continue exploiting a patch so

long as the rate of gain is sufficiently high (so the model is rate-
sensitive: see Figure 2). This second rule restates Charnov’s Mar-

ginal Value Theorem, while the first imposes a sufficiency/satiation

constraint.

To encode these conditions within the continuation function, we

use sigmoid functions to provide a probability distribution. This

gives us enough flexibility to represent a number of possible stop-

ping behaviours, including a number of existing measures.

Goal Sensitive. Wemodel the first condition withC1, and say that
the chance of continuing decreases as gain accumulates:

C1i = 1 −

(
1 + b1 · e

(T−γi )R1

)−1
(5)

whereT is the target andγi is the gain accrued so far (i.e.γi =
∑
i ri ).

A rational searcher with targetT in mind would continue whenever

T > γi and stop as soon as T ≤ γi , assuming the other conditions

are not violated. However, we can imagine that there might be

some uncertainty regarding T or γi , and so the searcher may stop

earlier, or continue longer. So, we include a “rationality” parameter

R1, such that: when R1 = ∞ we have the “perfectly rational” user

model, and at R1 = 0 we have an “agnostic” user model, where the

gain accumulated makes no difference to behaviour (and thus C1
doesn’t depend on γi or T .) When T = γi , i.e. when the target is

reached, C1 = 1 − 1

1+b1
, and therefore we can use b1 to model the

probability of stopping when the searcher has found enough. Note,

the 1 − (. . . ) in Eq. 5 turns the stopping function into a continue

function, as needed by the C/W/L framework.

Rate Sensitive. We model the second constraint with C2, and say

that the chance of continuing decreases as the rate of gain decreases:

C2i =
(
1 + b2 · e

(A− γi
κi

)R2

)−1
(6)

where A is the tolerated rate of gain, κi is the cost so far (i.e. κi =∑
i ti , where ti is time spent on element i), γi is the gain so far, and

thusγi/κi is the rate of gain so far. As above, a rational searcher who
will tolerate a rate of gain of A would continue only if γi/κi > A;
otherwise they would stop. However, again, we can imagine that

there would be some uncertainty regarding the rate of gain or the

tolerated rate of gain, and so we also include a rationality parameter

R2, where R2 = ∞ implies the searcher is perfectly rational and

R2 = 0 implies the user is agnostic of the rate of gain. b2 operates
in the same way as b1, changing the continue probability when the

rate of gain is exactly at the searcher’s threshold.

To illustrate how the parameters of the sigmoid function affect the

probability of continuing, we have plotted a number of examples

of the C2 function in Figure 3. From the plots, as rationality R2 is
increased (left to right), the probability of continuing depends more

upon the rate of gain. When R2 = 0,C2 is a constant, whereas when
R2 = 100 C2 is close to a step function. As A, the tolerated rate of

gain, increases (top to bottom), the threshold for the step function

or the centre of the curve also increases. The third parameter, b2,
shifts the curves up and down: shown here is b2 = 1, meaning that

when the user is exactly at A they have a 50% chance of continuing

(intercept shown with the vertical dashed lines). As b2 tends to∞

then the chance of continuing tends to 0%, while if b2 tends to zero,
then the chance of continuing tends to 100%. C1 is controlled in

the same way asC2, but has opposite shape: as total gain increases,

the probability of continuing decreases.

IFTContinuation Function. Given the two conditionsC1 andC2
we can formulate the IFT continuation function: CIFT,i = C1i ·C2i ,
where we assume that the conditions are independent. Given the

combined continuation function, it can be embedded within the

C/W/L framework to provide a measure of search performance.

The IFT continuation function has the flexibility to adapt to

various user behaviours—and certain edge cases result in existing

measures. For example, when R1 = ∞, T = 1 in C1, and C2 is set
to one (i.e. A = 0 and b2 = 0) we have a user who will stop exactly

when they have accumulated one unit of gain, but will tolerate

any amount of cost: this is reciprocal rank. With R1 = R2 = 0

the continuation function is controlled only by b1 and b2, and is a

constant, which therefore models rank biased precision. If instead,

we set the parameters ofC2 such that it equals one, and so only the

goal sensitive condition (C1) is in effect, then the measure behaves

like INST. Finally, the Bejewelled player model can be indirectly

modelled by setting the tolerated rate of gain (A), which is based

on the gain divided by the cost, and the target (T ). Alternatively,
an extra condition could be added to represent cost sensitivity that

encodes the maximum cost the searcher is willing to incur (K ), such
that they continue if K > κi . This is left for further work.
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Figure 3: Behaviour of the rate sensitive continue function
C2. When rationality is low (R = 0 or 1), C2 does not re-
spond much to the rate of gain. When rationality increases
(R = 100), C2 becomes highly responsive to the rate of gain
and the userwill only continuewhen the current rate of gain
γi is higher than their tolerated threshold (A). The above
plots use b2 = 1: increasing b2 leads to a lower probability of
continuing, while decreasing b2 leads to higher probability
of continuing.

What distinguishes the foraging user based model from other

user models is the inclusion of both the rate sensitivity condition

and the “rationality” parameter that encodes the uncertainty in the

search process and the environment. This provides new avenues in

which user behaviour and performance can be explored.

4 METHOD
We instantiated the foraging-based model, and measured the utility

of web SERPs, using interaction logs from the Bing search engine.

Although this puts us at a remove from searchers’ experiences or

opinions, it closely mimics the form of other evaluation exercises

and lets us work at large scale. First, we extracted the elements

in SERPs (see § 5.1). Next, we derived a reading order (see § 5.2)—

so we could apply our IR measures—then, given the ordering, we

estimated the cost per element (in units of time, see § 5.3). Finally,

we compared existing measures, plus our foraging-based measure,

to determinewhich best approximates three quantities: the stopping

rank, inferred utility and cost (see § 6).

Data. We created a dataset containing 1000 queries sampled from

among the popular queries issued to Bing during September, 2017.

While these queries are predominately head queries and naviga-

tional in nature, it provides us with sufficient data to provide robust

estimates of performance across multiple impressions. Given this

set of queries, we extracted a sub-sample of impressions for each

query during one week in October, where an impression is an in-

stance of a particular query being issued. Our sample was limited to

desktop users, as different form factors will have different reading

costs, and to English-speaking users in the United States. For each

impression, we then extracted the main result elements shown on

the page, and recorded where they were positioned on the page.In

total, we extracted approximately 8.6 million non-unique elements

from the 673,376 query impressions—where on average 12.8 result

elements were shown per page. For each query impression, we

also recorded the total time spent on the SERP, along with which

elements were clicked.

We commissioned judgements for documents linked from each

element on each page. Similarly to TREC or other evaluations,

judges were given the query and document, and asked to rate the

document’s relevance on a four-point scale. We used an in-house

crowd-sourcing platform; to control quality, judges were experi-

enced with this task and subject to random checks against “gold

standard” labels. We collected approximately 43,000 judgements

for the 12,800 unique elements, and the final label was decided by

majority vote with extra judgements requested as needed to break

ties. 10% of elements were labelled “bad”, 52% “fair”, 14% “good”, and

24% “excellent”. Some elements were not labelled, and following

convention these were considered non-relevant.

Measures. We compared IFT to a number of standard evaluation

measures. In each case we used a range of commonly used pa-

rameters, as well as parameters tuned on our data. Tuning used an

evolutionary algorithm, trying to maximise the correlation between

measure values and observed success rates, where following Hassan

et al. [14] “successful” searches were those not followed by a refor-

mulation. Themapping of relevance labels to gain levels was learned

at the same time, subject to bad = 0, bad ≤ fair ≤ good ≤ excellent,

and excellent = 1. This tuning, and range of parameter settings,

gives a fair comparison between models and measures.

The final set was (i) graded precision at ranks 1*, 5, and 10

(* marks the best tuned parameter), (ii) the scaled equivalent of

DCG at ranks 1*, 5, and 10, where a monotonic transformation is

applied to ensure that the discounts in W sum to one (i.e. it is a

probability distribution), (iii) reciprocal rank (RR), which is com-

monly employed despite mathematical infelicities [13], (iv) rank-
biased precision with persistence parameters ϕ = 0.1* and 0.7; and

(v) INST with target parameters T = 1* and T = 2. Gains were in

{0.0, 0.2, 0.2, 1.0}*.

IFT was not tuned. Given that the forager continuation functions

(C1 andC2) have a number of parameters, we reduced the parameter

space by setting b1 = b2 = b, which reflects the base chance of

continuing, and R1 = R2, which represents the rationality of the

searcher—and thus assume that a searcher’s rationality is the same

between conditions. To fairly compare our measure with existing

measures, we selected b1 = b2 = 0.25, because if R was set to zero,

the continuation function would approximate RBP close to ϕ = 0.1,

the best tuned setting—and so by setting the other parameters, we

can see how the IFT user model improves over RBP (or not). We

set R1 = R2 = 10, as a middle ground between being agnostic (i.e.

R = 0) and being perfectly rational (R = ∞). Finally, we set T = 0.2

and A = 0.1 to simulate a casual web searcher, who is looking for a

reasonable (not bad) page, and is willing to examine a few items. We

shall denote this as the IFT user model. To evaluate the influence of

each of the continuation functions independently, we also evaluate

IFT-C1 and IFT-C2, which have the same parameters for C1 and C2
as above, but where either C2 or C1, respectively, is held constant.

We leave parameter estimation and tuning for future exploration.



Figure 4: A SERP is typically composed of four sections:
header, footer, core, and right rail. Elements of different
kinds are found in each section.

An implementation of the IFT measure and the other measures

is available at https://github.com/Microsoft/irmetrics-r.

5 SERP COMPOSITION AND LAYOUT
Most effectiveness metrics, including all those used here, assume

results (or SERP elements) are read strictly in order; but a modern

SERP has a complex two-dimensional layout where the “right” order

is not obvious. Figure 4 displays a typical layout adopted by major

search engines, where the SERP consists of:

• a header, where the query box, and query statistics are dis-

played,

• the core, where the main set of algorithmic results are shown

along with advertisements and other answers e.g. navigational

entity cards, image, video and news elements, etc.,

• often, a right rail, where entity cards, advertisements, related

searches, etc. are shown, and,

• a footer, with navigational cues to the next or previous page.

Typically, algorithmic web results are only shown in core, while

advertisements typically appear at the top of core, bottom of core

or in the right rail, though they sometimes appear elsewhere. News,

video, image and other answer elements typically only appear in

core, after any advertisements, and possibly after some algorithmic

results. Related searches typically appear at the bottom of core

or bottom of the right rail. In the following subsections, we first

extract the different elements, then infer a reading order, before

estimating the time spent per element.

Table 1: Approximate breakdown of element types appear-
ing on pages in the sample of popular queries.

Element type % of pages % of elements Appears

Algorithmic web results 100 64.3 Core

Advertisements 43 8 Both

News 70 6 Core

Query suggestions 44 3 Core

Images 2 < 1 Core

Videos 15 1 Core

Entity cards 89 7 Both

Result disambiguation 4 < 1 Right

Stock 12 1 Core

Other 100 9 Both

5.1 Page Elements
Within the set of elements extracted, we observed over 100 different

types of elements–which types depend upon the query. For example,

for the query “Walmart”, a SERP might include an element with

links to Walmart’s website and within its site, another element may

show a map to nearby branches, etc. However, for the query “typing

test”, the result list includes a specialized answer element with an

embedded typing test. Rather than modelling each element type

individually, we considered the nine most popular element types

and assigned the rest to an “other” element category. The resulting

types were algorithmic web results, advertisements, and several

kinds of answers: news, query suggestions, images, entity lookups,

result disambiguation, video, and stocks. For each element on each

page, we recorded whether it appeared in the core or the right rail,

and the rank where it appeared.

Table 1 provides an overview of the percentage of pages that con-

tained each type, the percentage of the elements of each type, and

where they appeared on the page. As expected, algorithmic web re-

sults appeared on all pages, with entities, news, query suggestions,

and advertisements being the next most prevalent. Other elements

appeared depending on the query (as mentioned above). The num-

ber of elements per page varied from 2 to 60, with mean 12.8 and

median 12 elements per page. Sixty elements on a page may seem

unlikely, but certain very popular queries cover many intents: for

example “Disney” covers holidays to Disney resorts, movies and TV

shows, shopping, characters, news, social media streams, and so on

as well as a very varied audience. In contrast, a query such as “Bank

of America”, typically houses the median number of elements. This

breakdown shows how the composition of pages varies over the

sampled popular queries—now given these elements, we turn our

attention to approximating the order in which they are inspected.

5.2 Element Ordering
To apply current measures, we need to determine the order in which

a user examines the elements housed on the SERP. Prior research

has shown that the order of inspection can vary depending on

various factors such as the layout, the attractiveness of elements,

etc. [1, 12, 21]. However eye tracking studies have shown that the

typical gaze distribution (scan path) is characterised by the “golden

triangle” or “F-shaped pattern” [8, 21], where users examine result

https://github.com/Microsoft/irmetrics-r


Figure 5: Different orderings lead to different “F” like shapes.
Top: An example of ordering 1-1-1-1 where the first result
from core is viewed, and then one result from the right rail
is viewed, and then the rest are interleaved. Bottom: An ex-
ample of ordering 2-1-2-1 where the first two results from
core are viewed, and then one result from the right rail, then
two from the core, and so on.

elements in a top-down, left to right manner. It has further been

shown that the order of inspection (i.e. scan-path as determined via

eye-tracking), on average, is highly correlated with click through

data [15]. While we acknowledge that there are individual differ-

ences in how people examine results [1], we leave this direction for

further work, and focus on the aggregated scan path. That is, we

assume that the order of inspection can be approximated over all

users, and that the ordering highly correlates with the click distri-

bution (as shown by Lorigo et al. [21]). Thus, a good model of users’

order of inspection should be able to approximate the empirical

click distribution.

Given the SERP is essentially composed of two lists (the core list

and the right rail list), there are various ways in whichwe can obtain

an ordering. For example, we could assume that users will examine

all the core elements, then examine all the right rail elements, or

vice versa. On the other hand, a user may start with either the core

or right rail, and then alternate back and forth examining one or

more from each; or may examine them in some other way altogether.

Given past work, users tend to follows a top-down, left-to-right,

examination pattern, where they start examining the core list first,

then the right rail, then back to the core, and again to the right,

Table 2: Different sequences examined, which produced dif-
ferent orderings of elements given SERP layout. Ordering (f )
produced the closest correlation with click data.

First Next

Core Right Core Right

Order ncf nr f ncn nrn r2

a 0 1 1 1 0.669

b 1 1 1 1 0.708

c 2 1 1 1 0.717

d 1 2 1 1 0.692

e 2 2 2 1 0.717

f 2 1 2 1 0.738
g 2 2 2 1 0.736

and back to the core, creating the “F-shaped” pattern (see Fig. 5).

Put more generally, we assume that a user examines ncf elements

from the core first, then nr f elements from the right rail, and then

adopts an interleaving view order by examining ncn elements from

core, and nrn elements from the right (and so on, until all elements

are examined). Typically, the number of elements displayed on the

right is less than the number of elements in the core, so at some

point the user would continue down the rest of core (with some

probability according to C). By setting ncf , nr f , ncn , crn we can

define a variety of examination orders. Figure 5 shows two such

orderings where users, either examine one element from each and

then repeat (i.e. ordering (b) in Table 2), or examine two from core,

and one from right rail, and then repeat (i.e. ordering (f ) in Table 2).

To evaluate the different orderings produced, we plotted the prob-

ability of clicking on the element versus its estimated position, and

fit an exponential function to the distribution to see which sequence

produced an ordering most consistent with the click through data.

Table 2 shows the different sequences examined, along with the

Pearson’s correlation coefficient based on a least squares regression.

We also tried modelling the case where a user “looks ahead”—i.e. in-

spects one or two elements past that which was clicked—and cases

with 3 or more elements in a block (e.g. ncf ≥ 3, etc.) , but these

resulted in poorer overall fits. Not surprisingly, the least intuitive

sequence, (a), which assumes the right rail element is inspected

first, obtains the lowest correlation, r2 = 0.669, while the best cor-

relation was given by ordering (f ), r2 = 0.738. For the remainder of

this paper, we use (f ) to produce the ordering of results elements,

and leave other orderings and more sophisticated models to future

work.

5.3 Time Spent per Result Element
To determine the rate of gain for our C2 function, and estimate the

total time spent on a SERP given each user model, we first needed

to calculate the time a user spends on each element. To do this,

we constructed a linear model that estimated the time spent on

the SERP, given all the elements up to and including the element

clicked. As independent variables to the model, we provided the

number of times each element type appeared in the core and in the

right rail, while the dependent variable was the time spent on the

SERP before the click.



Table 3: Estimated time to read a result, by type and position.
Times relative to a standard algorithmic result in the core.
All estimates significant at p ≪ 0.0001.

Position

Type Core Right Rail

Intercept 3.65

Algorithmic web results 1.00 -

Advertisements 1.49 0.30

News 5.62 -

Query suggest. 1.41 -

Images 0.96 -

Videos 3.91 -

Entity cards 8.91 0.45

Result disambig. - 1.81

Stock 0.97 -

Other 3.22 0.96

Table 3 provides the estimated times for each element, where

statistical testing indicates that all effects were significant (p ≪

0.0001, ANOVA F test). Due to the commercial sensitivity of this

data, we have reported the times relative to average time taken to

process one algorithmic web result element.

These results for the first time show the relative times taken to

process the different element types on a SERP. Advertisements in

the core section take slightly longer to process than a web result

(49% longer), while advertisements in the right rail attract much

less attention and take 70% less time, on average. Images and stock

tickers cost a similar amount of time as a web result, but video,

news and entity cards (in the core) take much longer, at 3.91×,

5.62×, and 8.91× respectively. This is not too surprising as these

elements tend to be much larger, as well, as more complex, mixing

text, graphics and even interactive elements. However, when entity

cards are on the right rail, they attract little attention, on average,

and only take about 45% the time of a web result.

6 MEASURES, MODELS AND BEHAVIOURS
With models of reading order, and estimates of the cost as well

as gain from examining each element, we are able to compare

measures on modern web SERPs.

6.1 Comparing Measures
One limitation of using web search log data is that user satisfaction

judgements are not available. Rather than trying to predict user

satisfaction, we focus our evaluation on how well each measure

predicts observables. Thus, to evaluate the quality of each of the

measures, we focused on three aspects: (i) how well the measures

estimate the user’s actual stopping rank (last element clicked), (ii)
how well the measures estimate the inferred utility curves, and (iii)
how well they estimate the time spent on the SERP.

Stopping Rank. Recall that the L vector is a probability distribu-

tion modelling the probability of stopping at a particular rank. For

each measure and impression we can easily derive the likelihood of

a measure’s user model predicting they stop at rank i: it is simply

Li . For example, under RBP with ϕ = 0.1, Li = 0.9 × 0.1i−1. The

likelihood of this model, given we observed a searcher stopping at

rank 1, is 0.9; where as the likelihood of this model if we observe

a searcher stopping at rank 3 is only 0.009. For each impression,

given the the last click, we can calculate the likelihood of the actual

stopping rank for each measure. We report the mean likelihood

over all impressions.

Utility. To infer the utility experienced by users, we assumed that

a user only receives benefit from a element that that they clicked on.

Thus, given the graded relevance labels (which approximate how

useful/valuable the element is, if selected), and the empirical click

data we can infer at each rank the total empirical utility experienced

(referred to as inferred utility or inferred gain). This provides a

picture of how useful the different elementswere to the user for each

impression. We then compared these inferred utility curves against

the expected (and estimated) utility given each of our measures and

report the mean absolute error between the estimated and observed.

Cost. Given the C/W/L framework, we can also estimate the ex-

pected total cost by replacing the relevance/gain vector (r) with the

cost vector (k) as follows:

ETC =
∑
i

©­«Li
∑

j=1...i
kj
ª®¬ (7)

where k provides the times to process each element on the SERP.

We derived these times in Section 5.3. We will thus be estimating

the time spent on the page, but will refer more generally to this

as the cost [c.f. 6, 18, 19, 38]. We compared the expected total time

given each measure against the actual time spent on the SERP, and

again report the mean absolute error.

6.2 Results
All else being equal, we should prefer a measure whose underlying

user model matches searchers’ actual behaviour and enables us to

estimate observables such as where the user will stop on the SERP,

how long they will spend on the SERP, and (inferred from clicks

and judgements) how much gain they will accrue from the SERP

(i.e. the inferred utility or inferred gain).

Before inspecting the Tables of results, Figure 6 provides exam-

ples of the (expected and inferred) total utility over time for two

individual query impressions, and for the average over 5,000 query

impressions.

In the left plot, we show an impression with only a click at rank 1,

which is highly relevant. The searcher accumulates one unit of gain

in one unit of time, but no more after this (solid red line). RR and

P@1 model this accurately, but P@10, which assumes the searcher

will examine all of the top 10 result elements, grossly overestimates

the expected total gain. RBP 0.7 also overestimates the total gain,

but not to the same extent. IFT provides a closer estimate—because

the goal condition is met, early on, and so the searcher is more

likely to stop sooner—leading to a better approximation.

The middle plot of Figure 6 shows an impression with three

clicks, at ranks 1–3; only the first two are relevant, but there are

other relevant elements deeper in the listing. Since the first item

was clicked, all measures are accurate initially. By the end of the

interactions, RR (which only considers the first relevant item) and

P@1 (which only considers rank 1) underestimate total gain. RBP

and P@10 overestimate the total gain, P@10 grossly so. IFT goes to
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Figure 6: Examples of total gain over time for severalmeasures, plot against the searcher’s accumulated (inferred) gain based on
observed clicks. Left: an impression with a single click at rank 1. Centre: an impression with three clicks, not all of which lead
to gain. Right: the total gain over time, averaged over a random sample of 5,000 impressions. In the first case most measures
overestimate the inferred gain. In the second and third cases some measures overestimate the inferred gain (P@10, RBP) and
others underestimate the gain (P@1) while the IFT measure tends to better track the inferred gain.

an intermediate depth—the rate of gain is sufficiently high to keep

the search going initially, but falls off quickly—and approximates

the inferred gain almost exactly.

The right-hand plot of Figure 6 shows the average gain and cost

over a random sample of 5,000 impressions with clicks. We can see

that the average accumulated gain grows fastest early on, then only

slowly as people tend not to click further down the SERP. Most

of the illustrated measures overstate the cumulated gain, as most

measures put too much weight on higher ranks; the exceptions

being P@1 and RR. Again IFT provides a very close fit, tracking the

inferred gain.

Stopping Rank Likelihoods. Table 4 reports the mean likelihood

of the stopping rank for each measure over all 673k query impres-

sions (NB a higher likelihood is better). As shown in previous work

a “shallower” or more “top-heavy” measure performs much bet-

ter than “deeper” ones—and in fact in almost all cases searchers

only click on the first one or two elements on the SERP. Conven-

tional measures/settings such as P@10 or RBP with ϕ = 0.7, which

assumes a user examines further down the list (to depth 10, or

about 3–4, respectively), perform poorly as predictions of final stop-

ping depth. However, our IFT measures perform substantially better

that the other measures: suggesting that the foraging user model

can better predict when/where users stop.

Gain andCost. Table 4 also reports themean absolute error (MAE)

between the inferred total utility and the expected total utility

(Eqn. 4), and the mean absolute error between the actual total cost

and the expected total cost (Eqn 7, in relative time units). Again

this was calculated over all 673k query impressions. Here a lower

error indicates a closer fit. In general, the measures best able to

predict the stopping rank are also good at predicting the gain and

cost. Again, the deeper measures overestimate the gain and the cost,

with P@5 for example being out by 0.47 points of gain on average

(equivalent to two partially relevant documents) and 4.31 units of

time (the time to inspect an additional 4.31 algorithmic results).

Again, the IFT measure provides the closest fit, quite substantially,

indicating that the two constraints capture more accurately the

behaviour of searchers on this sample of popular queries.

Goal vs. Rate Sensitivity. To illustrate the contributions of C1
(goal sensitivity) and C2 (rate sensitivity) we also computed the

Table 4: Likelihood of the usermodels behind each of several
metrics, given observed stopping behaviour.

Metric Mean likelihood MAE(Gain) MAE(Cost)

P@1 0.49 0.32 0.91

P@5 0.00 0.47 4.31

P@10 0.00 0.65 7.73

SDCG@1 0.49 0.32 0.91

SDCG@5 0.33 0.26 3.10

SDCG@10 0.33 0.38 4.98

RR 0.36 0.36 1.71

RBP, ϕ = 0.1 0.44 0.32 1.03

RBP, ϕ = 0.7 0.16 0.38 2.60

INST, T = 1 0.34 0.34 1.44

INST, T = 2 0.21 0.36 2.16

IFT 0.76 0.16 0.63
IFT-C1 0.73 0.16 0.77

IFT-C2 0.71 0.16 0.73

likelihood and error figures for two variants of IFT, “IFT-C1” and

“IFT-C2”. Interestingly, both continuation functions perform very

well alone—and while this is perhaps not surprising, as a good

result ranking will provide relevant material early on, they both

still outperform top-heavy measures like P@1, RR and SDCG@1.

This suggests that the rationality parameter, which was set at 10,

provided some additional flexibility to cater for the instances when

users go deeper. Also of note is that the combination of C1 and C2
in IFT leads to small, but not negligible, improvements in terms of

estimating the stopping and total cost.

We also note that the data set used here is from common queries

to a web search engine. In other settings searchers may have differ-

ent examination or stopping behaviours, due to differences in goals

or in document collections. Alternative parameter settings would

be appropriate in these cases, for IFT and for standard measures.

Caveats. While some of the measures evaluated above have tuned

parameters, we emphasise that the parameters for IFT have not

been tuned in any way—instead, where possible, we have grounded

the selection of parameters for IFT based on its relationship to

existing measures. Nonetheless, the above analysis does reveal that



encoding both goal and rate sensitivity in the user stopping model

as motivated by IFT makes a material difference to our predictions

of observed search behaviours motivating further analysis.

7 CONCLUSIONS AND FUTUREWORK
In this paper, our goal was to measure the utility (and cost) of SERPs.

In the process, we introduced a measure, derived from Informa-

tion Foraging Theory, where we have shown that the inclusion of

continuation functions that encode goal and rate sensitivity, and

account for the different cost of elements, has the potential to result

in a better fit to observables such as stopping rank, time on SERP

and inferred utility. This required a number of challenges to be

addressed before we could even perform such measurements. We

needed to develop methods to infer the scan path of elements to

create an ordering (ranking) and then we needed to estimate the

costs of different elements—both of which could be explored in sig-

nificantly more depth. Further, we developed a new methodology

for comparing and evaluating IR measures based on observable

behaviour (stopping rank, time on page, and inferred utility). And

so, for the first time we have shown how well common measures

predict such observables in the context of web search. This was

achieved by housing all measures within the C/W/L framework

where it is possible to directly compare measures to each other

and crucially to the inferred utility curves—leading to meaningful

and comparable values (rank, gain, time). This is a significant step

forward in IR evaluation and moves towards a more standardised

and intuitive way to evaluate performance and behaviour.

Finally, the introduction of the foraging based user model not

only directly connects the theory on search behaviour to how we

measure search performance, but also opens up a new way to

evaluate search performance—where we can examine the differ-

ences between users and user populations, in different tasks and

settings—and explore not only their patience, but also their ratio-

nality, tolerance, and how goal-directed they are when searching.
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