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Abstract

Understanding the subtle confluence of factors triggering pan-continental, seasonal epidemics of influenza-like illness is an
extremely important problem, with the potential to save tens of thousands of lives and billions of dollars every year in the
US alone. Beginning with several large, longitudinal datasets on putative factors and clinical data on the disease and health
status of over 150 million human subjects observed over a decade, we investigated the source and the mechanistic triggers of
epidemics. Our analysis included insurance claims for a significant cross-section of the US population in the past decade, human
movement patterns inferred from billions of tweets, whole-US weekly weather data covering the same time span as the medical
records, data on vaccination coverage over the same period, and sequence variations of key viral proteins. We also explicitly
accounted for the spatio-temporal auto-correlations of infectious waves, and a host of socioeconomic and demographic factors.
We carried out multiple orthogonal statistical analyses on these diverse, large geo-temporal datasets to bolster and corroborate
our findings. We conclude that the initiation of a pan-continental influenza wave emerges from the simultaneous realization of a
complex set of conditions, the strongest predictor groups are as follows, ranked by importance: (1) the host population’s socio-
and ethno-demographic properties; (2) weather variables pertaining to relevant area specific humidity, temperature, and solar
radiation; (3) the virus’ antigenic drift over time; (4) the host population’s land-based travel habits, and; (5) the spatio-temporal
dynamics’ immediate history, as reflected in the influenza wave autocorrelation. The models we infer are demonstrably predictive
(area under the Receiver Operating Characteristic curve ≈ 80%) when tested with out-of-sample data, opening the door to the
potential formulation of new population-level intervention and mitigation policies.

Introduction

SEASONAL influenza is serious threat to public health, claiming tens of thousands of lives every year. A large number of
past studies focus on identifying the likely factors responsible for initiating each seasonal disease wave. Typically, each

such study focuses on one or a few hypothetical factors. Our study aimed at an integrative joint analysis of numerous suggested
disease triggers, comparing their relative importance and possible cooperation in triggering pan-US waves of seasonal influenza
infection.

The traditional empirical approach of testing a causal link between a factor and an outcome of an experiment was to vary
one factor at a time, while keeping the other factors (experimental conditions) constant. This “all the rest of conditions is
equal” assumption is often referred to by its Latin form as ceteris paribus. R.A. Fisher ([19], p. 18) noted that, in real-life
experiments, perfect ceteris paribus is not achievable “because uncontrollable causes which may influence the results are
always ... innumerable.” Fisher’s proposed solution to this problem is to design experiments to involve random assignment of
treatment (the putative causal factors states) to individual experiments and then use regression analysis to estimate the value
and significance of the putative causal effect.

Because designing a true randomized experiment studying infection propagation in humans is not ethical, the next best alternative
is to perform observational studies in which human infection data is generated in the absence of the investigators control,
by passive collection of large volumes of health statistics. Under certain conditions, an observational study can provide an
approximation to randomized experiment [[21], p. 226]: “In a randomized experiment, the groups receiving each treatment will
be similar, on average, or with differences that are known ahead of time by the experimenter (if a design is used that involves
unequal probabilities of assignment). In an observational study, in contrast, the groups receiving each treatment can differ
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greatly, and by factors not measured in the study. A well-conducted observational study can provide a good basis for drawing
causal inferences, provided that it: (1) controls well for background differences between the units exposed to the different
treatments; (2) has enough independent units exposed to each treatment to provide reliable results (that is, narrow-enough
posterior intervals); (3) is designed without reference to the outcome of the analysis; (4) minimizes or appropriately models
attrition, dropout, and other forms of unintentional missing data, and; (5) takes into account the information used in its design.”

Hypothesis-driven science, wherein investigators formulate a single, testable hypothesis and design specific experiments to test
it, is a core element of the scientific method, and works well in most scientific fields. However, a new challenge emerges in
data-rich scientific fields, such as genomics, epidemiology, economics, climate modeling, and astronomy: How do we choose
the most promising hypotheses among millions of eligible candidates that potentially fit data? One solution to this challenge
is the many-hypotheses approach, a method of automated hypothesis generation in which many hypotheses are systematically
produced and simultaneously tested against all available data. This approach is currently used, for example, in whole-genome
association or genetic linkage studies, and often enables truly unexpected discoveries. In contrast to the single-hypothesis
approach, the many-hypotheses approach explicitly accounts for the large universe of possible hypotheses through calibrated
statistical tests, effectively reducing the likelihood of accidentally accepting a mediocre hypothesis as a proxy for the truth
[45].

The many-hypotheses computation approach provides a complement to carefully controlled and highly focused wet laboratory
experiments. Running controlled experiments to test a single hypothesis necessarily ignores many of the complexities of a
real-world phenomenon; these complexities are necessarily present in large, longitudinal datasets. Of course, the data-driven
“many-hypotheses” approach is only one aspect of the broader scientific process progressing toward the development of
verifiable general theories.

As all causality detection methods come with dissimilar limitations and are imperfect in unique ways, we designed our study
intentionally to attack the same target problem using three different statistical approaches, shown in Figure 1 A: Approach 1: A
non-parametric Granger analysis [27] focusing on infection flows’ directionality across the US and whether influenza propagates
via long- vs. short-distance travel (we run analysis across all pairs of air- and land-travel county neighbors, respectively);
Approach 2: A mixed-effect Poisson regression [31] explicitly accounting for auto-correlation of the infection waves in time
and space, along with the full set of socioeconomic, climate, and geographic predictors, and; Approach 3: A county-matching,
nonparametric analysis to identify the minimum predictive set of factors that distinguish counties associated the onset of
influenza season season [43].

Our study became possible through access to several, very large longitudinal datasets: (1) a nine-year collection of insurance
records capturing the dynamics of influenza-like illnesses (ILIs) in the United States; (2) temporally collinear, high-resolution
weather measurements over every US county; (3) detailed air travel [56] and geographic proximity data [57] showing connec-
tivity between US counties; (4) billions of geo-located Twitter messages reflecting long- and short-distance human movement
patterns, and; (5) US census data accounting for US county and county-equivalent population distribution, demographic, and
socioeconomic properties [33]. We also used influenza-like illnesses (ILIs) from the whole-country insurance claims (Truven
MarketScan database, see Methods). An explicit comparison of ILIs in the insurance claims to influenza records provided by
the Center for Disease Control and Prevention [9] showed that the two sources agree well (ρ = 0.91,p = 3.5× 10−201), with
insurance claims providing higher data resolution, see Figure 1 B. Curiously, the relationship between the two sources of ILIs
observations is not linearly related: We attribute this to the lower resolution of the CDC data. These three types of analysis
produce congruent–albeit not identical–results. (For example, Figure 1 C shows comparisons of putative influence parameters
produced by Granger-causality analysis with conventional regression coefficients.)

Methods

Candidate factors in influenza initiation

To investigate county-specific variability, we group candidate factors into several categories: demographic, relation to human
movement, and climatic.

Demographic: Influenza is transmitted through direct contact with infected individuals, via contaminated objects, and via
virus-laden aerosols. Thus, human population density (how many people happen to be around?) and social connectivity (how
many people interact with each other and how frequently [5]?) are factors expected to affect local virus incubation and spread.
In addition to population density, we consider socioeconomic factors such as mean household income, levels of poverty and
urbanity, as well as the prevalence of ethnic and age groups (see Figure 2).
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Fig. 1. Logical flow and cross-corroboration of conclusions. Plate A: Diverse data sets processed via multiple techniques to reach convergent, and
reinforcing, conclusions. Approach 1 (Granger-causality analysis) shows that the epidemic tends to begin near water-bodies, and that short-range travel is
more influential compared to air-travel for propagation. Approach 2 (Poisson regression) identifies significant predictive factors, suggesting that the epidemic
begins near the southern shores of the US, and corroborates the result on short- vs. long-range travel. Approach 3 (county-matching) points to south eastern
shores of the continental US as where the epidemic initiates, and identifies a validated subset of predictive factors. Plate B shows influenza prevalence as
reported by Truven data set positively correlates with CDC reports. Plate C illustrates that our conclusions regarding a putatively causal influence between
neighboring counties, inferred using different techniques (mixed-effect regression vs. non-parametric Granger-causality), match up positively.

Human movement: We consider two measurements of human movement: 1) The first measurement reflects the proximity of
counties to major airports. We compute an exponentially-diffusing influence from counties with major US airports, weighted
by passenger enplanements at their respective locations. This accounts for people moving to and from both major airports
and neighboring counties. 2) The second measurement is a large-scale movement matrix representing people’s week-to-week
travels between counties. These data are culled from a complete collection of geo-located Twitter messages, captured over
3.5 years, and constitutes a large-scale, longitudinal sample of individual movements. We used only automatically geo-tagged
tweets.

We observe patterns consistent with both intuitive patterns and prior studies of large-scale movements; the majority of people
in a county remain in the same county from week-to-week, with people traveling to metropolitan areas in proportion to
their size and in inverse proportion to their distance. These data compare favorably with other publicly available datasets on
human mobility. Admittedly, there is a bias in the Twitter movement data, with younger, urban, and higher-income populations
more likely than older, rural, and lower-income populations to use social media technology [49]. However, bias is a problem
associated with any data on human mobility.
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Fig. 2. Putative determinants of seasonal influenza in the continental US and Poisson mixed-effect regression analysis (Approach 2). Plate A
shows the significant variables along with their computed influence coefficients from the mixed-effect Poisson regression analysis (best model chosen
from 126 different regression equations with different variable combinations). The statistically significant estimates of fixed effects are grouped into several
classes: climate variables, economic and demographic variables, autoregression variables, variables related to travel, and those related to antigenic diversity
(see the last entry in Table V for the detailed regression equation used. The complete list of all models considered is given in Table ??). Plates B - I enumerate
the average spatial distribution of a few key significant factors considered in Poisson regression: (B) Average temperature; (C) Average maximum specific
humidity; (D) Average wind velocity in miles per hour; (E) Average solar flux; (F) Logarithm of population density (people per square mile); (G) Total
precipitation; (H) Income, and (I) Percent of poor as deviations about the country average. Plates J-M show the strong dependence between our estimated
antigenic diversity corresponding to the HA, NA, M1, and M2 viral proteins, and cumulative fraction of inoculated population, where both sets of variables
are geo-spatially and temporally stratified.
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Fig. 3. Characteristics of seasonal influenza in the continental US An analysis of county-specific, weekly reports on the number of influenza cases
for a period of 471 weeks spanning January 2003 to December 2013 (Plates A-H) for recurrent patterns of disease propagation. In particular, the weeks
leading up to that in which an epidemic season peaks (determined by significant infection reports from the maximum number of counties for that season)
demonstrate an apparent flow of disease from south to north, which cannot be explained by population density alone (also see movie in Supplement). Plate
I illustrates the near-perfect time table for a seasonal epidemic. Plates J and K compare the county-specific initiation probabilities of an influenza season,
and the causality streamlines.

Climate variables: Specific humidity and a drop in temperature have been suggested as the key drivers in triggering seasonal
influenza epidemics [40], [51], [52]. These initial conclusions were drawn from experiments conducted using an animal model
(guinea pig), under controlled laboratory conditions [51], [40], followed by indirect support from epidemiological modeling [52].

Antigenic Variation: The influenza virus counteracts host immunity via subtle genomic changes over time. The more gradual
process, known as antigenic drift, is a manifestation of a gradual accumulation of mutations within viral surface proteins
recognized by human antibodies, such as hemagglutinin (HA) and neuraminidase (NA). These mutations are typically introduced
during cycles of viral replication [7]. Most of these mutations are neutral, i.e. they do not affect the functional conformation
of the viral proteins. However, some of these alterations do in fact change secondary and tertiary protein structures sufficiently
to have a negative impact on the binding of host antibodies raised in response to previously circulating strains [61]. (Many
of such mutations also reduce viability of the virus.) Thus, while a single infection episode is potentially enough to provide
long-term host immunity to the invading strain, antigenic variation due to intense selection pressure gives rise to novel viral
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mapping to “1,” and negative changes mapping to “0.” From a pair of such symbol streams, we computed the direction-specific coefficients of Granger
causality (see Supplement). For each county, we obtained a coefficient for each of its neighbors, which captured the degree of influence flowing outward to
its respective neighbors (Plate L). We computed the expected outgoing influence by considering these coefficients as representative of the vector lengths
from the centroid of the originating county to centroids of its neighbors. Viewed across the continental US, we then observed the emergence of clearly
discernible paths outlining the “causality field” (Plate G). The long streamlines shown are highly significant, with the probability of chance occurrence due to
accidental alignment of component stitched vectors less than 10−185; while each individual relationship has a chance occurrence probability of ∼ 6% (Plates
E and F). Plate H: Spatially-averaged travel patterns (see text in Methods) and the sink distribution between expected travel patterns. These patterns (Plate
H), along with the inferred causality field (Plate I), match up closely, with sinks showing up largely in the southern US states, explaining the central role
played by the Southern US. Plates J and K: Spatial analysis results for two different infections (HIV and E. coli, respectively) and which exhibit very different
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strains, making re-infections possible within the span of a few years [2]. This kind of perpetual Red-Queen arms race injects
into influenza dynamics auto-correlative dependencies over multiple seasons. It has been suggested that substantial antigenic
drift might be associated with more severe, early-onset influenza epidemic, resulting in increased mortality [58]. In contrast
to antigenic drift, antigenic shift is an abrupt, major change in virus structure due to gene segment re-assortment that occurs
during simultaneous infection of a single host by multiple influenza subtypes [15]. Antigenic shift results in new versions of
viral surface proteins. Antigenic shift due to re-assortment give rise to novel influenza subtypes that, if capable of sustained
human-to-human transmission, can have devastating consequences for the human populations, e.g. the 2009 H1N1 pandemic
[44].

We factor in the potential effect of antigenic variation in our analysis by estimating the surface protein’s population diversity –
hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), and matrix protien M2 – as a function of time and geographical
sample collection location. Our rationale for our focus on these proteins is that HA, NA, and to some degree M1, are present
on the viral surface [37], contribute to viral assembly, and mediate the release of membrane-enveloped particles [11]. M2 has
been shown to have enhanced the pandemic 2009 influenza A virus [(H1N1)pdm09] [20] HA-pseudovirus infectivity [1]. We
find that antigenic diversity in all four of the viral proteins we considered are significant predictors.

Interestingly, while the increasing diversity found in HA, NA, and M1 inhibits the epidemic trigger, the higher diversity in M2
enhances it (see Discussion).

Vaccination Coverage: Vaccination is widely regarded as our most promising tool to combat influenza, though antigenic
variation between seasons makes it difficult to craft an effective vaccination strategy [6]. Understanding how the virus will
evolve in the short-term is key to finding the correct antigenic match for an upcoming influenza season. Additionally, short-term
molecular evolution might rapidly give rise to immune-escape variants that, if detected, might dictate intra-season updates in
vaccine composition. More importantly, vaccination itself might exert significant selection pressure to influence antigenic drift.
The effect of vaccination on viral evolution has been documented in an avian H5N2 lineage in vaccinated chickens [39],
suggesting that similar processes might be occurring in human counterparts. The diversity of the surface proteins at any point
in time between seasons suggests that our current vaccination strategies are limited to confer partial immunity, which can
result in a highly immune or vaccinated population selectively pressurizing the viral population to evolve more quickly than
usual. Given that influenza moves quickly across geographies and there are multiple co-circulating strains that may confer
partial cross-protection, it is a moving target. Further, there are complexities due to early-life imprinting (original antigenic
sin). The second clause may not be common given this imprinting and the variability of the efficacy of the vaccine (often
across demographic strata).

We factor in the effect of vaccination coverage by estimating the cumulative fraction of the population that received the current
influenza vaccine stratified by geo-spatial location and time of inoculation within each influenza season. Our analysis indicates
that vaccination coverage is not a significant predictor–at least in our best Poisson regression model (model quality measured
by Deviance Information Criterion), which might be a consequence of the observed dependence between vaccination coverage
and antigenic diversity (see Figure 2, Plates J-M).

Return to School Effect: Social contact among children in schools has been extensively investigated as a determinant of the
peak incidence rate. This is one of the few factors that might lend itself to intervention relatively easily, and hence the interest
is well-justified. While any reduction in social contact should, in theory, directly impact transmission, quantifying the effect
of this specific mode of contact on the incidence rate has been difficult to calculate. Predictions of the reduction in the peak
incidence associated with reduced social contact were typically 20 - 60% [18], [29], with some studies predicting much larger
reductions of = 90% [42], [22]. Reductions in the cumulative attack rate (AR, ratio of the number of new cases to the size
of the population at risk) were usually smaller than those in the peak incidence. Several studies predicted small (∼10%) or no
reduction in the cumulative AR [18], [29], [64], [16], [63], [36], [14], [50], [60], [23], [38], [62], [65], whilst a few predicted
substantial reductions (e.g. = 90%) [24], [14], [17], [13]. Only two studies [24], [38] predicted that peak incidence might
increase markedly under some circumstances following school closures, e.g. by 27% if school closures caused a doubling in
the number of contacts in the household and community, or by 13% if school systems were closed for two weeks at a prevalence
of 1% in the general population. Studies have also investigated the effect of such interventions on children vs. adults; one
study predicted an overall reduction in the cumulative AR, but an increase of up to 48% in the cumulative AR for adults in
some situations [3]. While this diverse set of predictions in the literature often pertains to the effect of school closures as an
intervention tool, we are more interested in the influence that the current school schedule has, if any, on triggering the epidemic.
To answer this specific question, we formulated a simple statistical test to determine whether the timing of return-to-school
after summer and winter holidays significantly predicts influenza season initiation. We found insufficient evidence in support
of this effect (see Methods & Materials).
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Fig. 5. Comparing influence of short- and long-distance travel on infection propagation Plate A shows land connectivity visualized as a graph with
edges between neighboring counties. Plate B shows air connectivity as links between airports, with edge thickness proportional to traffic volume. Plate
C shows the delay in weeks for the propagation of Granger-causal influence between counties in which major airports are located, and Plate E shows
the distribution of the inferred causality coefficient between those same counties. Plates D and F show the delay and the causality coefficient distribution
respectively, which we computed by considering spatially neighboring counties. The results show that local connectivity is more important. We reached
a similar conclusion using mixed-effect Poisson regression, as shown in Plate G: The inferred coefficients for land connectivity are significantly larger
than those for air connectivity, tweet-based connectivity, or exponential diffusion from the top 30 largest airports. The coefficients shown in Plate G are
exponentiated, allowing us to visualize probability magnitudes (see model definition).

Clinical data source

The source of the clinical incidence data used in this study is the Truven Health Analytics MarketScan R© Commercial Claims
and Encounters Database for the years 2003 to 2012. The database consists of approved commercial health insurance claims for
between 17.5 and 45.2 million people annually, with linkage across years, for a total of approximately 150 million individuals.
This US national database contains data contributed by over 150 insurance carriers and large, self-insuring companies. We
scanned 4.6 billion inpatient and outpatient service claims and identified almost six billion diagnosis codes. After un-duplication,
we identified approximately 12.8 unique diagnostic codes per individual. We processed the Truven database to obtain the
reported weekly number of influenza cases over a period of 471 weeks spanning from January 2003 to December 2013, at the
spatial resolution of US counties. To define influenza in insurance claims, we used the following set of ICD9 codes: 487.8,
488.12, 488.1, 488.0, 488.01, 488.02, 487.0, 487.1, 488.19, 488.09, 488, 487, and 488.11.
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Fig. 6. Prediction performance with training data from the first six seasons and validation on the last three. Plate A shows the correlation between the
observed incidence and the model predicted response. We show significant positive correlation, particularly within the trigger periods in the out-of-sample
data, which is what the model is trained for. This gives us confidence to construct ROC curves for each week. Plates B-D show the ROC curves for the
last three weeks of each of the three seasons in the out-of-sample period (potentially, these computations can be repeated for all possible partitions of
study weeks into training and test samples). Plates E-G illustrate that the normalized decision variable, which is the normalized response from the model,
identifies the South and Southeastern counties as the trigger zones.

Data on antigenic drift for Influenza A

Sequence data for this computation was obtained from the National Institute of Allergy and Infectious Diseases (NIAID)
Influenza Research Database (IRD) [66] through their web site at http://www.fludb.org.

Data on vaccination coverage

Data on vaccinations is extracted from our EHR database corresponding to the procedural codes 90661 and Q2037, which
correspond to the dominant influenza vaccines.
(http://flu.seqirus.com/files/billing and coding guide.pdf)
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Fig. 7. Results for our analysis involving county-matching (Approach 3). Plate A illustrates the factor combinations that turn out to be significant
over the nine seasons. Notably, for each season, we have multiple distinct factor sets that turn out to be significant (p < 0.05) and yield a greater than
unity odd ratio. Plotting the probability with which different factors are selected when we look at season-specific county matchings (top panel in Plate A),
we see a corroboration of the conclusions drawn in Approach 2. We find that specific humidity and average temperature, along with their variations are
almost always included. We do see some new factors that fail to be significant in the regression analysis, e.g., degree of urbanity and vaccination coverage.
While vaccination coverage is indeed included as a factor in our best performing model, in Approach 2 it failed to achieve significance, perhaps due to its
strong dependence on antigenic variation (see Figure 2J-M). Degree of urbanity is indeed significant for some of the regression models we considered (see
Supplementary Information), but was not significant for the model with the smallest DIC. Note that “Treatment” here is defined as a logical combination of
weather factors. A treatment is typically a conjunction of several weather variables. For example, the treatment shown in top left panel of Plate B involves
a conjunction of: (1) a drop in average temperature during the week of infection; (2) a drop in temperature during the week of infection; (3) a higher-than-
average specific humidity; (4) a higher-than-average temperature, and; (5) a high degree of urbanity. With respect to the “treatment,” we can divide counties
into three groups: (1) “treated counties,” shown in green; (2) at least one matching county for each of the treated counties (matching counties are very
close to the treated counties in all aspects but in treatment, which we called “control” counties), shown in black, and; (3) other counties, shown in grey. The
counties in the “treatment” and “control” groups are further subdivided into those counties that initiated an influenza wave and those that have not, resulting
in four counts arranged into a two-by-two contingency table. We then used the Fisher exact test to test for association between treatment and influenza
onset. Panels in Plate B show both the treated and control sets for the 9 seasons for a subset of chosen factors. The results are significant, as shown in
Tables II and III. The variable definitions are given in Table IV. Notably, some of the variables found significant in the regression analysis are not included
above, and some which are not found to be significant in the best regression model show up here. This is not to imply that they are not predictive or lack
causal influence. The matched treatment approach, as described above, is not very effective if we use more than ∼ 10−15 factors simultaneously to define
the treated set (for the amount of data we have); this results in a contingency table populated with zero entries.

Data on human air travel

We use a complete, directed graph of passenger air travel for 2010, accounting for the number of passengers transported in
each direction [56]. For each county, we compute an air neighborhood network: For counties i and j, the incoming edge to
county i represents the proportion of passengers, and pji represents the ratio of all passengers who traveled from county i to
county j by plane, to the total number of travelers who left county i by plane during the year, so that

∑
j,i pji = 1.

Data on general human travel patterns in the US

Using the complete Twitter dataset, we aggregate a movement matrix to capture people’s week-to-week travels between counties
from geolocated Twitter messages (captured during the period of January 1, 2011 through June 30, 2014). This dataset includes
approximately 1.7×109 messages and represents 3×108 user-days of location information. A small, but significant, percentage
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TABLE I
Social connectivity: The US southern region appears to have an unusually high level of social connectivity. (In GSS survey results, the number of close friends,

close friends who are neighbors, and number of friends who all or mostly know each other is higher in the South, especially in the East/South/Central census region,
than in the country at large.)

WSC (TX, OK, AR,
LA)

ESC (MS, AL, TN,
KY)

SA (FL, GA, SC, NC,
VA, WV, MD, DC) Country-at-large WNC (ND, SD, NE, KS, MO, IA, MN) (not in South/Southeast)

this is the second most social region following ESC

Close friends 7.22 12.76 8.20 7.57 10.56

Close friends who
are neighbors

1.02 3.40 1.32 1.45 3.15

% of friends who all
or mostly know each
other

All:20% Mostly: 43% All:18% Mostly:
58% All: 11% Mostly: 52% All: 12 Mostly: 50% All: 16% Mostly: 58%

How often visit
closest friends‡

107 151 126 122 129

‡Survey options are: lives in household, daily, several times a week, once a week, once a month, several times a year, and less often. These are converted to approximate number of visits per year (see
Supplement for more information about the GSS analysis).

of Twitter messages are automatically tagged with the author’s current latitude/longitude information, as determined by their
mobile device. Each latitude/longitude-annotated tweet was mapped to a FIPS county code based on Tiger/Line shape files from
the 2013 Census dataset (http://www.census.gov/geo/maps-data/data/tiger-line.html). In addition, we calculated a variant of our
movement matrix to capture seasonality and other temporal dynamics: A set of 52 movement matrices captured weekly, county-
to-county movements, observed in each week of the year, aggregating each week based on the corresponding observations,
from each year from 2011 through 2014.

This dataset constitutes a large-scale, longitudinal sample of individual movements. We find that the movement patterns are
consistent with intuitive patterns and prior studies of large-scale movements; the majority of people in a county remain in the
same county week-over-week. Most travel between counties occurs between neighboring counties, and between counties and
large metropolitan areas, conditioned on distance and size of the metropolitan area. We represent our movement data as an
n× n matrix M that captures the likelihood that a person observed in county i during the course of a week will be observed
in county j in the following week. We calculate the entries mi,j of matrix M as follows:

mi,j =
∑
t<T

1
Popi,t

∑
u<m

xu,i,txu,j,t+1 (1)

For each time interval, we compute the mean movement vector from a given county by summing all county-to-county
movement vectors, weighted by the proportion of people moving in each direction.

To investigate the role of proximity to major airports, we model influence diffusion as follows: Let xi be the ith county,
and vi be the total contribution obtained by diffusing influences from the major airport bearing counties. Let x?k be the kth
airport-bearing county, and let N be the total number of major airport locations considered, in our case, N = 27. Let gk be
the volume of traffic for the kth major airport location. We then compute vi as follows:

vi =

N∑
k=1

gke
−C0Θ(x?k,xi) (2)

where Θ(·, ·) is the distance in miles between two locations, we computed using the Haversine approximation. The value of
the constant C0 was chosen to be 0.1. Small variations in the constant do not significantly alter our conclusions. As noted
above, proximity to airports had a significant positive influence in sparking seasonal epidemics; the influence is significantly
weaker once an outbreak is well under way.

Estimating antigenic diversity

In this study, we measured antigenic diversity as follows: Let Si,x,t be the set of amino acid sequences for the ith protein (one
of HA, NA, M1 or M2), collected in year t (t ranging between 2003 and 2011), in state x of the continental United States. The
temporal resolution of the sequence data is thus set to years instead of weeks, and the spatial resolution to states instead of
counties. These resolutions are coarse compared to our EHR data on infection incidences, and is set in this manner to maintain
sufficient statistical power. For each such set of amino acid sequences Si,x,t, we compute the set D(Si,x,t) of pairwise edit
distances:

D(Si,x,t) = {y : y = L(s1, s2), s1, s2 ∈ Si,x,t, s1 , s2} (3)
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where L(s1, s2) is the standard edit distance (also known as the Levenshtein distance) between the sequences s1, s2. Mathe-
matically, the Levenshtein distance between two strings a,b (of length |a|, |b| respectively) is given by:

L(a,b) = leva,b(|a|, |b|), where (4)

leva,b(i, j) =


max(i, j) if min(i, j) = 0,

min


leva,b(i− 1, j) + 1
leva,b(i, j− 1) + 1
leva,b(i− 1, j− 1) + 1(ai,bj)

otherwise.
(5)

where 1(ai,bj) is the indicator function equal to 0 when ai = bj and equal to 1 otherwise, and leva,b(i, j) is the distance
between the first i characters of a and the first j characters of b.

The antigenic diversity of the ith protein at time t in state x is then defined as the median of the distribution of the values in
the set D(Si,x,t). Clearly, as the sequences get more diverse at a point in time and space due to molecular variations brought
about by either drifts or shifts, the measure deviates more from zero. Use of the median provides robustness to outliers.

Importantly, here we are not comparing changes in antigenic makeup directly, but estimating the current diversity in the
protein primary structure. However, due to our coarse temporal resolution, we expect our measure to be representative of the
cumulative changes that occur within each influenza season. State-level geo-spatial variation, and our coverage of 9 epidemic
seasons imply that we capture spatio-temporal dependence of population level sequence diversity as a factor influencing the
incidence dynamics in individual seasons, which we include as a potential predictor in our Poisson regression analysis.

Estimating vaccination coverage

We incorporate the effect of vaccination coverage by estimating the cumulative fraction of the population that received the current
influenza vaccine within the previous 20 week period. This approach to estimating vaccination coverage does not correct for
season-specific antigenic match, or the lack thereof. Nevertheless, because we explicitly include measures of antigenic diversity
in addition to vaccination coverage, we expect that effects arising from the degree of antigenic match will indeed be factored
in; if there is a significant mismatch, we expect the antigenic diversity in that year to be less and vice verse. This assumes
implicitly that vaccination does indeed play a major role in exerting significant selection pressure, an assumption which is
justified by our observation of a strong dependency between vaccination coverage and normalized antigenic diversity as shown
in Figure 2, Plates J-M.

We find that antigenic diversity is quite strongly affected by vaccination coverage. This reflects the theoretical predictions in
Boni et al. [8], where it is shown that the amount of observed antigenic drift increases as immunity in the host population
increases and pressures the virus population to evolve.

Estimating the effect of return-to-school days

The absence of consensus, and the diversity of modeling assumptions pertaining to this effect (described before) makes it
difficult to validate the conclusions in large scale epidemiological data. We carried out a simple test to determine if there
is statistical evidence that after-holiday return-to-school periods in August-September and in January predict or trigger the
seasonal epidemic.

For this we assumed a broad window to cover all such school opening across the continental US including the last week in
August, the entire month of September, two weeks in October, and two weeks in January. Then we carried out a Fisher’s
exact test to determine if the overlap between these weeks and the identified “trigger period” (See Table ??) for the seasonal
epidemic are sufficiently non-random. We ended up with a p-value of 0.84 and an odds ratio of 0.8403, strongly suggesting
that school opening dates are not a significant factor in triggering the seasonal epidemic. (See Table ??).

We are not claiming here that closing down schools during the seasonal peak, or during an initial phase of a seasonal epidemic,
will not have a beneficial effect on maximum incidence. Rather, the observed epidemiological patterns over the time period we
analyzed (2003-2011) do not seem to name “school opening times” as a significant predictive factor, at least in the continental
US.
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Weather data

The dataset starts with the week beginning December 31st, 2002 and includes 522 weeks (which ends exactly on the week ending
December 31st, 2012). Temperature and precipitation data come from the 2.5 arcminute (approximately 4km) PRISM [46]
dataset and other variables (wind speed, specific humidity, surface pressure, downward incident, and shortwave solar radiation)
come from the 7.5 arcminute (approximately 12km) Phase 2 North American Land Data Assimilation System (NLDAS-2)
dataset [41], [12]. These datasets are selected in large part due to the fact that both are updated in near real-time, making
it possible to use these datasets for future monitoring applications. PRISM is released daily, with an approximately 13 hour
delay (data for the previous day is released at 1pm EST each day) while NLDAS is released daily, with an approximately 2.5
day delay).

Variables are aggregated to county boundaries based on shapefiles from the GADM database of Global Administrative
Areas [25]. Where appropriate, we considered both the average daily climate variable (for example, the daily maximum
temperature averaged over the week) as well as the the maximum and/or minimum of the variable experienced over the week.
For precipitation, we considered only the cumulative total precipitation experienced during the week.

Inferring statistical ”Granger-causality” from data (Approach 1)

Granger attempted to obtain a precise definition of causal influence [28] from the following intuitive notion: Y is a cause of
X, if it has unique information that alters the probabilistic estimate of the immediate future of X.

Here, we used a new, non-parametric approach to Granger causal inference [10] (Approach 1). In contrast to state-of-art binary
tests [4], [32], we computed the degree of causal dependence between quantized data streams from stationary ergodic sources
in a non-parametric, non-linear setting.

Our approach is significantly more general to common, regression-based implementations of Granger causal inference, and
does not involve any autoregressive moving average (ARMA) modeling. All such commonly used techniques impose an a
priori linear structure on the data, which then constrains the class of dependency structures we can hope to distill.

True causality, in a Humean sense, cannot be inferred [34], [35]. Among other reported approaches to ascertaining causal
dependency relationships, the work of J. Pearl [47] is perhaps most visible, and builds on the paradigm of structural causal
models (SCM) [48]. While Pearl’s work is often claimed to be able to answer causal queries regarding the effects of potential
interventions, as well as regarding counterfactuals, our objective in this paper is somewhat different. We are interested in
delineating whether infection transmission pathways can be distilled from the patterns of infection’s spatiotemporal incidence.

Methods: Three approaches

Analysis of quantized clinical data (Approach 1)

For the purpose of Poisson regression (Approach 2), we restricted the weeks we considered to those immediately preceding
an exponential rise in incidence prevalence (see Figure 3) in order to focus on the onset of an influenza season. (We used the
same consistent formulation of influenza onset across all three approaches in this study.)

For the causality analysis (Approach 1), we proceeded differently. We had an integer-valued time series for each US county,
and to carry out the causality analysis, we first quantized the series in two steps:

1) Computing the difference series, i.e., the weekly change in the number of reported cases.
2) Mapping positive changes to symbol “1” and negative changes to symbol “0” (see Figure 3B).

This mapped each data series to a symbol stream over a binary alphabet. The binary quantization is not a restriction imposed
by the inference algorithm; while we do require quantized magnitudes, longer data streams can be encoded with finer alphabets
to accommodate an arbitrary precision. For this specific dataset, the relatively short length of the county-specific time-series
necessitated a coarse quantization in order for the results to have a meaningful statistical significance.
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Given a pair of such quantized streams sa, sb, the algorithm described in the Supplement computes two coefficients of causality,
one for each direction. Intuitively, the coefficient γab from sa to sb is a non-dimensional number between 0 and 1 that quantifies
the amount of information that one may acquire about the second stream sb from observing the first stream (sa). More
specifically, γab is the average reduction in the uncertainty of the next predicted symbol in stream sb in bits, per bit, acquired
from observed symbols in stream sa. It can be shown that the coefficient of causality γab is 0 if and only if there is no causal
influence from sa to sb in the sense of Granger, and assumes the maximum value 1 if and only if sb is deterministically
predictable from sa. Moreover, γab = γba = 0 if and only if sa and sb are statistically independent processes [10]. It is trivial
to produce examples where we would have γab = 0,γba > 0 illustrating the ability of the algorithm to capture the asymmetric
flow of causal influence in one preferred direction and not the other.

Additionally, whenever we computed the causality coefficient, there existed an associated notion of a time delay: We can
calculate the coefficient for predicting the target stream some specified number of steps in the future, and the computed
coefficient is thus parameterized by this delay. In our analysis, we computed coefficients up to a maximum delay of 10 weeks,
and, for each pair of counties, selected the optimum delay which gave rise to the largest coefficient. For more details on the
algorithm, see the Supplement.

Computation of causality fields and causality streamlines (Approach 1)

To compute causality streamlines, we needed a precise notion of county neighbors. We considered two counties to be neighbors
if they share either a common border, or if one county is reachable within a line-of-sight distance of 50 miles from any point
within another. The latter condition removed ambiguities as to whether counties touching at a point should be still considered as
neighbors. The exact distance value (50 miles) does not significantly change our results, as long as it does not vary significantly.
With the definition of the neighborhood map in place, we proceeded to compute the direction-specific coefficients of causality
between neighboring counties. It follows that we would obtain a set of coefficients for each county and one for each of its
neighbors, capturing the degree of causal influence from a given particular county to its respective neighbors. Our algorithm
also computed the probability of each coefficient arising by chance alone, and we ignore coefficients that have more than a
6% probability that two independent processes lacking any causal connection gave rise to the particular computed value of the
coefficient. Once the coefficients had been calculated for each neighbor, we computed the resultant direction of causal influence
outflow from that particular county. This was carried out by visualizing the causality coefficients as weights on the length
of the vectors, from the centroid of the considered county to the centroids of its neighbors. We then calculated the resultant
vector (see Figure 3). Viewed systematically across the continental US, these local vectors formed a discernible pattern; we can
observe the emergence of a non-random structure with clearly discernible paths outlining the “causality field” (see Figure 4,
Plates G, J, K). To interpret the plots, note that streamlines start at their thinnest part, their direction is indicted with thickening
line; typically multiple streamlines coalesce into a river-like pattern.

Mixed-effect Poisson regression (Approach 2)

We investigated the relative importance of putative factors as follows: Specifically, let Nijk denote the total number of patients
in county i, who are of age j, and gender k. Denoting the number of individuals diagnosed with influenza in a given county
during given week as yijk, we modeled the within-county disease incidence counts for every county (for which data was
available) in the US using the following mixed-effect Poisson regression model:

P(yijk|λi,j,k) =
λ
yijk

ijk e
−λijk

yijk!
with λijk = Nijk exp {α+ Xb + sib1,i + nib2,i + Zv} , (6)

where, α is the intercept, X and b are fixed-effect design matrix and vector of fixed effects, respectively, si is 1×m vector of
changes in rate of infection in the ith county 1, 2, ..,m weeks prior to the current, b1,i is a m × 1 vector of auto-correlation
fixed effects, ni is a 1 × (3m) vector of changes in the rate of infection in the neighbors of the ith county 1, 2, ..,m weeks
prior to the current (the neighbors are subdivided into land neighbors, Twitter neighbors, and air neighbors), b2,i is a (3m)×1
vector of county-neighborhoods fixed effects, and v and Z are random effects and their design matrix, respectively. Variable
m represents the depth of “memory” of auto-regression in weeks, in our case m = 4.

In this way, the total number of rows in matrix X is 510 × 3, 143 (weeks × counties), with county-specific socioeconomic
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covariates and week-specific weather covariates. For disease initiation analysis, we included only a subset of time series
covering approximately 50 weeks.

Out-of-sample prediction and ROC analysis with mixed-effect Poisson regression: We carried our out-of-sample prediction
with the models inferred with mixed-effect regression. The steps were as follows:

1) We trained the model parameters with data from the trigger periods corresponding to the first six seasons.
2) Once the coefficients of the variables were identified, we used it to predict the response variable (influenza incidence) for

the last three seasons.

As expected, the predicted incidence does not exactly match the observed out-of-sample data. Nevertheless, we see positive
correlation (Figure 6, Plate A). Since we were modeling a necessarily spatio-temporal stochastic process, the predictive ability
of the model is difficult to judge simply from the observed positive correlation. To resolve this, we investigated the performance
of our model by computing how well it predicted the counties that experience flare-ups during the trigger-periods in the out-
of-sample data. This exercise is reduced to a classification problem, by first choosing a threshold on the number of reported
cases per week to define what is meant by a “flare-up” (see description below). To quantify the prediction performance, we
constructed ROC curves for each of the three target seasons, for each fixed week, as follows:

1) We first quantized the incidence data to reduce it to a binary stream. In particular, we chose a threshold (10), such that
for each county, and each week, we reported a “1” if the number of reported cases was greater than the threshold, and
“0” otherwise. Note this quantization is different to what we used in carrying out our nonparametric Granger analysis in
Approach 1.

2) For each county i, and week j, we then ended up with the binary class variable Xj,i ∈ {0, 1} and a decision variable
Yj,i ∈ R, where the former is the quantized incidence described above, and Yj,i is the response predicted by the model,
normalized between 0 and 1.

3) For a chosen decision threshold θD ∈ R, we could determine the predicted class X̂j,i ∈ {0, 1} as:

X̂j,i =

{
1, if Yj,i = θD
0 otherwise (7)

4) Comparing the observed and predicted classes, we could compute the false positive rate (FPR: defined as the ratio of
false positives to the sum of false positives and true negatives), and the true positive rate (TPR: defined as the ratio of
true positives to the sum of true positives and false negatives). Finally, we constructed the ROC curve, which shows the
relationship of the TPR and the FPR as the decision-threshold θD is varied.

5) We constructed ROC curves for each week in the out-of-sample period, and estimated the area under curve (AUC). The
AUC measures the performance of the predictor (our model) to classify correctly the counties that would go on to have
a disease incidence greater than the initial set threshold (ten cases in our analysis). In the perfect case, we would have
an AC of 1.0, which implies that we can achieve zero false positives, while getting a 100% true positive rate. Our best
model achieves approximately 80% AUC for the trigger weeks as shown in Figure 6.

County-matching effect analysis (Approach 3)

Let Y denote the set of all US counties, and let S be the set of all factors we find to be significant in our mixed-effect
regression analysis. Now, for any subset of factors K j S, we denote the complement set as K = S \K. Additionally, we define
the Boolean function T : S×Y → {true, false}, (the treatment function) where for some factor s ∈ S, and some county y ∈ Y,
the Boolean value T (s,y) is true if the signal or treatment corresponding to the factor s is present in county y. We used he
sign of the coefficients obtained in our best mixed-effect regression model to determine what counts as a positive signal. For
example, because maximum specific humidity (denoted by the variable max hus avg) enters with a positive coefficient, if
county y experiences a higher-than-average maximum specific humidity, then T (max hus avg,y) is true.

To simplify the notation, we used T s
y to denote a true signal, and ¬T s

y to denote a false one.
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Finally, for any K j S, we define the following three sets, which we refer to as the W-sets:

WK
treated =

{
y ∈ Y :

∧
k∈K

T k
y

}
(8)

WK
matched−control ={

y ∈ Y :

(
¬
∧
k∈K

T k
y

)∧(
∃y ′ ∈WK

true

(
∀r ∈ K

(
(T r
y′ ∧ T r

y )∨ (¬T r
y′ ∧ ¬T r

y )
)))}

(9)

WK
other =

{
y ∈ Y :

(
¬
∧
k∈K

T k
y

)}
\WK

matched−control (10)

Clearly, WK
treated is the treated set, i.e., the set of counties which exhibit the signal encoded by the set K. WK

matched−control

is then the matched control set of counties, which lack the signal, but each county in this set has a matching counterpart in
WK
treated.

The W-sets allow us to set up a 2×2 contingency table for any chosen subset of factors K j S as described before. Specifically,
we split the sets WK

treated and WK
matched−control into two subsets each, representing those counties which experience a spike

in influenza prevalence and which do not. The 2 × 2 contingency table is then subjected to Fisher’s exact test. The results
shown in Figure 7 and Tables II and III are for one-sided tests.

Combining factors: Infection propagation is understood to be a complex process, with multiple contributing factors (see
Figures 2 and Table IV). Next, we proceed to describe findings from the three orthogonal approaches to causal analysis of the
same data, then summarize their results.

Results

Approach 1: Non-parametric Granger analysis

Approach 1 focuses on local and global patterns of influenza transmission: It is based on a new non-parametric, non-linear
approach to Granger-causal inference. The goal of this technique is to identify infection propagation directionality, and evaluate
the effects of short- and long-distance human travel on the epidemiology of influenza. Our analysis of health insurance claims
covers nine years of influenza cycles (2003 to 2011, inclusively), see Figure 3. We visualize weekly, county-level prevalence as
a movie (see Supplement); Figures 3 A-H show a few relevant weekly snapshots from different years. The plates in Figures 3
A-H, and especially the movie, clearly show that seasonal influenza cycles initiate in the South/Southeast US and sweep the
country from south to north. This pattern repeats, with some variation, each season.

To analyze these propagation dynamics, we define the notion of a Granger causal flow. Treating county-specific changes
in disease prevalence as a time-stamped data stream, we quantify the directional strength of the causal flow between two
counties as the degree of predictability of one stream’s future, given the history of the other (see Figures 4A-D). In contrast to
regression-based, classical implementations of the Granger test, our new algorithm is able to compute a coefficient of causality:
an information-theoretic measure of the information in bits that one stream communicates about another in a direction-specific
manner. A strong coefficient of this type suggests that either the disease itself, or an underlying cause, may be propagating
from the former county to the latter. See the Methods section for a full discussion of Granger causal inference, including the
new algorithm for non-parametric, nonlinear Granger inference.

To explore the country-wide propagation dynamics, we stitch together the properly-aligned, adjacent between-county causal
flow vectors across the whole US map into causality streamlines, representing the aggregated spatial infection propagation
over time, as shown in Figure 4G. The alignment of these flow vectors into long, continuous streamlines suggests a stable
propagation mechanism across the country; the probability of a long sequence of summary movement vectors accidentally
matching in the direction by mere chance is vanishingly small (p < 10−16 for longer streamlines).

Are there counties from which the epidemic is more likely to originate season after season? To answer this question, we follow
“causality streamlines” back to their source county. Informally, influenza onset in these source counties has little or no causal
dependency on their neighbors. That is, their epidemic states are seemingly caused by factors outside of disease prevalence in
other counties. Figure 3K presents the county-specific likelihood of streamline initiation across our nine years of data. To verify
whether this is a mere manifestation of boundary effects, we carried out identical causality analyses with different infectious
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TABLE II
Fisher exact test results on matched treatment combinations

YR dh?0 dh?1 dt?0 h? t? u? M1? M2? V?
0 V?

1 a? p-value Odds Ratio Lower 99%
cnf. bnds.

Upper 99%
cnf. bnds.

2003 X X Y Y Y Y X X X X X 1.9× 10−8 2.83 1.73 4.66
2004 X X Y Y Y Y X X Y X X 6.5× 10−3 6.22 1.08 132.03
2005 X X Y Y Y Y X Y X X X 3.4× 10−6 8.31 2.16 54.93
2006 X X Y Y Y Y X Y X X X 5.3× 10−7 4.56 1.96 12.0
2007 Y Y X Y Y Y X Y X X X 2.1× 10−2 3.85 0.82 28.16
2008 Y Y Y Y Y X X X X X X 1.9× 10−3 5.26 1.23 50.2
2009 Y Y X Y Y Y X X X X X 3.1× 10−10 4.78 2.38 10.34
2010 X X Y Y Y Y X X X Y X 1.4× 10−2 3.64 0.93 24.27
2011 X X Y Y Y Y X X Y X X 4.9× 10−11 4.91 2.51 10.05
All

Years Y Y Y Y Y Y Y Y Y Y X 7.2× 10−9 3.88 2.10 7.89

All
Years Y Y Y Y Y Y Y Y Y Y Y 1.0 1.0 0.48 2.15

?Column headers denote the following variables. dh0: d hus 0, dh1: d hus 1, dh3: d hus 3, dt0: d t avg mean 0 , h: max hus avg, t: t avg mean, u: urban, a: airport proximity, V0:
Cum vac per N 0, V1: Cum vac per N 0

TABLE III
Fisher exact test results on matched treatment on single factors

(a)
YR p-value 99% Conf. Bnd.

max hus avg
2003 0.003603 1.0, 4.21
2004 0.6919 0.16, 17.63
2005 0.1948 0.61, 7.89
2006 0.6525 0.28, 3.06
2007 0.3574 0.49, 18.85
2008 0.103 0.55, 1.23
2009 0.1067 0.68, 8.77
2010 0.5318 0.27, 41.03
2011 0.09054 0.74, 5.17

ALL YRS 1× 10−4 1.12, 1.88
t avg mean

2003 0.06439 0.81, 3.65
2004 1 0.27, 10.62
2005 0.003339 1.17, 123.0
2006 0.8172 0.29, 4.0
2007 0.537 0.47, 7.42
2008 0.05985 0.59, Inf
2009 0.0006337 1.37, 51.68
2010 0.2853 0.50, 9.28
2011 0.05729 0.85, 3.49

ALL YRS 5.87× 10−9 1.36, 2.23
d hus 0

2003 0.5374 0.55, 3.41
2004 1 0.27, 11.01
2005 0.04401 0.81, 7.13
2006 0.001708 1.31, Inf
2007 0.009199 1.0, 37.34
2008 0.3051 0.60, 5.92
2009 0.02726 0.82, 90.16
2010 1 0.41, 2.78
2011 0.577 0.57, 2.77

ALL YRS 1.48× 10−5 1.12, 1.64
d t avg mean 0

2003 0.004956 1.0, 24.12
2004 0.445 0.14, 6.0
2005 0.001164 1.23, 12.03
2006 0.01198 0.97, 11.08
2007 0.01147 0.96, 11.05
2008 0.08552 0.74, 11.18
2009 0.06847 0.73, 17.69
2010 0.08251 0.15, 1.63
2011 0.6031 0.47, 3.55

ALL YRS 4.98× 10−11 1.35, 2.06

(b)
YR p-value 99% Conf. Bnd.

d hus 1
2003 0.1652 0.10, 2.43
2004 1 0.22, 24.42
2005 0.002004 0.09, 0.87
2006 1 0.32, 7.65
2007 0.389 0.33, 1.90
2008 0.02142 0.9, 8.48
2009 0.1822 0.67, 6.06
2010 0.6005 0.23, 4.22
2011 0.9166 0.6, 1.88

ALL YRS 0.07 0.72, 1.06
d hus 2

2003 0.0083 1.01, 5.77
2004 0.79 0.36, 13.33
2005 0.275 0.71, 2.54
2006 0.24 0.66, 4.36
2007 0.19 0.62, 9.33
2008 0.18 0.65, 7.52
2009 0.53 0.44, 6.25
2010 0.08 0.21, 1.51
2011 0.59 0.69, 1.87

ALL YRS 0.13 0.78, 1.07
urbanity

2003 0.0083 1.01, 5.77
2004 0.79 0.36, 13.33
2005 0.275 0.71, 2.54
2006 0.24 0.66, 4.36
2007 0.19 0.62, 9.33
2008 0.18 0.65, 7.52
2009 0.53 0.44, 6.25
2010 0.08 0.21, 1.51
2011 0.59 0.69, 1.87

ALL YRS 2.2× 10−16 3.67, 5.06
airport proximity

2003 0.004956 1.0, 24.12
2004 0.445 0.14, 6.0
2005 0.001164 1.23, 12.03
2006 0.01198 0.97, 11.08
2007 0.01147 0.96, 11.05
2008 0.08552 0.74, 11.18
2009 0.06847 0.73, 17.69
2010 0.08251 0.15, 1.63
2011 0.6031 0.47, 3.55

ALL YRS 1× 10−16 1.73, 2.93

disease phenotypes, specifically choosing diseases less likely to share etiologies with influenza: HIV and Escherichia coli. The
results for both HIV and Escherichia coli infections are shown in Figures 4J and K, which exhibit flow patterns distinct from
those obtained for influenza. These streamlines almost never originate from the coasts, thus excluding the possibility that the
pattern observed for influenza is a geospatial boundary effect. Combined with the exceedingly low probability (∼ 10−185) of
chance inference for the streamlines, this strongly supports our conclusion that the epidemics are of coastal origin.

Additionally, we validated our conclusion that influenza waves tend to start in the South by directly identifying counties from
which the epidemic seems to trigger. We computed a “trigger period” of five to six weeks for each season, defined as the
period immediately preceding an exponential increase in influenza dispersion. To calculate this weekly dispersion, we treated
each county as a node in an undirected graph, each with an edge connecting two geographically adjacent counties–only if they
have both reported at least one influenza case in the specified week. We defined dispersion as the size of the largest, connected
component in this undirected graph. Thus, a trigger period describes the period in which the size of the giant component of
the infection graph rises above 250 counties from being under 100 as shown in Figure 3I, and then proceeds to the seasonal
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peak. Figure 3J presents the likelihood of a county’s being part of this largest, connected component during the trigger period.
In the second approach, we followed causality streamlines back to their source county. Figure 3K presents the county-specific
likelihood of streamline initiation across nine years.

These approaches produced similar results (shown in Figure 3J and Figure 3K): While epidemics seem to start in many places
around the country, they successfully gain traction near large bodies of water. Otherwise, they fizzle out before triggering an
actual epidemic cycle (see Figure 3J). Seasonal initiation is neither spatially uniform nor simply a reflection of county-specific
population density.

Our analysis of the Twitter movement matrix indicates that people most frequently travel between neighboring counties,
preferentially towards higher-population-density areas, which shows that the maximum-probability movement patterns follow
the local gradient of increasing population density (see Figure S3 in the Supplement). In contrast, the geo-spatially-averaged
movement vectors for each county reveal global flows in the movement patterns (see Figure 4H, along with Methods for the
calculation of spatial averages).

Figures 4H-I show that average movement patterns are largely collinear to the streamline patterns.

In addition to direction of short-range travel, we used our non-parametric Granger analysis to investigate the comparative
strength of short-range vs. long-range influenza propagation (see Figure 5). In the first case, we considered the neighborhood
map shown in Figure 5 A (for a detailed definition of ”neighbors,” see Methods), and the in the second case we considered
association between major airport-bearing counties (see Figure 5 B). We then plotted the distribution of the maximum pairwise
coefficient of causality, where the maximization is carried out by fixing the source and the target, and varying the delay in weeks
after which we attempt to predict the target stream. It turns out that the expected value of the distribution of the coefficient is
higher for short range connectivity suggesting that the short range communication of influence is stronger on average.

Conclusions associated with Approach 1: The inferred causality streamlines computed from infection time series in all counties
(Figure 4) show that epidemics are mostly triggered near large water bodies, and flow inland and away. They also illustrate
that the US continental southern states act as “sinks” to a large proportion of these streamlines. (“Sinks” are geographic areas
that multiple streamlines converge towards; sinks are especially obvious when we look at the vector representation of causality
direction. The opposite of a “sink” is a “source,” defined as an area at which at least one streamline starts.) This might explain
the increased prevalence in the designated region. Additionally, the analysis shows that human travel is a very important driver
of emergent epidemiological patterns, and that short-range, land-based travel is more important than air-travel. This result is
cross-corroborated by our Poisson regression analysis (described next in Approach 2).

Approaches 2 and 3 are motivated by the “why” questions: (1) Why do epidemics initiate where and when they do? and; (2)
Why do some disease initiations become epidemics while others do not?

Approach 2: Importance of factors from Poisson regression

We used mixed-effect Poisson regression to investigate the identified putative factors’ relative contribution to seasonal influenza
epidemic onset. Our response variable represents county-specific, weekly influenza incidence rates, segregated by gender and
age. The response variable in this analysis is the total number of reported influenza patients treated in that county in a given
week, using the total number of county patients treated in the same week as an offset. We used county-level random effects.
All the fixed-effect variables we considered (see Table IV and the previous section) are county- and week-specific predictors,
and are zero-centered and normalized by the two standard deviations. We ran a Bayesian inference of model parameters using
Markov chain Monte Carlo [30].

We then focused on a subset of weeks associated with the initial rise of influenza waves (indicated by the gray bars in
Figure 3I, and calculated as discussed earlier). The results from our best-fit model are illustrated in Figure 2A. We selected this
particular model out of a total of 126 compared in the Bayesian analysis, a few of which we list in Table V, ranked by their
decreasing goodness-of-fit, measured with the Deviance Information Criterion, DIC (See Table ?? for complete list). From
the values of the inferred coefficients corresponding to the different factors, and taking into account their significance levels
and credible intervals, we conclude that the roles played by weather variables, particularly humidity, appear to be significantly
more complicated compared to what has been suggested in the literature.

In our analysis, we transformed all non-categorical predictor variables in our analysis by zero-centering and scaling by two
standard deviations of the variable. As a result, the magnitude of regression coefficients can be directly used to judge the
relative importance of individual predictors. The major conclusions of our analysis follow.
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The surprisingly unimportant factors: School schedule was not predictive of influenza onset in our analysis (see corresponding
section in Material and Methods).

Vaccination coverage failed to reach predictive significance. The variables corresponding to spatio-temporal indicators of the
cumulative fraction of the inoculated population are included in our best model (see last entry in Table V), but their effect
fails to be significant. However, if we drop those variables from the model, the DIC increases. We suggest that the strong
dependence between antigenic diversity and vaccination coverage (see Fig. 2J-M) is responsible for this effect: Vaccination
coverage is important, but its influence is captured by the antigenic variation.

The most important factors:: The strongest predictor groups (ranked by importance) are the population’s sociodemographic
properties, weather, antigenic drift of the virus, land-based travel, and autocorrelation of influenza waves.

Socio-demographics: The demographic make-up of the population emerges as the most important predictor, with regions with
white, Hispanic, black, non-Hispanic, and Native American ethnic groups acting as probable trigger points. As showed our
county-matching experiments, the level of poverty increases risk.

Weather: As far as weather effects are concerned, epidemics tend to originate in places with high mean maximum specific
humidity, high average temperature, and low average air pressure, namely, counties at the southern, and, to a lesser extent,
eastern and western US coastlines. Additionally, the spread of an epidemic is significantly influenced by a drop in specific
humidity up to four weeks before its onset. However, this effect is weaker than the mean maximum specific humidity effect.
Drop in average temperature that dips one to three weeks prior to the epidemic onset is also significantly important (this
is consistent with earlier experiments [40]), especially when the temperature drop is accompanied by decrease in specific
humidity, average wind speed, and solar flux. However, high levels of solar flux in the week of onset are also important.
This complicated set of weather conditions, a signature of cold air front [53], is validated by our out-of sample predictive
experiments to increase the risk of triggering the seasonal epidemic. Total precipitation also plays a positive role.

Is there a paradox here?: How can colder weather and lower humidity be a predictor of influenza, if influenza epidemic waves
tend to start in the South with warmer climates and higher humidity? Our resolution of this seeming controversy is as follows:
The stress is on the drop in humidity and temperature in those areas with high average annual values of these measurements.
A temporary onset of colder, lower-humidity weather in these warm-climate areas has two effects: (1) The influenza virus can
stay viable in water droplets longer than in hot, sunny weather, and; (2) Humans tend to interact indoors, in more crowded
conditions. Both of these factors are favorable for transmission of the virus to the population at large.

Antigenic variation: Antigenic diversity for HA, NA, M1, and M2 are important predictors. While HA, NA, and M1 inhibit
the trigger, M2 diversity enhances it. This peculiar difference in the direction of influence might be a manifestation of the roles
played by the individual viral proteins in its life-cycle.

The first three proteins are directly involved in the viral binding to host cell surface receptors, while M2 activity is needed
only during HA biosynthesis. Additionally, proteolysis experiments indicated that M2 proton channel activity helped to protect
(H1N1)pdm09 HA from premature conformational changes as it traversed low-pH compartments during transport to the cell
surface [1].

Travel: Land travel intensity one to three weeks before epidemic onset is a strong predictor. Air travel is also predictive, but
its strength is an order of magnitude weaker than that of land travel.

Autocorrelation: The increase in influenza’s infection weekly rate one and two weeks before an epidemic onset (in the epidemic
source county itself) is predictive of epidemic wave origin.

We have used substantially richer datasets than those used by earlier studies [52], [51], [55], which lends strong statistical
support to our conclusions. It also allows us to disentangle and make precise the contributions from different factors, e.g.,
mean county humidity vs. drops in humidity before an infection. While we find the former effect to be clearly stronger (in
accordance to previously reported results [52]), as are the other diverse set of factors we found to be significant.

Validation of Predictive Capability

The robustness our results is established from different viewpoints:

1) In mixed-effect regression (Approach 2), we compare over 120 chosen model variations (see Table V for an abridged list,
and Table ?? for the complete enumeration of considered models); the results appear to be qualitatively stable, i.e., while
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the quantitative performance of the models vary somewhat as measured by DIC for different configurations of regression
equations.

2) A direct validation of predictive performance is carried out by training our model parameters for the first six seasons, and
predicting the epidemic trigger locations for the last three (see Figure 6, and Materials and Methods).
The out-of-sample predictions of influenza incidence are always positively correlated with observed incidence (Plate A).
Perhaps more importantly, we obtain good predictability as measured by the area under the curve (AUC ≈ 80%) for the
receiver operating characteristics (ROC, See Plates B-D). Plates E-G show that our out-of-sample predictions correctly
identify epidemic initiation in the Southern and Southeastern counties of the continental US.

3) In Approach 3 (discussed next), we conducted a corroborating matched effect analysis on the counties, using combinations
of county-specific factors as a “treatment,” not unlike clinical trials in which patients on a drug regimen are matched to
patients receiving a placebo [43].

Approach 3: Matching counties & factor combinations

In the mixed-effect regression analysis (Approach 2), we jointly considered all nine epidemic seasons, leading us to conclusions
that putatively apply to typical influenza dynamics in the US. It is conceivable that the significant parameter set includes multiple,
partially overlapping subsets of sufficient conditions acting during individual seasons.

In Approach 3, we investigate combinations of multiple factors presented as “treatment” via a non-parametric, exact matching
analysis of US counties during the weeks of epidemic onset on a season-by-season basis. For an intuitive understanding of this
method, consider the effect of specific humidity on influenza prevalence. The goal of the county-matching method is to deduce
associations putatively interpreted as causality relations. For example, consider testing the question of whether counties with
higher-than-average mean maximum specific humidity do, indeed, have higher influenza prevalence, in a statistically significant
sense, when compared to counties that do not, provided all other factors are held constant.

First, we collected the list of all counties with a drop in maximum specific humidity during the weeks leading up to an
influenza season in a particular year. This is the “treated set”: the set of counties that may be thought of as subjected to
the positive “treatment” of a drop in specific humidity. We split this set into two, considering counties that also experience
increased influenza prevalence during the epidemic onset, and ones that do not (counties with two different values of the
outcome variable). The number of counties in these two sets define the first row of a 2× 2 contingency table. In the second
row (the “control set”), we focused on counties that do not experience drop in the maximum specific humidity. However, we
only considered counties that have a matching counterpart in the treated set in the following sense: For each county in the
control set, we found at least one in the treated set such that the rest of the significant variables (other than specific humidity)
had similar variation patterns in both counties. Once we defined the control set, we split it in the manner described for the
treated set: We counted the number of control counties that experienced an increased influenza prevalence during epidemic
onset, and those which did not. This defined the second row of the contingency table. Finally, we used Fisher’s exact test
to compute an odds ratio (the odds of realizing these numbers by chance), along with the test-derived significance of the
association between the “treatment” and epidemic wave initiation (p-value). Furthermore, we defined our treatment to consist
of multiple factors simultaneously, e.g. specific humidity and its change in the preceding week, along with average temperature
and degree of urbanity, see Figure 7.

Unlike the mixed-effect regression approach, this matched analysis is non-parametric, and should reveal whether multiple
factors are, indeed, simultaneously necessary. More importantly, it should reveal whether the previous results are somehow
artifacts of our chosen, specific model structures.

The results of Approach 3’s analysis are presented in Figure 7 and Tables II and III. We find that no single variable is able to
consistently yield a statistically significant odds ratio greater than one; multiple factors interact to shape an epidemic trigger
(see Table III for a few examples). With a total of 47 significant variables in our best mixed-effect model, an exhaustive
search for all combinations is not feasible. Instead, we performed a standard evolutionary search, looking for combinations
that yielded a significant odds ratio for individual seasons. Additionally, we considered all seasons together (by simply adding
the contingency tables, element-wise) in order to increase the test’s statistical power.

We isolated ten variables (as shown in Figure 7, Plate B) in this manner which included maximum specific humidity and
average temperature along with their variations, the degree of urbanity, antigenic variation, and vaccination coverage.

The factors that appeared most often in our analysis are illustrated in Plate A: It appears that maximum specific humidity and
average temperature, along with their variations, and the degree of urbanity have the most frequent contribution, followed by
antigenic variation and vaccination coverage.
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We do see some new factors here that fail to be of significance in the regression analysis (Approach 2), e.g., degree of urbanity
and vaccination coverage. While vaccination coverage is included as a factor in our best performing model in Approach 2,
it failed to achieve significance, perhaps due to its strong dependence on antigenic variation (see Figures 2J-M). Degree of
urbanity is indeed significant for some of the regression models we considered (see Supplementary Information), but failed to
be so for the model with the least DIC.

Thus, Approach 3, while not a reflection of the conclusions from Approach 2, corroborates and strengthens its key claims.

The exact set of factors vary somewhat over the seasons; nevertheless, they together yield significant results when all seasons are
considered together. Airport proximity, when considered as the sole driving factor (the sole treatment), fails to yield significant
odds ratio. It also fails to to achieve significance when acting in conjunction with the remaining nine factors. The second,
crucial conclusion corroborates our conclusion from both the mixed-effect regression and the geographic streamline analyses:
The sets of counties treated are near coasts on the southern region of the continental US (see Plates A - I in Figure 7).

Discussion

The following aspects make our study of influenza triggers new in the influenza literature: (1) Instead of simulating the
plausibility of one particular epidemic trigger model with a dynamic disease transmission model, we used formal model
selection tools to compare goodness of fit of hundreds of plausible models; (2) We explicitly attempted to systematically
cross-compare the importance of numerous individual factors typically hypothesized to contribute to epidemic onset; (3) To
accomplish this, we collected an unprecedented volume of temporal and spatial data on disease dynamics and the dynamics
of putative predisposing factors; (4) We used several orthogonal computational causality-inference techniques (one of which
was developed specifically for this study) to probe associations between disease onset and putative epidemic triggers; (5) We
tested our best models for their predictive potential and demonstrated that they are, indeed, suitable for forecasting disease
waves, and; (6) For the first time, numerous candidate factors combined in a single, integrative study.

Convergent conclusions, culled from such radically different techniques, strengthen our claims, and make it statistically unlikely
that we are observing analysis artifacts. First, the Granger causality analysis results (Approach 1) provide insights into the
details of influenza’s epidemiological dynamics. Figure 4G traces out the paths most likely followed by the infection, on
average, across the continental US. We note that ∼ 75% of the streamlines sink in counties belonging to the southern states,
which matches up well with the average prevalence over nine years (see Figure 4I). What drives this particular causality field’s
geometry? While we cannot definitively answer this question, a comparison of the global patterns emerges from the local
mobility data culled from the aforementioned Twitter database and offers a tentative explanation (see Figure 4H). Secondly,
contrary to human travel patterns’ reported influence on seasonal epidemics, [59] (but consistent with [26]), we find that short-
distance travel contributes more significantly to disease spread (see Figure 5). In particular, we find that long-range air travel
is important as an epidemic trigger, but once infection waves are triggered, air travel patterns (or proximity to major airports)
become less important. Short-range mobility, on the other hand, is apparently important for sustaining infection transmission
over each season. Thus, we find short-range travel to be more important for defining the emergent spatio-temporal geometry
of infection waves, while proximity to airports is more important for actually triggering an influenza season; the latter loses
positive influence once an infection is under way. This conclusion is justified as follows: 1) Employing regression calculations
using all weeks, as opposed to limiting ourselves to the few weeks before a season’s onset, results for airport proximity having
a statistically significant negative influence (see Supplement). 2) Results from our Granger-causal inference indicate that, on
average, the local putatively causal connections are far stronger compared to the putatively causal connections between counties
within which the major airports are located. (see Figure 5 C and F). Additionally, from our best mixed-effect regression model
(Figure 2A), we find that land connectivity effects are significantly stronger than air connectivity effects. The predictive value
of Twitter connectivity, which intuitively captures both local and long-distance travel, lies in-between land and air connectivity
coefficients. Note that Twitter connectivity is represented as a directed graph, where for each pair of counties, i and j, the (i, j)
edge weight represents the conditional probability of ending at county j, given that a traveler/Twitter user started her journey
in county i. Transition probabilities from i to j sum to 1 over all j. Therefore, intuitively, the Twitter connectivity graph should
have the features of both a land-connectivity and an air travel graph; which indeed appears to be close to reality. 3) Finally,
while airport diffusion is a significant factor in our best Poisson model (using data from the initiation period), the causal
streamlines (constructed with the complete, all-year incidence data) do not seem to originate from airport-bearing counties.

The role of short-distance travel is particularly crucial in explaining influenza’s time-averaged geo-spatial prevalence. While
the mixed-effect regression analysis explains seasonal initiation in the vicinity of the continental US southern shores, it might
not, by itself, adequately explain its average prevalence patterns across the country.
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Also not explained solely by our regression models is the occurrence of relatively high infection prevalence in the central
parts of the country. These differences cannot be attributed to long-distance air travel, as discussed before. However, the routes
taken by the causality streamlines (as computed by the non-parametric Granger analysis), interpreted as paths followed by an
infection on average, suggest an explanation: The close match between the Granger- causal flow and the short-range mobility
patterns (derived from Twitter analysis) strongly suggest that average disease prevalence is modulated by short-range mobility.

A summary of the complex relationship between the driving factors that contribute to the trigger, and, subsequently, to the
development of a seasonal epidemic can be clarified with a forest fire methaphor.

The maturation of a forest fire requires the collusion of multiple factors–namely the presence of flammable media, the initiating
spark, and a wind current to help to spread the fire. Our conceived mapping of this analogy to influenza infection is as follows:

1) Flammable Media: The Southern US appears to have an unusually high level of social connectivity; it is at least one
order of magnitude higher than that in the north of the country (see GSS survey results [54] and Table I). The number of
close friends, close friends who are neighbors, and communities of people who all, or mostly, know each other is much
higher in the South than in the country at large. Our conjecture is that a manifestation of this high-connectivity is the
highest percentage of people infected with influenza (20%) at the peak of infection (as opposed to 4% in other parts of
the country).

2) Initiation Spark: An initial spark for the infection wave is generated by a combination of weather and demographic
factors. Specifically, warm, humid places are conducive to influenza wave initiation - particularly in weeks where specific
humidity drops. Nearness to airports is also important, as well as demographic and economic makeup, and also the degree
of urbanization. Note that this first static condition (warm humid places) is highly correlated with areas in the South
with greater social connectivity. It is possible that static meteorological variables (warm mean temperature and high mean
humidity) serve as proxies for high social connectivity or other correlated socioeconomic factors.

3) Wind: The “wind” in this analogy is the collective movement of a large number of people, integrated over time, revealing
persistent “currents.” These currents reproducibly point from coastlines and move inwards towards the center of the
continent, making them perfect vehicles to transmit the infection inland from the shores.

Each of our three types of computational approaches has their strengths and weaknesses: (1) The Poisson mixed-effect regression
allows for the direct comparison of the predictive strength of numerous predictor variables and accounts for spatial and temporal
autocorrelation, but relies on strong modeling assumptions; (2) Though the non-parametric Granger analysis is not limited by
restrictive modeling assumptions, in our implementation, it focuses only on trends of infection propagation between counties,
and; (3) The county-matching analysis is also model-free, but this freedom comes at the expense of lesser statistical power.

We conclude by highlighting the structure of overlapping conclusions delivered by our three approaches, (see Figure 1 Plate
A). Approach 1: Granger-causality analysis suggests that an epidemic tends to begin in the South, near water bodies, that
short-range, land-based travel is more influential compared to air-travel for infection propagation, and provides a map of
mean infection flow across the continental US. Approach 2: Poisson regression identifies significant predictive factors, ranks
these factors by importance, suggests that Southern shores are where the epidemic begins, and corroborates Approach 1’s
result on short-range vs. long-range travel. Approach 3 (county-matching) further narrows down epidemic onset source to the
Southeastern shores of continental US, and identifies a smaller validated subset of predictive factors.

Acknowledgements

We thank Erin Gannon and Margarita Rzhetsky for numerous comments on earlier versions of the manuscript. This work
was supported by NIH grants 1P50MH094267, U01HL108634-01, R01HL122712-02, R01GM100467, and U01GM110748, in
addition to DARPA contract W911NF1410333, and a gift from Liz and Kent Dauten.

References

[1] E. Alvarado-Facundo, Y. Gao, R. M. Ribas-Aparicio, A. Jimenez-Alberto, C. D. Weiss, andW. Wang, Influenza virus M2 protein ion channel activity helps
to maintain pandemic 2009 H1N1 virus hemagglutinin fusion competence during transport to the cell surface, J. Virol., 89 (2015), pp. 1975–1985.

[2] V. Andreasen, Dynamics of annual influenza A epidemics with immuno-selection, J Math Biol, 46 (2003), pp. 504–536.
[3] O. M. Araz, P. Damien, D. A. Paltiel, S. Burke, B. Van De Geijn, A. Galvani, and L. A. Meyers, Simulating school closure policies for cost effective

pandemic decision making, BMC public health, 12 (2012), p. 449.
[4] E. G. Baek andW. A. Brock, A general test for nonlinear granger causality: Bivariate model, Jan. 1992.

Submitted to eLIFE

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/168476doi: bioRxiv preprint first posted online Jul. 27, 2017; 

http://dx.doi.org/10.1101/168476
http://creativecommons.org/licenses/by/4.0/


23

[5] T. Bedford, S. Riley, I. G. Barr, S. Broor, M. Chadha, N. J. Cox, R. S. Daniels, C. P. Gunasekaran, A. C. Hurt, A. Kelso, A. Klimov, N. S. Lewis, X. Li,
J. W. McCauley, T. Odagiri, V. Potdar, A. Rambaut, Y. Shu, E. Skepner, D. J. Smith, M. A. Suchard, M. Tashiro, D. Wang, X. Xu, P. Lemey, and C. A.
Russell, Global circulation patterns of seasonal influenza viruses vary with antigenic drift, Nature, 523 (2015), pp. 217–220.

[6] M. F. Boni, Vaccination and antigenic drift in influenza, Vaccine, 26 Suppl 3 (2008), pp. 8–14.
[7] M. F. Boni, J. R. Gog, V. Andreasen, and F. B. Christiansen, Influenza drift and epidemic size: the race between generating and escaping immunity, Theor

Popul Biol, 65 (2004), pp. 179–191.
[8] M. F. Boni, J. R. Gog, V. Andreasen, andM. W. Feldman, Epidemic dynamics and antigenic evolution in a single season of influenza A, Proc. Biol. Sci.,

273 (2006), pp. 1307–1316.
[9] CDC, The United States Center for Disease Control and Prevention, http://www.cdc.gov/flu/weekly/overview.htm, 2016.

[10] I. Chattopadhyay, Causality networks, arXiv CoRR, http://arxiv.org/abs/1406.6651 (2014).
[11] P. Chlanda, O. Schraidt, S. Kummer, J. Riches, H. Oberwinkler, S. Prinz, H. G. Krausslich, and J. A. Briggs, Structural Analysis of the Roles of Influenza

A Virus Membrane-Associated Proteins in Assembly and Morphology, J. Virol., 89 (2015), pp. 8957–8966.
[12] B. A. Cosgrove, D. Lohmann, K. E. Mitchell, P. R. Houser, E. F. Wood, J. C. Schaake, A. Robock, C. Marshall, J. Sheffield, Q. Duan, L. Luo, W. R.

Higgins, R. T. Pinker, D. J. Tarpley, and J. Meng, Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS)
project, Journal of Geophysical Research, 108 (2003), pp. 8842+.

[13] V. J. Davey and R. J. Glass, Rescinding community mitigation strategies in an influenza pandemic-volume 14, number 3march 2008-emerging infectious
disease journal-cdc, (2008).

[14] V. J. Davey, R. J. Glass, H. J. Min, W. E. Beyeler, and L. M. Glass, Effective, robust design of community mitigation for pandemic influenza: a systematic
examination of proposed us guidance, PLoS One, 3 (2008), p. e2606.

[15] E. De Clercq, Antiviral agents active against influenza a viruses, Nat Rev Drug Discov, 5 (2006), pp. 1015–25.
[16] M. L. C. Degli Atti, S. Merler, C. Rizzo, M. Ajelli, M. Massari, P. Manfredi, C. Furlanello, G. S. Tomba, and M. Iannelli, Mitigation measures for

pandemic influenza in italy: an individual based model considering different scenarios, PloS one, 3 (2008), p. e1790.
[17] L. R. Elveback, J. P. Fox, E. Ackerman, A. Langworthy, M. Boyd, and L. Gatewood, An influmza simulation model for immunization studies, American

journal of epidemiology, 103 (1976), pp. 152–165.
[18] N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, and D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442

(2006), pp. 448–452.
[19] R. A. Fisher, The design of experiments, Oliver and Boyd, Edinburgh, London,, 1935.
[20] N. Friedman, Y. Drori, R. Pando, A. Glatman-Freedman, H. Sefty, R. Bassal, Y. Stein, T. Shohat, E. Mendelson, M. Hindiyeh, and M. Mandelboim,

A(H1N1)pdm09 influenza infection: vaccine inefficiency, 8 (2017), pp. 32856–32863.
[21] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, Second Edition, Chapman and Hall / CRC, Boca Raton, FL, 2003.
[22] S. Ghosh and J. Heffernan, Influenza pandemic waves under various mitigation strategies with 2009 h1n1 as a case study, PloS one, 5 (2010), p. e14307.
[23] K. Glass and B. Barnes, How much would closing schools reduce transmission during an influenza pandemic?, Epidemiology, 18 (2007), pp. 623–628.
[24] R. J. Glass, L. M. Glass, W. E. Beyeler, H. J. Min, et al., Targeted social distancing design for pandemic influenza, Emerg Infect Dis, 12 (2006),

pp. 1671–1681.
[25] Global Administrative Areas, Gadm database, June 2014.
[26] J. R. Gog, S. Ballesteros, C. Viboud, L. Simonsen, O. N. Bjornstad, J. Shaman, D. L. Chao, F. Khan, and B. T. Grenfell, Spatial transmission of 2009

pandemic influenza in the us, PLoS Comput Biol, 10 (2014), p. e1003635.
[27] C. W. J. Granger, Testing For Causality, Journal of Economic Dynamics and Control, 2 (1980), pp. 329–352.
[28] , Testing for causality: A personal viewpoint, Journal of Economic Dynamics and Control, 2 (1980), pp. 329 – 352.
[29] M. J. Haber, D. K. Shay, X. M. Davis, R. Patel, X. Jin, E. Weintraub, E. Orenstein, andW. W. Thompson, Effectiveness of interventions to reduce contact

rates during a simulated influenza pandemic, Emerging infectious diseases, 13 (2007), p. 581.
[30] J. Hadfield, Mcmc methods for multi-response generalized linear mixed models: The mcmcglmm r package, Journal of Statistical Software, 33 (2010),

pp. 1–22.
[31] D. Hedeker and R. Gibbons, Longitudinal data analysis, Wiley series in probability and statistics, Wiley-Interscience, Hoboken, N.J., 2006.
[32] C. Hiemstra and J. D. Jones, Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation, The Journal of Finance, 49 (1994),

pp. 1639–1664.
[33] HRSA, Health Reasources and Services Administration, http://datawarehouse.hrsa.gov/tools/dataportal.aspx, 2016.
[34] D. Hume, An Enquiry Concerning Human Understanding, Digireads.com, 2006.
[35] I. Kant, Critique of Pure Reason, The Cambridge Edition of the Works of Immanuel Kant, Cambridge University Press, New York, NY, 1998. Translated

by Paul Guyer and Allen W. Wood.
[36] J. K. Kelso, G. J. Milne, and H. Kelly, Simulation suggests that rapid activation of social distancing can arrest epidemic development due to a novel

strain of influenza, BMC public health, 9 (2009), p. 117.
[37] R. A. Lamb, S. L. Zebedee, and C. D. Richardson, Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface, 40

(1985), pp. 627–633.
[38] B. Y. Lee, S. T. Brown, P. Cooley, M. A. Potter, W. D. Wheaton, R. E. Voorhees, S. Stebbins, J. J. Grefenstette, S. M. Zimmer, R. Zimmerman, et al.,

Simulating school closure strategies to mitigate an influenza epidemic, Journal of public health management and practice: JPHMP, 16 (2010), p. 252.
[39] C. W. Lee, D. A. Senne, and D. L. Suarez, Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus, J. Virol., 78 (2004),

pp. 8372–8381.
[40] A. C. Lowen, J. Steel, S. Mubareka, and P. Palese, High temperature (30 degrees c) blocks aerosol but not contact transmission of influenza virus, J

Virol, 82 (2008), pp. 5650–2.
[41] K. E. Mitchell, D. Lohmann, P. R. Houser, E. F. Wood, J. C. Schaake, A. Robock, B. A. Cosgrove, J. Sheffield, Q. Duan, L. Luo, R. W. Higgins, R. T. Pinker,

J. D. Tarpley, D. P. Lettenmaier, C. H. Marshall, J. K. Entin, M. Pan, W. Shi, V. Koren, J. Meng, B. H. Ramsay, and A. A. Bailey, The multi-institution
North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological
modeling system, J. Geophys. Res., 109 (2004), pp. D07S90+.

[42] S. M. Mniszewski, S. Y. Del Valle, P. D. Stroud, J. M. Riese, and S. J. Sydoriak, Pandemic simulation of antivirals+ school closures: buying time until
strain-specific vaccine is available, Computational and Mathematical Organization Theory, 14 (2008), pp. 209–221.

[43] S. L. Morgan and C. Winship, Counterfactuals and causal inference : methods and principles for social research, Analytical methods for social research,
Cambridge University Press, New York, NY, second ed., 2015.

[44] G. Neumann, T. Noda, and Y. Kawaoka, Emergence and pandemic potential of swine-origin h1n1 influenza virus, Nature, 459 (2009), pp. 931–9.
[45] R. Nuzzo, Scientific method: statistical errors, Nature, 506 (2014), pp. 150–2.
[46] Oregon State University, Prism climate group, June 2014.
[47] J. Pearl, Causal inference in statistics: An overview, Statist. Surv., 3 (2009), pp. 96–146.
[48] , Causality: Models, Reasoning and Inference, Cambridge University Press, New York, NY, USA, 2nd ed., 2009.
[49] A. Perrin, Social media usage: 2005-2015, 2015.
[50] C. Rizzo, A. Lunelli, A. Pugliese, A. Bella, P. Manfredi, G. S. Tomba, M. Iannelli, andM. C. DegliAtti, Scenarios of diffusion and control of an influenza

pandemic in italy, Epidemiology and infection, 136 (2008), pp. 1650–1657.
[51] J. Shaman andM. Kohn, Absolute humidity modulates influenza survival, transmission, and seasonality., Proceedings of the National Academy of Sciences

(USA), 106 (2009), pp. 3243–3248.

Submitted to eLIFE

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/168476doi: bioRxiv preprint first posted online Jul. 27, 2017; 

http://dx.doi.org/10.1101/168476
http://creativecommons.org/licenses/by/4.0/


24

TABLE IV
Variables in mixed-effect Poisson regression analysis (Approach 2)

(a) Definition of variables
Variable name physical effect
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Pacific % of Pacific Islanders
Insured % of county population insured

Poor % of county population under poverty line
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TABLE V: Different Models Considered, and DIC Ranking

Equation Used in Poisson Regression DIC

flu ∼ LOGN + 1 + max HUS mean + d max HUS 0 + d max HUS min 1 + d max HUS min 2 + d max HUS min 3 +

t avg mean + d t avg 0 + d t avg min 1 + d t avg min 2 + d t avg min 3 + max HUS mean *

t avg mean + d max HUS 0 * d t avg 0 + d max HUS min 1 * d t avg min 1 + d max HUS min 2 *

d t avg min 2 + d max HUS min 3 * d t avg min 3 + RSDS mean + d RSDS 0 + d RSDS min 1 +

d RSDS min 2 + d RSDS min 3 + AVG PRESS mean + d AVG PRESS 0 + d AVG PRESS min 1 +

d AVG PRESS min 2 + d AVG PRESS min 3 + Income + airport diffusion + Am Ind + Asian + White Hisp +

W non Hisp + Black Hisp + B non Hisp + Pacific + Insured + Poor + Urban + v1 + v2 + land1 + land2 + land3

+ land4 + tweet1 + tweet2 + tweet3 + tweet4 + air1 + air2 + air3 + air4 + HA + M1 + M2 + NA.

185942

flu ∼ LOGN + 1 + max HUS mean + d max HUS 0 + d max HUS min 1 + d max HUS min 2 + d max HUS min 3 +

d max HUS min 4 + t avg mean + d t avg 0 + d t avg min 1 + d t avg min 2 + d t avg min 3 +

d t avg min 4 + RSDS mean + d RSDS 0 + d RSDS min 1 + d RSDS min 2 + d RSDS min 3 + d RSDS min 4 +

AVG PRESS mean + d AVG PRESS 0 + d AVG PRESS min 1 + d AVG PRESS min 2 + d AVG PRESS min 3 +

d AVG PRESS min 4 + tot prec mean + d tot prec 0 + d tot prec min 1 + d tot prec min 2 +

d tot prec min 3 + d tot prec min 4 + Wind avg mean + d Wind avg 0 + d Wind avg min 1 +

d Wind avg min 2 + d Wind avg min 3 + d Wind avg min 4 + Income + airport diffusion + Am Ind + Asian

+ White Hisp + W non Hisp + Black Hisp + B non Hisp + Pacific + Insured + Poor + Urban + v1 + v2 + land1

+ land2 + land3 + land4 + tweet1 + tweet2 + tweet3 + tweet4 + air1 + air2 + air3 + air4 + HA + M1 + M2 + NA.

+ HA * NA.

185940.6

flu ∼ LOGN + 1 + max HUS mean + d max HUS 0 + d max HUS min 1 + d max HUS min 2 + d max HUS min 3 +

t avg mean + d t avg 0 + d t avg min 1 + d t avg min 2 + d t avg min 3 + max HUS mean *

t avg mean + d max HUS 0 * d t avg 0 + d max HUS min 1 * d t avg min 1 + d max HUS min 2 *

d t avg min 2 + d max HUS min 3 * d t avg min 3 + RSDS mean + d RSDS 0 + d RSDS min 1 +

d RSDS min 2 + d RSDS min 3 + AVG PRESS mean + d AVG PRESS 0 + d AVG PRESS min 1 +

d AVG PRESS min 2 + d AVG PRESS min 3 + Income + airport diffusion + Am Ind + Asian + White Hisp +

W non Hisp + Black Hisp + B non Hisp + Pacific + Insured + Poor + Urban + v1 + v2 + land1 + land2 + land3

+ land4 + tweet1 + tweet2 + tweet3 + tweet4 + air1 + air2 + air3 + air4 + HA + M1 + M2 + NA. +

Cum vac per N 0

185938.1

flu ∼ LOGN + 1 + max HUS mean + d max HUS 0 + d max HUS min 1 + d max HUS min 2 + d max HUS min 3 +

d max HUS min 4 + t avg mean + d t avg 0 + d t avg min 1 + d t avg min 2 + d t avg min 3 +

d t avg min 4 + RSDS mean + d RSDS 0 + d RSDS min 1 + d RSDS min 2 + d RSDS min 3 + d RSDS min 4 +

AVG PRESS mean + d AVG PRESS 0 + d AVG PRESS min 1 + d AVG PRESS min 2 + d AVG PRESS min 3 +

d AVG PRESS min 4 + tot prec mean + d tot prec 0 + d tot prec min 1 + d tot prec min 2 +

d tot prec min 3 + d tot prec min 4 + Wind avg mean + d Wind avg 0 + d Wind avg min 1 +

d Wind avg min 2 + d Wind avg min 3 + d Wind avg min 4 + Income + airport diffusion + Am Ind + Asian

+ White Hisp + W non Hisp + Black Hisp + B non Hisp + Pacific + Insured + Poor + Urban + v1 + v2 + land1

+ land2 + land3 + land4 + tweet1 + tweet2 + tweet3 + tweet4 + air1 + air2 + air3 + air4 + HA + M1 + M2 + NA.

+ Cum vac per N diff 1 + Cum vac per N diff 2 + Cum vac per N diff 3 + Cum vac per N diff 4

185935.9

flu ∼ LOGN + 1 + max HUS mean + d max HUS 0 + d max HUS min 1 + d max HUS min 2 + d max HUS min 3 +

d max HUS min 4 + t avg mean + d t avg 0 + d t avg min 1 + d t avg min 2 + d t avg min 3 +

d t avg min 4 + RSDS mean + d RSDS 0 + d RSDS min 1 + d RSDS min 2 + d RSDS min 3 + d RSDS min 4 +

AVG PRESS mean + d AVG PRESS 0 + d AVG PRESS min 1 + d AVG PRESS min 2 + d AVG PRESS min 3 +

d AVG PRESS min 4 + tot prec mean + d tot prec 0 + d tot prec min 1 + d tot prec min 2 +

d tot prec min 3 + d tot prec min 4 + Wind avg mean + d Wind avg 0 + d Wind avg min 1 +

d Wind avg min 2 + d Wind avg min 3 + d Wind avg min 4 + Income + airport diffusion + Am Ind + Asian

+ White Hisp + W non Hisp + Black Hisp + B non Hisp + Pacific + Insured + Poor + Urban + v1 + v2 + land1

+ land2 + land3 + land4 + tweet1 + tweet2 + tweet3 + tweet4 + air1 + air2 + air3 + air4 + HA + M1 + M2 + NA.

185933.7

flu ∼ LOGN + 1 + max HUS mean + d max HUS 0 + d max HUS min 1 + d max HUS min 2 + d max HUS min 3 +

d max HUS min 4 + t avg mean + d t avg 0 + d t avg min 1 + d t avg min 2 + d t avg min 3 +

d t avg min 4 + RSDS mean + d RSDS 0 + d RSDS min 1 + d RSDS min 2 + d RSDS min 3 + d RSDS min 4 +

AVG PRESS mean + d AVG PRESS 0 + d AVG PRESS min 1 + d AVG PRESS min 2 + d AVG PRESS min 3 +

d AVG PRESS min 4 + tot prec mean + d tot prec 0 + d tot prec min 1 + d tot prec min 2 +

d tot prec min 3 + d tot prec min 4 + Wind avg mean + d Wind avg 0 + d Wind avg min 1 +

d Wind avg min 2 + d Wind avg min 3 + d Wind avg min 4 + Income + airport diffusion + Am Ind + Asian

+ White Hisp + W non Hisp + Black Hisp + B non Hisp + Pacific + Insured + Poor + Urban + v1 + v2 + land1

+ land2 + land3 + land4 + tweet1 + tweet2 + tweet3 + tweet4 + air1 + air2 + air3 + air4 + HA + M1 + M2 + NA.

+ Cum vac per N 0

185932.3

flu ∼ LOGN + 1 + max HUS mean + d max HUS 0 + d max HUS min 1 + d max HUS min 2 + d max HUS min 3 +

d max HUS min 4 + t avg mean + d t avg 0 + d t avg min 1 + d t avg min 2 + d t avg min 3 +

d t avg min 4 + RSDS mean + d RSDS 0 + d RSDS min 1 + d RSDS min 2 + d RSDS min 3 + d RSDS min 4 +

AVG PRESS mean + d AVG PRESS 0 + d AVG PRESS min 1 + d AVG PRESS min 2 + d AVG PRESS min 3 +

d AVG PRESS min 4 + tot prec mean + d tot prec 0 + d tot prec min 1 + d tot prec min 2 +

d tot prec min 3 + d tot prec min 4 + Wind avg mean + d Wind avg 0 + d Wind avg min 1 +

d Wind avg min 2 + d Wind avg min 3 + d Wind avg min 4 + Income + airport diffusion + Am Ind + Asian

+ White Hisp + W non Hisp + Black Hisp + B non Hisp + Pacific + Insured + Poor + Urban + v1 + v2 + land1

+ land2 + land3 + land4 + tweet1 + tweet2 + tweet3 + tweet4 + air1 + air2 + air3 + air4 + HA + M1 + M2 + NA.

+ Cum vac per N 0 + Cum vac per N 1 + Cum vac per N 2 + Cum vac per N 3

185926.6
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