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Animated Edge Textures in Node-Link Diagrams:
a Design Space and Initial Evaluation

Hugo Romat>! Caroline Appert!
'Univ. Paris-Sud, CNRS, INRIA,
Université Paris-Saclay, France

ABSTRACT

Network edge data attributes are usually encoded using color,
opacity, stroke thickness and stroke pattern, or some combi-
nation thereof. In addition to these static variables, it is also
possible to animate dynamic particles flowing along the edges.
This opens a larger design space of animated edge textures,
featuring additional visual encodings that have potential not
only in terms of visual mapping capacity but also playfulness
and aesthetics. Such animated edge textures have been used
in several commercial and design-oriented visualizations, but
to our knowledge almost always in a relatively ad hoc manner.
We introduce a design space and Web-based framework for
generating animated edge textures, and report on an initial
evaluation of particle properties — particle speed, pattern and
frequency — in terms of visual perception.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
Graphical user interfaces (GUI)

Author Keywords
Node-link diagrams; Animation; Particles; Networks; Trees.

INTRODUCTION

The amount of literature on graph visualization is consider-
able [6, 26, 59]. Beyond research on layout algorithms for
node-link representations, the community has explored several
aspects pertaining to the visual encoding of data attributes on
nodes [63] and links [34, 31]. Focusing on links only, data
attributes are usually encoded using the following visual vari-
ables: color, opacity, stroke thickness and stroke pattern. In
the case of dynamic visualizations, this relatively limited set
of variables can be augmented using animations [12].

Animating directed edges in node-link diagrams is typically
achieved by having sequences of small glyphs, which we will
call particles, dynamically move along the links [2]. The vi-
sual effect is that of an animated texture applied to links. In
some cases, there is a one-to-one correspondence between
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particles and entities actually traversing the network, as for
instance in the case of traffic visualizations where each par-
ticle represents one vehicle [11, 50]. In other cases, there is
no such correspondence: the particles are elements of a cyclic
animated texture, whose visual properties (pattern, speed, fre-
quency — see Figure 1) encode more abstract data attributes.
Examples of the latter include visualizations of telecommu-
nication networks (attributes such as, e.g., failure rate, lag,
bandwidth) or import/export of goods between countries [13].

While several network visualizations feature animated edge
textures on directed links (see, e.g., [10, 13, 14, 32, 36, 46)),
they do so in a relatively ad hoc manner, often lacking a
design rationale. Yet, the amount of work leveraging animated
edge textures, beyond encoding edge data attributes, hints
at their potential. They can help visually relate groups of
consecutive edges [8] or guide visual search by highlighting
specific edges [60]. They can also serve as a means to illustrate
dynamic propagation [1], or contagion [58], through networks.
These diverse yet sporadic uses of animated edge textures for
encoding information in graphs and networks call for a more
systematic exploration of their design space.

This paper seeks to provide a deeper understanding of the
perceptual quality of animated edge textures, as well as to ex-
plore more systematically their design space. After providing
a motivation for our work, we introduce a model and asso-
ciated Web-based framework for generating animated edge
textures, and illustrate its capabilities using different examples
of visual mappings. We then report on an initial evaluation of
particle properties in terms of visual perception. The results
suggest that the three motion variables defining animated edge
textures - speed, frequency and pattern (Figure 1) can be used

Particle Pattern Pattern Frequency Particle Speed

I -6 -5 -

Figure 1. The three variables defining the dynamic behavior of parti-
cles in animated edge textures: the particle pattern, or rhythm, is the
sequence of particles that gets repeated cyclically; the pattern frequency
corresponds to the firing frequency of the particle sequence; the particle
speed corresponds to the velocity of particles on screen.
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Figure 2. Mapping three data attributes on three static visual variables.

individually for encoding data attributes. We conclude with a
discussion of the limitations of this first study, and an outline
of the next steps to pursue this line of research.

BACKGROUND AND MOTIVATION

The number of visual variables available for edge attribute
encoding in node-link diagrams is limited, and while there
are opportunities for combining those variables, they are not
completely orthogonal. For instance, color and opacity will, to
some extent, mutually interfere. Stroke width, color and opac-
ity will also all influence the saliency of an edge. The practical
range of values for these variables is also fairly limited. For
instance, wide strokes are likely to cause visual occlusion of
elements in the background, or of other edges in dense graphs.
Beyond the question of efficiency of the encoding in terms of
visual perception, issues related to the aesthetics of the visual-
ization can quickly arise, that go beyond pure considerations
of graph layout [62].

Taking the example of a statistical dataset about domestic
flights in the USA,! the number of featured edge attributes
far exceeds the number of visual variables. As illustrated in
Figure 2, the number of airlines operating on a route could be
encoded using the stroke width; the daily number of flights
could be encoded using a stroke pattern made of dashes whose
spacing is a function of that value; and the daily number
of passengers on a given route could be encoded using color
brilliance. But encoding more attributes would be challenging.

By gaining a better understanding of what other visual vari-
ables can be used to encode data in node-link diagrams, our
goal is not to find better visual variables, but rather to identify
alternative encodings, widening the design space of visual
mappings in node-link diagrams, in the same spirit as Henry
Riche et al. [31], who explored the design space of link cur-
vature to represent attributes such as edge directionality. In
this work we focus on motion, which has been identified by
Bartram, Ware and colleagues as “hold[-ing] promise [...] as
a perceptually efficient display dimension" [4].

Coming back to the above example about air traffic statistics,
the introduction of motion as a means to encode data widens
the space of possibilities in two ways. It can either be seen as

1Obtained from https://www.transtats.bts.gov.

a way to encode additional data attributes: for instance, the
average speed on a route can be encoded using particle speed.
Or it can be seen as a way to encode some data attributes using
a different visual variable deemed better suited: for instance,
mapping the daily number of passengers to particle speed can
give a sense of route "throughput" that color brilliance might
not convey as effectively. Motion-based encodings can also
provide alternatives when visual variables such as color are
not available, for example when the underlying layers in the
visualization already make use of color to encode other data,
or on electronic ink (monochrome) displays.

Motion has potential as a means to encode edge data attributes
in graphs, and more specifically in directed graphs, as motion
along an edge explicitly suggests a specific orientation of that
edge. But possible usages of motion in network visualization
need to be better understood. Our goal is to define a design
space of motion-based data encoding in node-link diagrams,
and to enable the in-depth empirical assessment of their char-
acteristics in terms of perception. To this end, we introduce
a framework called Animated Edge Textures. Before intro-
ducing this framework, we discuss findings from the literature
that are relevant to our research.

Motion in Human-Computer Interaction

While animations, including motion, should be used with cau-
tion [57], there are situations where they have proven useful.
Studies about the potential of motion in HCI date back to the
early 1990s with seminal work such as Ware et al.’s investiga-
tion of motion as a means to attract user attention [61]. Motion
is also useful in scientific visualization [35], as the processes
visualized often involve the dimension of time [22]. Very early,
Bartram started investigating motion as an “abstractly codable
dimension in its own right" [3], a direction explored in other
projects [4, 5, 39, 40], and in which we situate our own work.

In information visualization, animations might not be effective
as an exploration aid, but can be powerful tools for presenta-
tion [22]. Motion can be useful for filtering and brushing [4,
19, 60]. It can help emphasize spatial relationships, explain
functionality, illustrate causality [45, 5]. It is also used exten-
sively in flow visualizations [28, 35, 44] and representations
of other scientific data such as cosmological particles [27].

Motion has been observed to evoke affect [21] and has an
impact on the perceived aesthetic qualities of a visualization.
This likely plays a role in the use of particle-based animations
in some design-oriented visualizations [13, 14, 32, 46, 49].

Motion Perception

The body of literature on motion perception in experimen-
tal psychology is very large [52]. While it is not our intent
to report them exhaustively in this section, we highlight key
findings on motion perception that makes this encoding com-
pelling to explore for information visualization researchers.
We also motivate the need for perception studies closer to
visualization applications.

Early research demonstrated the ability of simple motions to
communicate complex or nuanced behaviors [30]. A crucial
insight for information visualization is that motion belongs
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to the limited set of visual encodings that is perceived preat-
tentively [56], i.e., detected before focused attention. Motion
can make moving shapes naturally “pop out” in visualizations.
Orban et al. [48] observed that different motion velocities
are easier to discriminate in the central visual field, the just-
noticeable difference in velocity increasing as eccentricity
increases, particularly so for low reference velocities.

The perception of motion in conjunction with other encodings
such as color has been studied in prior work showing, for
example, that a conjunctive search for motion and color is se-
rial rather than parallel [47], whereas a conjunctive search for
motion and form is parallel [43]. Questions related to conjunc-
tion in guided search have been further studied by Driver and
colleagues. They observed that it can be parallel under some
circumstances, but that out-of-phase motion across elements
had a significant negative impact on search performance [17].
They also observed that the search for a target with a different
orientation was faster among moving distractors than station-
ary ones, provided the target’s orientation is not too close to
that of non targets [16].

Beyond the Gestalt law of common fate, which states that
elements tend to be perceived as a group if they move together,
another interesting observation is that moving objects can cap-
ture attention [23]. Scimeca and Franconeri [51] highlight the
main findings related to tracking multiple objects (or groups of
objects) in motion. Multiple studies have investigated our abil-
ity to detect changes in direction [53], speed [42, 37] or both
[25, 33]. The role that the color and luminance of elements
play in the perception of motion direction and velocity has also
been studied extensively, as summarized by Weiskopf [64].

The above psychophysiological-level findings can guide and
inform the research and design of novel visualization tech-
niques, but they cannot, alone, answer higher-level questions
related to the perceptual efficiency of motion-based visual
encodings in node-link diagrams. Indeed, the use of motion
on graph edges is quite specific. The considered elements
(particles) only move along predefined visual paths. Particles
that belong to the same edge get perceived as a group not
only because they have a common fate but also because they
visually materialize a first-class entity: edges. The nature of
the movement and the number of different directions, consid-
ering that edges have different orientations and that they can
be curved, is very particular compared to the conditions evalu-
ated in the above-cited studies. Empirical studies that focus
on these conditions are necessary to get a clear understanding,
and to quantify the limits, of motion-based data encodings in
tree and network visualization.

ANIMATED EDGE TEXTURES

Our model of animated edge textures consists of three main
motion-related variables describing the behavior of particles
flowing along links, as illustrated in Figure 1: the pattern
of particles, which can be seen as the rhythm at which they
get fired; the frequency of this pattern, and finally, the speed
of particles along the link. Each variable can be mapped to
different data attributes. They can also be combined with other
visual variables that define the appearance of both the particles
(e.g., their color, their shape) and of the link itself to encode

additional edge data. In this section, we describe the design
space of animated edge textures, and introduce an API for
mapping data attributes to visual variables in this design space,
along with a prototype implementation in WebGL.

Model

The simplest way to animate particles along an edge would
be to define a repeating stroke pattern, as one can do in vec-
tor graphics editors such as Adobe Illustrator, and have this
repetition of the pattern animate by gradually increasing its
start offset. However, this approach is limited in terms of
expressive power. It also fails to expose all motion variables
for direct mapping with data attributes. We seek to strike a bal-
ance between simplicity of the model, expressive power, and
ease of mapping between data attributes and visual variables.

Our model is based on the following core concepts:

e The link itself, which encodes the path geometry of the
corresponding edge (for a given layout). The link can be
seen as a tunnel through which the particles flow. The
visual appearance of that tunnel is defined by the static
visual variables usually associated with links in a node-link
diagram: color, opacity, stroke width.2

e The particle emitter fires particles from the source node of
an edge according to the particle pattern and pattern fre-
quency. A particle emitter defines the properties of particles
it fires: their shape, color, size, and speed.

e The particles themselves, which are the individual glyphs
that flow along the link.

Two additional concepts are introduced to enable more elabo-
rate motion-based encodings:

e Gates, placed at arbitrary positions along an edge, can
change one or more variables of the particles flowing along
that edge, including their color, opacity, size and speed. In-
deed, once emitted, particles are independent entities whose
properties can be altered as they progress along the link.
Gates perform those alterations smoothly: the variable gets
interpolated between the old and the new value over a short
span centered on the gate, so as to avoid abrupt changes that
would be aesthetically unpleasant and visually disturbing.
Several examples in the next section use gates to alter parti-
cle variables. Variations in particle speed encode specific
data attributes in Figure 3. Variations in particle opacity
minimize legibility issues in Figure 4. Variations in particle
color can be used, e.g., for aesthetic purposes, or to visually
illustrate the notion of transformation of what flows through
the edges.

e Tracks enable particles to flow along multiple parallel paths
inside the same link tunnel. All tracks that belong to the
same link share the same emitter, for the sake of model
simplicity. Nevertheless, the model allows for multiple
links between two nodes, thus enabling different particle
patterns on parallel tracks, as is done in Figure 5.

2A stroke pattern other than solid should be avoided, as it would
visually interfere with the particles flowing along the link.



API

We have designed a Javascript API to map data attributes to
any edge variable, including all three motion variables (pattern,
frequency and speed). The following code fragment illustrates
the simplicity of our APIL. It shows how a graph is loaded and
laid out (lines 1-5), similar to D3 [9] or cola.js [18]. Lines 6-7
set the parameters controlling the particles’ visual properties,
while lines 8-10 set motion properties.

d3.json("data.json", function(json) {
var force = flownet.force("#aFrame", 800, 600, "#FFF", 0)

.nodes(json.nodes)
. links(json.links)
.create_layout()
.particles("color", "#CCC")
.particles("size", 2)
.particles("pattern", [0.0, 0.5, 0.75])
.particles("frequency", 0.4)
.particles("speed", 3);

1)

Mapping these parameters to actual edge data attributes is
achieved using anonymous functions, as shown below (d being
a link instance, following the same convention as in D3). In
this example, particle speed is set to be proportional (x 10) to
the value of edge attribute val on each link:

.particles("speed", function(d){return d.val *x 10;})

Temporal patterns are specified as arrays of floats in [0, 1].
Each item in the array corresponds to a particle in the sequence
defining the motif. Line 8 in the above code fragment defines
a pattern made of three particles, fired by the emitter at the
beginning (0.0), middle (0.5) and three quarters (.75) of each
cycle. The actual timing depends on the pattern frequency for
each edge. In this case, the pattern frequency being set to 0.4
Hz, the three particles are fired at 0s, 1.25s and 1.875s, repeating
every 2.5s. Patterns can be assigned to individual edges based
on any attribute, as shown below with a test of attribute cat:

.particles("pattern", function(d){
if (d.cat == "dualLink"){return [0, .33, .66];}
else {return [0, .2];}

1)

In the example below, either one or two tracks are created,
depending on the value of attribute cat for each edge:

force.tracks("count", function(d){return (d.cat == "dualLink") ? 2 : 1;});

Alterations to visual and motion attributes when passing
through gates are specified by passing one additional parame-
ter to function particles(). In the example below, particles are
colored green on the first half of the link, and red on the sec-
ond. Similarly, the speed of particles is 10 times the value
of edge attribute val during the first 80% of their course, and
increases to 20 times that value on the remaining 20%:

.particles("color", "#0F0", 0)

.particles("color", "#F00", .5)

.particles("speed", function(d){return d.valx10;}, 0)
.particles("speed", function(d){return d.valx20;}, .8);

Prototype Implementation

We have developed a prototype Javascript implementation of
our model, called FlowNet. FlowNet can be used in conjunc-
tion with D3 to load and prepare the data for visualization,
and graph layout libraries such as cola.js to compute node
placements. Rendering takes place in an HTMLS5 canvas
element using Three.js [15]. Using SVG for rendering would
have enabled a tighter integration of FlowNet with D3, but our
early tests showed that this solution would not have been able
to handle large numbers of particles. Using WebGL enables
us to take advantage of GPU rendering, vertex and fragment
shaders being able to manage larger amounts of particles.

EXAMPLES OF USE

We illustrate different combinations of motion variables using
subsets of the air traffic statistics dataset introduced earlier.
The data are not about individual flights, but are rather aggre-
gated statistics over all airlines on each route, thus forming
a network that features a rich set of attributes for both nodes
(airports) and links (flight routes). Animated versions of the
examples shown here are available in the companion video and
Website.? For the sake of clarity, we selected very small data
subsets, which lend themselves better to static representations
for inclusion in the paper. As stated earlier, motion variables
should not be seen as systematic replacements for other visual
variables such as color and stroke width, but rather as alterna-
tive visual variables that widen the space of possibilities and
have their own strengths and weaknesses.

Encoding a single attribute

The simplest example consists of encoding a single edge at-
tribute using a motion variable. Both numerical and categorical
data can be encoded using motion. In the air traffic dataset,
numerical attributes associated with each edge include the
number of flights on the corresponding route, or the average
departure delay on that route. Categorical attributes include
the type of route (passenger transportation, mail, or freight).

Encoding a numerical attribute.

Numerical attributes can be directly mapped to speed or fre-
quency. One guiding principle in the selection of which motion
variable to choose in the design space is to pay attention to
the semantics inherently conveyed by that variable. For in-
stance, when seeking to encode the number of flights on a
route, frequency is a more appropriate choice than speed, as
users will tend to interpret a higher frequency, which entails
a higher particle density on the link, as a larger number of
flights. Conversely, speed may convey the notion of a more
efficient flight route in terms of, e.g., travel time, or passenger
“throughput” as already hinted at in the Motivation section.

More complex attribute sets can be encoded using elaborate
particle motion behaviors. The air traffic dataset contains
information about the average departure and arrival delays on
each route. As illustrated in Figure 3, this information can be
encoded by inserting two gates on the link to vary the speed of
particles as they progress from origin to destination. Routes
with no delay on either side will feature particles travelling

3http://ilda.saclay.inria.fr/ﬂownet
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Figure 3. Particle speed mapped to departure and arrival delay.

Figure 4. Same as in Figure 3, also reducing edge clutter by gradually
fading particles out in the central portion of each edge.

at constant speed. Routes with departure delay will feature
particles that start at a low speed, attaining their normal speed
once they have travelled 20% of the link’s length. On routes
with arrival delay, particles decelerate once they reach 80% of
the link’s length.

Reducing Visual Complexity

Gates can also be used to reduce visual complexity in the
diagram, for instance by removing some clutter. The node-
link diagram from the previous example (Figure 3) features
numerous crossing and overlapping edges, in part because of
the constraints on the nodes, which are geolocated. Inspired
by Becker et al.’s shortening lines [7], we used gates to fade
particles away in the central portion of the links, as illustrated
in Figure 4. Decreasing the particles’ opacity in this manner
helps reduce visual clutter. Here, the motion of particles helps
track a particular link, in part thanks to the Gestalt law of
common fate that contributes to apprehending the particles
that flow on that edge as one coherent group.

Encoding a categorical attribute.

Categorical attributes are best encoded using variables that
do not inherently convey an order, such as temporal pattern
(which is akin to Morse code). For example, particles can be
emitted according to different patterns depending on the route

_ SanFrancisco
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Figure 5. Using tracks to show different route types between airports.

type (passenger, mail, freight). Difficulties will arise when an
edge has more than one value for the same attribute. When
using shape or color hue to encode categorical data, multi-
ple values can be represented by, e.g., merging the shapes, or
creating a hatched pattern featuring all relevant color hues.
Similarly, all relevant individual particle patterns can be juxta-
posed to form a more elaborate pattern that is representative
of this combination. However, as in the case of shape or color
hue, this solution only works for a very small amount of values.
It also requires a minimum edge length to be discernible, as
the length of the pattern is equal to, and even slightly larger
than, the sum of all individual patterns involved.

Encoding multiple attributes

Combining multiple attributes (one might want to also display,
e.g., the average number of passenger or cargo flights) can
be achieved using motion variables in conjunction with other
visual variables such as the particles’ color or size. For combi-
nations of numerical and categorical attributes, particle speed
or frequency can encode the numerical attribute, while particle
hue (color) encodes the categorical attribute. For combinations
of numerical attributes, one can leverage visual variables such
as size or opacity in conjunction with motion.

However, encoding multiple categories on a single edge can
rapidly become visually complex. One possible solution is to
use more than one track on an edge, each track being mapped
to a different attribute. In Figure 5, the three tracks are as-
sociated with passengers, mail and freight, respectively. The
category each track represents is visualized using a dual en-
coding: the track index (they are always ordered in the same
way), and one of three particle patterns. Indeed the track in-
dex is likely not sufficient, considering that links can have
different orientations. Then, the average number of flights for
each of the three categories on each route is encoded using the
particles’ speed, which can thus be different on each track.

EXPERIMENTS

The above examples try to illustrate a set of representative
encodings that use motion, but they say nothing about users’
ability to perceive the values encoded in this manner. A few
user studies of graph visualization techniques include one or
more conditions that involve motion in the way animated edge
textures do [34, 60]. However, to the best of our knowledge,



there are no empirical data on the number and type of motion
patterns of edge particules that users can discern. Based on
the model presented earlier, we start to explore the design
space defined by animated edge textures, and provide initial
empirical data about their potential for encoding information.

We report on an experiment that aims at evaluating the encod-
ing potential of each motion variable individually. This is an
initial study, and more studies will be necessary to fully under-
stand the interplay between motion variables as well as with
other visual variables, as discussed later. In our experiment,
participants were presented with node-link diagrams whose
links featured different animated edge textures. They were
asked to group edges based on the motion of particles.

Our primary factor is the type of motion variable (Mo-
tion_Variable € {Pattern, Speed, Frequency}) that can take
up to six different values (i.e., participants have to identify
up to six different groups of edges). Pattern is the pattern
of particles flowing along the edge. Speed and Frequency
are respectively the speed of particles and the frequency at
which the source node emits the pattern. As mentioned above,
our experimental design varies a single motion property at
a time, keeping the other two properties set to their default
value (Patterng, Speedy and Frequencyy). Patterng is a sin-
gle particle, i.e., the simplest pattern. Speedy and Frequencyg
were chosen so as to ensure that there is always more than one
occurence of the pattern visible on the smallest link that the
diagrams used in the experiment can feature.*

We used one of two different strategies for choosing the dif-
ferent values to test, depending on the property considered. In
the case of Pattern, there is no natural order between different
rhythms, which makes it a categorical property. Inspired by
previous work on rhythmic interaction [24], we chose the six
different particle patterns shown in Figure 1. In the case of
Speed and Frequency, which are continuous properties, we had
to ensure a minimal difference threshold between consecutive
levels, above their Just Noticeable Difference (JND) [20] in
order to ensure that participants could perceive them as differ-
ent. We first explain how we chose this difference threshold,
and then report on our experimental design and observations.

Difference Threshold for Speed and Frequency

According to the Weber-Fechner law [20], the JND must be
assessed as a constant proportion of the original stimulus 1,
meaning that detecting a change from an initially-high level
requires a higher-amplitude change than detecting a change
from an initially-low level: JND = Al /I.

The notion of JND has been applied to various perceptual
channels such as sound [54] and chromaticity [41]. Previous
studies have considered perception of changes in speed or
frequency, but those findings do not readily apply to the spe-
cific context of animated edge textures. For example, studies

“In the Pattern condition, Speedy is 6 mm.s !, and Frequency is 0.3
Hz. In the Speed condition, Frequencyg is 1.2 Hz. In the Frequency
condition, Speedy is 7.5 mm.s L.

We also make nodes emit particles with a phase shift in order to
prevent participants from discriminating frequencies among edges
connected to a node simply by looking in its immediate vicinity.

in experimental psychology have considered reaction time to
a sudden change in velocity of a single stimulus [42]. This
differs significantly from our context, where people must com-
pare multiple stimuli (animated links in a diagram) that co-
exist on screen. Huber et al. [35] have studied users’ ability
to identify a target group within a larger group, based on its
difference in velocity or flickering frequency relative to an
otherwise-uniform group. However, in their experiments, the
elements were simple squares that filled the display area. In
a node-link diagram, edges are not uniform elements paving
the space. They are distant from one another, and vary in both
direction and size.

We ran a pilot study to get an approximation (accurate-enough
for our purposes) of the JND at different reference values
for both the Speed and Frequency motion variables. Six par-
ticipants were asked to tell whether or not they perceived a
difference between a source edge and a target edge, which
varied in their orientation. At the beginning of each trial, both
edges were animated with particles flowing at the same Speed
(resp. Frequency). Participants had to press a key repeatedly
until they saw a difference. Then they had to say whether the
difference was an increase or a decrease. For both motion
variables, we observed difference thresholds between 0.13 and
0.26, with no significant effect of the difference in orientation
between the source and the target edges on the perceived dif-
ference. We then chose thresholds significantly higher than
the observed JNDs (0.7 for Speed, 0.5 for Frequency) based
on pilot tests on actual node-link diagrams, accounting for
the fact that comparing particle frequencies and speeds in a
node-link diagram featuring dozens of nodes and edges is nec-
essarily more difficult than the comparison of a single pair of
edges in an otherwise empty display.

Encoding Edge Attributes

This experiment followed a between-subject design, with three
independent groups of participants testing three different mo-
tion variables: Pattern, Speed and Frequency. Our experiment
software is available for illustration and replication purposes.>

Task and Procedure

The experimental task consisted in grouping edges according
to the values of the tested Motion_Variable (several links could
have the same texture assigned to them). While such a task is
definitely not a realistic visual graph analysis task, we believe
it provides a relevant operationalization for the purpose of
this visual perception experiment, as it requires participants
to perform visual comparisons between edges not only to
identify how many different values exist in the graph, but
also to perform pairwise comparisons to identify which edges
belong to the same group.

As we aim at estimating the number of different values that
each motion variable can encode, we want to find out whether
users can group edges according to the different values of
these properties present in the graph. Figure 6 shows a trial in
the Pattern condition. The graph features six different Pattern
values, meaning that participants should identify six groups of
edges, provided they can actually discriminate all six values.
A trial was divided into two phases.
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Figure 6. The second phase of our experimental task. The diagram on the left pane features animated edge textures, while the one on the right contains
a copy of that diagram featuring static, solid edges. The right pane is interactive. It allows participants to create new tag types, which get added to
the tag bar, and to tag individual edges. The background and edge colors have both been inverted in this screen capture: during the experiment, the

background was black, and the edges were light gray.

In the first phase, participants had up to 45 seconds to tell how
many different groups they perceived. They were encouraged
to answer as fast as they could. They could press the space
bar at any time before the timer expired. Either of these events
(space bar pressed or the 45 seconds elapsed) made the graph
disappear. Participants then had to input their answer in a
text field. This task was an estimation task, as opposed to a
subitization or counting task [29].

In the second phase, illustrated in Figure 6, participants had to
actually identify these groups, creating the appropriate number
of group tags and tagging each individual edge. Participants
were instructed to be as accurate as they could. To avoid
the tags interfering with the perception of the diagram, the
display was split in two parts. The diagram on the left featured
animated edge textures, while the one on the right contained a
copy of that diagram featuring static, solid edges. Participants
looked at the left-hand side diagram to identify groups, and
used the right-hand side one to tag edges. They were able
to create new tag types in the tag bar on-demand, using a
button. Tagging an edge then entailed either dragging a tag
from the bar and dropping it on that edge, or selecting a tag in
the bar and clicking on the edge. The bar tag selection being
persistent, the latter mechanism was especially useful to tag
several edges in a row. Each edge could only hold one tag.

The operator insisted on the fact that it did not matter if the
number of groups found in the second phase of a trial did not
match that found in the first phase. The first phase rather aims
at evaluating the potential of each Motion_Variable to convey
a first impression, while the second step aims at capturing a
more thorough analysis of the diagram (i.e., where users have
to tell whether two edges share the same animated texture or
not in graphs featuring more or less diversity).

In addition to the Motion_Variable (Pattern, Speed and Fre-
quency), our experiment also considered tasks of varying diffi-
culty, which we operationalized using two factors.

First, we tested different graph sizes: Graph_Size € {LOW,
MEDIUM, HIGH}. The node-link diagram layout was com-
puted using D3’s force-layout algorithm, with 8 nodes and 7
links for Low, 16 nodes and 14 edges for MEDIUM, and 22

nodes and 21 links for HIGH. In order to avoid introducing
too many factors in this first evaluation, we considered planar
graphs only (the layouts did not contain any edge crossing).

Second, we varied the number of groups (Group_Count). Our
purpose was to test whether increasing the number of different
values of a motion variable diminishes users’ ability to discrim-
inate them. Factor Group_Count € {SMALL=2, MEDIUM=4,
LARGE=6} corresponds to the number of different values that
Motion_Variable could take. As already mentioned, we picked
the six different thythms shown in Figure 1, which we believed
would be discriminable considering the range of edge sizes in
our layouts (average: 3.18mm, min: 2.87mm, max: 3.45mm).
Values of Speed and Frequency were computed as successive
values right above the corresponding difference threshold (0.7
for Speed, 0.5 for Frequency) yielding, for each group count:

Group_Count  Speed values (mm.s ')

SMALL G| =3.3,G,=5.6
MEDIUM G, =3.3,G,=5.6,G3=9.5,G4, =16.2
LARGE G| =3.3,G,=5.6,G3=9.5,G4=16.2,G5 =27.5,

Ge = 46.7

Group_Count  Frequency values (Hz)

SMALL G;=0.3,G,=0.5
MEDIUM G} =0.3,G2,=0.5,G3 =0.7,G4 = 1.0
LARGE G = 0.3,G2 = 0.5,G3 = 0.7,G4 = 1.07 Gs = 1.5,

Gg =23

We chose to limit the maximum number of different values
to 6 as a higher number of conditions would have resulted
in an intractable experiment design. We ran pilot studies to
identify an upper bound, which showed that differentiating 6
values was already challenging. In addition, going far beyond
6 values would have resulted in overly low-or-high speeds and
frequencies, that would have been of little practical value.

Our three factors were tested following a mixed experiment
design. To keep a reasonable experiment length (i.e., ~ an
hour), Motion_Variable was tested as a between-subject fac-
tor, each participant seeing only one of the three conditions.
Group_Count and Graph_Size were tested as within-subject
factors, all participants seeing all Group_Count X Graph_Size
conditions. In order to get familiar with the task and the inter-
active tagging technique, participants started with 3 practice tri-
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Figure 7. (Left) Accuracy in estimating the number of groups in the first
phase; (Right) Accuracy in counting the number of different groups in
the second phase. Error bars represent the 95% confidence interval.

als on small graphs featuring 2, 4, and 6 different groups. Then,
each measured trial was replicated twice. In total, each partici-
pant had to complete 18 trials for analysis (3 Group_Count X
3 Graph_Size x 2 replications), presented in a random order.
At the end of the experiment, participants filled in a short
questionnaire asking them about the strategies that they used
to identify the different groups of edges.

Participants & Apparatus

Thirty six volunteers (18 female), aged 21 to 47 year-old
(average 30.8, median 29), participated in the experiment.
We conducted the experiment on a PC Dell Precision T5500,
equipped with an Intel Xeon Quad Core processor, 3GB RAM,
and an NVidia Quadro 2000 graphics card driving a 23" LCD
FullHD 1080p monitor (1920x1080, 96 dpi). The experiment
software was developed in JavaScript using node.js [55] and
the animated edge texture library described earlier.

Results

Our experimental software collected the estimation of the
number of groups that users reported in the first phase, GCy
(which stands for Group Count in 1*' phase). It also recorded
the full set of mappings <tag, edge> of the 2"¢ phase, from
which it derived GC,, the number of groups identified in that
phase. We considered different measures for analyzing the
collected data. We first computed the Group Count Accuracy
(GCA) in both phases as follows:

GCA; =1 - (|GC - Group_Count|) | Group_Count, and
GCAy =1 - (\GCQ - Group_Count|) | Group_Count.

However, GCA, alone is not sufficient to account for the group-
ing accuracy, as the number of tag groups can be accurate
while having some edges misclassified. For each group, we
thus also computed a measure of its accuracy using the Jaccard
coefficient [38]. This coefficient estimates similarity between
finite sample sets using the ratio between the size of the inter-
section and the size of the union of the sample sets. As we
cannot know a priori what actual groups users were tagging,
we try to associate each group G; with the most similar tag
group. The Grouping Accuracy of a group G;, GA(G;), is thus
the maximum of all Jaccard coefficients computed on each
pair made of G; and one of the groups 7; (1 < j < GC;) that
the participant has tagged:

count (T; N G;)

GA(G;) = o2y
(Gi) 1;?362 count (T;|JGi)

1 <i < Group_Count

In the first phase, we observe an average accuracy GCA of
0.81 for Frequency, 0.88 for Speed and 0.68 for Pattern. Par-
ticipants seem to have more trouble estimating the number
of groups when the discriminating motion variable is Pattern.
However, an analysis of variance reveals that the difference
between the three motion variables on GCA| is not significant
(p=0.7). In the second phase, the average accuracy GCA,
increases to 0.88 for Frequency, 0.93 for Speed and 0.99 for
Pattern. Here, the effect of Motion_Variable is significant
on GCA3 (F33 = 3.5, p=0.04, nZ = 0.17), with each pair of con-
ditions significantly differing according to pairwise t-tests.’
Figure 7 illustrates these results. An interesting observation
is that while Pattern performs relatively poorly as a means
to get a quick estimate of the number of groups, it actually
outperforms both other variables when the task is to more
precisely count those groups. We tentatively explain this ob-
servation based on the fact that particle frequency and speed
can be quickly perceived, while the identification of different
patterns requires more cognitive processing. When trying to
get an estimate under time pressure, different Frequencies or
different Speeds will be easier to perceive, while when try-
ing to get a precise count without such time pressure, Pattern
will provide a cognitively more demanding, but more reliable,
solution. Answers to the final questionnaire actually support
this interpretation: participants reported experiencing diffi-
culty memorizing patterns. On the opposite, in Speed and
Frequency conditions, some of them reported using the simple
strategy of looking only at the spacing between two particles
to discriminate different values.

Figure 8 provides a detailed view of how the different mo-
tion variables are robust against increasing difficulty. Even
if an analysis of variance of Graph_Size x Group_Count on
GCA; does not reveal any significant difference in any of the
Motion_Variable conditions, some edge properties seem to
scale better to complex tasks (large graph, high number of
groups) than others. Pattern and Speed seem to scale quite
well with both Graph_Size and Group_Count, while users’
accuracy with Frequency appears to drop down on average
as the graph becomes larger. However, our GCA, measure
makes by definition the error cost inversely proportional to the
number of groups (e.g., a misclassified edge impacts the accu-
racy three times more when Group_Count=SMALL than when
Group_Count=LARGE). We complement our error analysis
with an absolute measure of errors, that is the number of mis-
classified edges NME. An analysis of variance of Graph_Size
X Group_Count on NME revealed more contrasted differ-
ences. For Pattern, there is still no significant difference be-
tween conditions. But, when Motion_Variable=Frequency,
Graph_Size has a significant effect on NME (F, =9, p =
0.001, nZ = 0.27), with NME significantly increasing with
Graph_Size. Finally, when Motion_Variable=Speed, all
Graph_Size, Group_Count and Graph_Size X Group_Count
interaction effects are significant on NME.® Pairwise t-tests
reveal that the effect of Group_Count is significant only when

SWe get the same results with or without Bonferroni correction.
6Graph_Size: F> 2 =10, p < 0.0001, né =0.27; Group_Count: F 2 =
10, p < 0.0001, n2 = 0.2; and Graph_Sizex Group_Count: Fys4 = 6,
p < 0.0001, n% =0.16
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Figure 8. Average accuracy in second step (GCA,) per Graph_Size x Group_Count. Error bars represent the 95% confidence interval.
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Figure 9. Confusion between groups per Group_Count condition. In a matrix, a row corresponds to a Motion_Variable condition, and a column to a
group of edges. The color of a cell depends on the average accuracy of that group during the experiment (darker is better).

Graph_Size = HIGH. For SMALL- and MEDIUM-sized graphs,
the number of misclassified edges does not significantly in-
crease with the number of groups.

Figure 9 helps understand where the confusion between groups
comes from. In those matrices, a cell represents a group of
edges Gj, and the color of that cell is proportional to the aver-
age Grouping Accuracy of that group GA(G;). The darker a
cell, the most accurate a group is. We can observe that increas-
ing the number of groups for Frequency and Speed makes the
accuracy drop down. We can also observe that participants
tend to make more confusions between high values of Fre-
quency and Speed, the accuracy being lower starting from Gy4.
It is important to remember that we increase Group_Count by
adding values at the end of the range, which entails that a group
G;, when it exists in two different Group_Count conditions, is
exactly the same in those two conditions.

In summary, Pattern seems to have good potential as a means
to encode edge attributes. In this condition, participants in
our experiment were able to identify the different edge groups
almost perfectly, no matter the task difficulty. Participants
also performed well with Speed and Frequency, but these
properties seem to suffer more from an increase in the number
of links. When Frequency or Speed are used to encode edge
data attributes, users may experience some difficulty with
large networks, and may experience difficulty discriminating
between the higher frequencies and between the higher speeds.

FOLLOW-UP STUDY

Answers to the questionnaire in the study reported above re-
vealed that some participants had relied on the spacing be-
tween particles to compare different values of Speeds or Fre-
quencies. Because Speed and Frequency can be manipulated
independently in our model, modifying the value of one of

these motions variables impacts the spacing between parti-
cles. Because this latter property can also be perceived on a
static representation of the texture (e.g., on a snapshot of the
graph), we also wanted to test what users can discriminate
using motion dynamics only. We ran a follow-up study to test
a fourth value for Motion_Variable, that we call FASpeed, for
Frequency-Adjusted Speed. FASpeed adapts the frequency
as speed varies so as to preserve a constant spacing between
particles across the different Speed conditions.

As in the main experiment, we ran a pilot study to estimate
the Just Noticeable Difference in a comparison task between a
pair of edges. This informed the choice of consecutive values
of FASpeed, computed using a threshold of 0.9:

Group_Count ~ FASpeed values (mm.s~!)

SMALL [G| =3.75,G, =7.125]
MEDIUM  [G) =3.75,G, =7.125,G3 = 13,5375,G4 = 25,725]
LARGE |G| =3.75,G, = 7.125,G3 = 13,5375,G4 = 25,725,

Gs = 48,8775, Gg = 93]

Participants & Apparatus

Fifteen volunteers (3 female), aged 23 to 37 year-old (average
27.87, median 28), participated in this experiment. None of
them was involved in the previous study. The experiment was
run on a 2.7GHz Intel Core i5 Macbook Pro, equipped with
8GB RAM and an Intel Iris Graphics 6100 1536 Mo driving a
27" LCD monitor (2560x1440, 100 dpi).

Task & Procedure

Participants were exposed to the Motion_Variable=FASpeed
condition only. As before, Group_Count and Graph_Size were
tested using a within-subject design with two replications, with
participants seeing a total of 18 trials for analysis. Trials were
presented in a random order, after 3 practice trials. At the end
of the experiment, participants filled in a short questionnaire
about their strategies for grouping edges.
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Figure 10. (a) Average accuracy in second step (GCA;) per Graph_Size
x Group_Count. (b) Confusion between groups per Group_Count.

Results

We observe a similar trend to what we have observed in the
previous experiment: accuracy increases between the 1% and
the 214 phases, with GCA| = 0.82 and GCA; = 0.89 on av-
erage. Group_Count does not have a significant effect on
these two measures, suggesting that users can discriminate
up to six different values. However, participants experienced
more difficulty with large graphs than with small ones. The
effect of Graph_Size is significant on both GCA1(F> s = 8.86,
p =0.001, n = 0.08) and GCA(Fz5 = 9.02, p = 0.001, n2 = 0.11),
with pairwise t-tests revealing that all Graph_Size conditions
were significantly different from each other (LOW > MEDIUM
> HIGH). Figure 10-(a) illustrates these results for GCA;.

The effect of Graph_Size on the total number of misclassified
edges (NME) is larger (F» s = 15.7, p = 0.00001, nZ = 0.25) than
that of Group_Count (F>»5 =3.5, p=0.04, nZ = 0.08). This is
consistent with what we observed about Speed and Frequency
in the previous experiment, where the number of misclassified
edges grew with Graph_Size. However, as opposed to the
Speed condition in the previous experiment, confusion matri-
ces (Figure 10-(b)) illustrate that confusions are more frequent
between low values than high values of FASpeed.

In summary, participants were able to discriminate up to six
different values based exclusively on the motion dynamics of
flowing particles, with an accuracy of ~ 90%. However, we
also observe that the size of the graph impacts participants’
accuracy. Large graphs involve comparisons between edges
that can be far away from each other, and we observe that
comparing two edges based on their dynamics is a difficult
task when they do not both fall simultaneously in the center of
visual attention. This is in line with participants’ comments
at the end of the experiment, where they reported having
difficulty to “recall” the speed of the two edges that they
wanted to compare when they were distant from each other.

DISCUSSION AND FUTURE WORK

Recent work on confluent drawings [2] recently identified
“particle animations simulating flow along edges" as an in-
triguing technique “for future research in visualizing flow and
propagation in networks". Our work is a step in this direction.
We introduce a design space for animated edge textures, pro-
viding a framework to guide the exploration and evaluation
of motion variables as a means to visually encode edge data
attributes in node-link diagrams. That design space is quite
large, especially when considering all possible combinations
of motion variables and other visual variables that define the
appearance of both the particles and the links themselves.

Beyond the possibilities afforded by animated edge textures
in terms of visual design, a central question is that of the ac-
tual effectiveness of motion variables for the visual encoding
of data values. The two perception experiments reported in
this paper provide initial quantitative data about each motion
variable studied in isolation. These results are encouraging,
suggesting that each variable in our model has some potential
in practice. But these results do not generalize to visual map-
pings involving multiple motion variables. More empirical
evidence needs to be gathered to fully understand the interplay
between variables and comprehensively evaluate the potential
of animated edge textures. In particular, it is not yet clear
how motion variables interact (and potentially interfere) with
one another. Conditions that will have to be considered in
future work include: the perception of conjunctions of motion
variables (e.g., particle pattern and speed); or conjunctions
of motion and other visual variables (e.g., particle color and
speed, taking into account prior work on the role of color in
motion perception [64]). Answering such questions will nec-
essarily require many more experiments, that might very well
reveal effects similar to what happens when, e.g., combining
two pre-attentive channels like color and shape [56]: while
both are pre-attentive when considered in isolation, they are
no longer pre-attentive when combined in a conjunctive visual
search. Variations in motion properties that occur as parti-
cles progress along links such as, e.g., the changes in velocity
illustrated in Figure 3, should also be studied.

Other relevant factors to study include the type of graphs, their
layout, and a larger range of sizes than what was tested here.
For instance, edge crossings (Figures 3 and 4) are likely to
have an impact on the perception of particle motion when
visualizing non-planar graphs. Different topologies (including
graphs featuring bidirectional links) should also be tested,
varying graph complexity as was done here. Indeed, both
graph topology and size will impact overall readability and
thus, possibly, the perception of motion patterns. A related
research question is that of which graph layout and edge rout-
ing techniques are best coupled with animated edge textures.
For instance, confluent drawings [2] feature edge bundling
that is likely to play well with particle-based animations, but
this remains to be shown empirically. Even if considering less
elaborate layouts, some factors will necessarily impact, and
impose limitations on, the use of animated edge textures. For
instance, the choice of particle pattern and speed depends to
some extent on the length of edges: long patterns may not fit
in their entirety on small edges; and similarly, fast particles
might be difficult to spot when they travel short distances.

As hinted at above, we have barely scratched the surface of all
questions raised by the use of motion to encode data in node-
link diagrams. We make our API, as well as the code of our
experimental setup, publicly available,’ in order to encourage
further exploration of this design space by the community, for
the purpose of both creating novel visual designs and conduct-
ing empirical studies. The model itself could actually also be
extended. For instance, we have started investigating another
particle property, that controls the stability of its trajectory
along the track. Making particles wiggle could be useful to,
e.g., encode uncertainty or variability in the data.
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