
1

Hierarchical Learning for Automated Malware
Classification

Shayok Chakraborty?, Jack W. Stokes†, Lin Xiao†, Dengyong Zhou†, Mady Marinescu‡ and Anil Thomas‡
?Arizona State University, Tempe, AZ 85281 USA

†Microsoft Research, One Microsoft Way, Redmond, WA 98052 USA
‡Microsoft Corp., One Microsoft Way, Redmond, WA 98052 USA

Abstract—Despite widespread use of commercial anti-virus
products, the number of malicious files detected on home and
corporate computers continues to increase at a significant rate.
Recently, anti-virus companies have started investing in machine
learning solutions to augment signatures manually designed by
analysts. A malicious file’s determination is often represented as a
hierarchical structure consisting of a type (e.g. Worm, Backdoor),
a platform (e.g. Win32, Win64), a family (e.g. Rbot, Rugrat) and
a family variant (e.g. A,B). While there has been substantial
research in automated malware classification, the aforementioned
hierarchical structure, which can provide additional information
to the classification models, has been ignored. In this paper, we
propose the novel idea and study the performance of employing
hierarchical learning algorithms for automated classification of
malicious files. To the best of our knowledge, this is the first
research effort which incorporates the hierarchical structure
of the malware label in its automated classification and in
the security domain, in general. It is important to note that
our method does not require any additional effort by analysts
because they typically assign these hierarchical labels today. Our
empirical results on a real world, industrial-scale malware dataset
of 3.6 million files demonstrate that incorporation of the label
hierarchy achieves a significant reduction of 33.1% in the binary
error rate as compared to a non-hierarchical classifier which is
traditionally used in such problems.

Index Terms—Hierarchical Machine Learning, Automated
Malware Classification

I. INTRODUCTION

While the advent of the Internet has revolutionized com-
munication, business and the access of information, it has
also allowed attackers to craft and control malware that
targets vulnerabilities in remote computer systems. As a result,
malware detection has been an active research area over the
past two decades [1]. In many cases, malware signatures
designed by analysts and deployed in commercial anti-virus
products continue to provide the majority of detections on
users’ computers. However, signature generation is an ex-
pensive process in terms of time and human labor, mainly
due to the staggering number of malware samples that are
automatically generated by attackers on a regular basis. Our
company receives hundreds of thousands of unknown files
each day that are not detected by antivirus signatures. This
figure indicates that there is a pressing need for automated
techniques to reliably analyze and interpret unknown software
to ensure the safety of computing systems. To address this
fundamental need, anti-virus companies have been investing
in machine learning classifiers [2], [3], [4] which learn to

distinguish between malicious and legitimate files for future
unseen instances based on features extracted from static and
dynamic analysis. A malware label typically consists of a
hierarchical structure with a type (Trojan, PWS), a platform
(Win32, Win64), a family (Rbot, Rugrat) and, optionally, a
variant (A, B). Examples of two malware names are depicted
in Figure 1. The behavioral nature of a malicious file becomes
more specific as we traverse the label hierarchy. The malware
type specifies the coarse distinguishing nature of the file.
For example, Backdoors provide a hidden communication
mechanism for remote attackers, and Trojans typically include
a small amount of malicious code inserted into a legitimate
program. Attackers often target specific platforms such as
Win32 or Win64 based on prevalence and the underlying
security mechanisms built into the operating system. New
malware families names are assigned to files which belong
to the overall broad malware type, but are considered distinct
for some reason. For example, bots such as Rbot, Zbot, and
Sdbot are typically assigned to the Backdoor type but differ
enough to warrant their own family name. Family differences
within a type may be due to similar, but unique, malicious code
written by independent malware authors. Finally, the variant
represents a small variation within a family. To avoid detection,
malware authors sometimes modify their code several times
per day depending on the frequency of new malware signatures
released by the anti-virus companies. In other cases, malware
authors may share the underlying source code which is then
modified to some degree by the new group. When existing
signatures fail to detect the new family variation, analysts
may create a new variant name. A variant may be created
to correspond to a specific malware “generic” signature which
attempts to detect many difference instances of a specific type
of polymorphic malware using a small set of features.

The key question we address in this paper is: Can we
utilize the extra hierarchical label information that analysts
are already providing to improve malware classification? A
number of common machine learning algorithms, including
classification [5], [6], [7], [8], [9], [10], clustering [11], [12],
[13] and association rule mining [14], have been proposed to
distinguish malicious samples from legitimate ones. However,
none of these techniques exploit the inherent hierarchical
nature of the malware labels. The hierarchical label name
provides useful information to the underlying classification
models, which can potentially improve the classification ac-
curacy. Malware analysts typically provide the label hierarchy



2

Malware 

Backdoor 

Win32 

Rbot 

A 

Virus 

Win64 

Rugrat 

B 

Type 

Platform 

Family 

Variant 

Fig. 1. Hierarchical structure of two example malware labels consisting of a
type, platform, family and variant.

during file annotation; exploiting the hierarchical structure can
thus augment valuable information to the classification models
without any additional manual effort.

In this paper, we propose a novel system which uses
hierarchical learning for automated malware classification.
Hierarchical classification algorithms have been shown to per-
form well in the context of information retrieval, text mining
and other applications [15], [16], [17], [18]. We study the
performance of a hierarchical support vector machine (SVM)-
based learning algorithm, Orthogonal Transfer [18] for the
automated classification of malicious portable executable (PE)
files. We selected this hierarchical learning algorithms based
on its superior results in the machine learning literature [18].
To the best of our knowledge, this is the first attempt to
exploit the hierarchical nature of malware files to improve the
classification accuracy and to use hierarchical learning in the
security domain, in general. Following the standard practice
of hierarchical learning testing [15], [18], we also compare
and contrast the performance of the hierarchical learning
algorithms against a flat (i.e. non-hierarchical) SVM. Flat
models are conventionally adopted in malware classification
research. We demonstrate on an extremely large dataset of 3.6
million files that inclusion of the label hierarchy significantly
reduces the binary error rate over traditional flat classification.
Our specific contributions are as follows: (1) We incorporate
the hierarchical structure of the malware labels, consisting of
a type, platform, family and variant, in its automated analysis.
We use state-of-the-art hierarchical learning frameworks for
this purpose; (2)We validate the performance of the algorithms
with 2.5 million training samples and 1.1 million test samples.
This is the largest scale empirical validation of these hierar-
chical algorithms and (3) Our empirical results demonstrate a
significant reduction in the binary error rate, as compared to
flat SVM, by incorporating the label hierarchy in the learning
framework.

II. LABEL TREE CONSTRUCTION

We construct the label tree using a top-down strategy.
For each sample, the type, platform, family, and variant are
derived from the hierarchical malware labels, and the training
data includes examples belonging to the 33 malware types.

Starting with the types, we next append nodes representing
the platforms and so on. We found that some malware families
or variants were extremely rare and had very few instances.
Training a multi-class classifier with very few samples in a
class may lead to poor performance. We therefore decided on a
threshold taken as 10,000 in our experiments, and all malware
leaf nodes not meeting this criteria were put in a Default node
under the same malware parent node. An unknown file that
does not have a malware type, platform, family or variant
represented in the training set can also be assigned to a Default
node during prediction.

After node thresholding, 52 malware families were retained.
The typical tree depth of the resulting label tree for malware
without (with) variants is 5 (6) including the root. The tree
depth for benign files is 2. Therefore when possible, we use the
maximum depth in the labels according to the leaf threshold.
Further, the distribution across malware types is not balanced.
Our objective in this work is to demonstrate the performance
of hierarchical learning on a real-world malware dataset. The
data we obtained from our company’s anti-malware products
reflects this real-world distribution which is unbalanced in
practice.

This method of label tree construction further allows us to
study the effects of specific malware types; for instance, one
may want to focus only on the malware types TrojanDown-
loader, Backdoor and Adware. In this case, the families, and
in some cases the variants, of these malware types form the
leaves of the tree and any other malware type is put in a
Default malware node at that level. An example of the label
tree construction is depicted in Figure 2.

III. DATASET AND FEATURE REPRESENTATION

The raw data obtained for this study was created by Mi-
crosoft’s anti-malware product team by modifying the pro-
duction engine used in the Windows operating system. As
part of the scanning process, an unknown file is first emulated
in the anti-malware engine to determine its behavior before
being run natively using the underlying operating system. In
addition to the hierarchical label, we were provided two types
of raw data collected during file emulation, including null-
terminated objects identified in the emulated process memory
and system API calls and their input parameters, for each
file. Typically, the null-terminated objects are strings which
have been unpacked as the malware executes in the emulator,
but sometimes they correspond to sections of executable code
which happen to contain a null-terminated pattern. In addition,
the emulator extracts the sequence of system API calls and
their associated parameters as the file is being emulated. An
example of a portion of this event stream for a Windows
portable execution (PE) file is shown in Table I.

The two sets of raw logs (Unpacked File Strings and System
API Calls Plus Parameters) allows us to create three types
of features for this study, namely, unpacked files strings,
trigrams of system API calls, and distinct combinations of
a system API call and an ordered parameter value. For the
first set of features utilized in our system, the Unpacked File
Strings are used directly. From the event stream, the API Call



3

File 

Clean Malware 

(a) The binary problem at the topmost level.

File 

Clean Malware 

Default Backdoor 
Trojan 

Downloader 

(b) The malware types of interest.

Hupigon Rbot 

Win32 

File 

Clean Malware 

Default Backdoor 

Win32 

Default 

Trojan 
Downloader 

Small Default 

(c) A portion of the complete label tree.

Fig. 2. Method of constructing the top-down label tree.

System API Call Event Stream

KERNEL32.DLL!GetVersion()
KERNEL32.DLL!HeapCreate(0, 4096, 0)
NTDLL.DLL!RtlAllocateHeap(0x00480000, 0, 320,
0x00000140)
KERNEL32.DLL!InitializeCriticalSection(0x0046b060)
KERNEL32.DLL!InitializeCriticalSection(0x0046b090)

TABLE I
AN EXAMPLE OF THE SYSTEM API CALL EVENT STREAM.

Trigram features are determined as unique combinations of
three consecutive system API calls. For the example system
API call stream, the first potential API trigram is (GetVersion,
HeapCreate, RtlAllocateHeap) and the second is (HeapCreate,
RtlAllocateHeap, InitializeCriticalSection). The System API
plus Parameter Value features are determined by unique
combinations of a system API call and a parameter such as
HeapCreate with the second parameter, dwInitialSize, set to a
value of 4096 bytes in Table I.

The product team provided us the raw logs from approxi-
mately 3.6 million files. We next constructed the feature rep-
resentation for these examples which we then randomly split
into two separate datasets including 2.5 million for training and
1.1 million for test. The original data contains 70.1% malware
and 30.9% benign files. Extracting all feature types from the
training files generated over 50 million potential features. We

employ feature selection, using mutual information [19], to
reduce the potential features to approximately 265 thousand
sparse binary features in order to avoid overfitting. That is,
each file is represented as a row in a sparse binary array, and
the appropriate column is set to one if the file contains the
corresponding feature. A sparse data format is used for the
data array in order to efficiently represent the file in memory.
The original training set includes over 13,800 distinct malware
family labels, however, not all files are assigned to an explicit
class representing their family or variant because most families
or variants did not meet the required 10,000 file threshold
described in the previous section.

IV. ALGORITHMS

SVMs have shown good results in several studies on mal-
ware classification literature [5], [10]. Furthermore, hierar-
chical learning has mostly been studied in the context of
support vector machines [15], [16], [17], [18]. To answer the
primary question, “Does using the existing label hierarchy
improve malware classification?”, in a controlled study, we
fixed the base classification algorithm as the SVM and the
optimization method (RDA). We therefore use the SVM to
isolate the improvement of hierarchical learning for malware
classification.

We study the performance of the Orthogonal Transfer
hierarchical learning algorithm proposed by Zhou et.al. [18].
This method is selected because of its superior empirical
performance, as reported in [18]. Since this method uses the
SVM as the base classifier, we use the flat multi-class SVM



4

learning algorithm proposed by Crammer and Singer [20] as
the baseline comparison. Our main goal is to precisely quantify
how the label hierarchy affects the malware classification accu-
racy. For fair comparisons, the original optimization problem
in both approaches is first transformed into an unconstrained
problem by eliminating the slack variables, and solved using
the regularized dual averaging (RDA) method [21] [22]. Our
methodology for comparing these algorithms matches that
from the machine learning community [18]. By using the same
RDA optimization technique and underlying hinge loss in the
SVM, any performance improvements are due to the hierar-
chical algorithm and labeling structure. We next describe the
algorithms at a high-level, where we adopt the mathematical
notation from [18]. The interested reader is encouraged to
consult the original paper which proposed each algorithm.

Baseline Algorithm: Flat Multi-Class SVM: The flat
multi-class SVM proposed by Crammer and Singer [20] learns
a mapping from the feature vectors {(x1), · · · , (xN )} of the N
training examples to their labels {y1, · · · , yN } where yk ∈ Y

and Y is the set of possible labels. For the Flat SVM, the
labels in Y only correspond to the leaf nodes in the label
tree in Figure 2(c); the label tree structure is ignored. In some
cases, the label may be a malware variant. In other cases,
the label may be a specific Default class in the label tree.
Each legitimate file is assigned the “Clean” label. The main
objective behind the SVM is to maximize the margin which is
the distance from each class’ decision boundary to its support
vectors. Only samples which are mispredicted contribute to
the weight vector updates. Correctly predicted samples do not
affect the training in any way. The Flat SVM learns a separate
hyperplane, with weight vector wi , for each class, and the
predicted class label for an unknown file is selected as the
one which has the largest score. The optimization problem for
the Flat SVM is:

minimize
1
2

∑
i∈Y

‖wi ‖
2 +

C
N

N∑
k=1

ξk (1)

subject to wT
yk

xk − wT
i xk ≥ 1 − ξk,

∀ i ∈ Y\{yk}, ∀ k ∈ {1, . . . , N},
ξk ≥ 0, ∀ k ∈ {1, . . . , N}.

The Flat SVM has two terms in the objective function. The
right-hand term computes the hinge loss associated with each
sample k and minimizes the number of misclassifications.
The slack variables ξ are greater than zero if the sample is
mispredicted (i.e. the predicted class label does not match the
true label) and zero otherwise. The left-hand term provides
regularization and favors solutions where the sum of the L2
norms of the weight vectors associated with each leaf node
is small. C is a trade-off parameter controlling the relative
importance of the two terms. The constraint imposes the
condition that the classifiers w should be trained in such a way
that for each training sample xk , the prediction score output
by the model wk corresponding to its actual label yk is higher
(at least by a threshold 1−ξk) than the prediction scores given
by all the other models.

Hierarchical Learning Algorithm: Orthogonal Transfer:
This algorithm was proposed by Zhou et al. [18], and each
node in the hierarchical label tree has a classifier wi . The
rationale of this algorithm is to enforce the classifier at each
node to be maximally different from the classifiers of its
ancestors; this way, the classifier at each node can capture
different information compared to those of its ancestors. To
achieve this goal, the classifier hyperplane at each node is
orthogonal (i.e. diverse) to all of its ancestors. Specifically,
the mathematical formulation is as follows:

minimize
1
2

m∑
i, j=1

Ki j

��wT
i wj

�� + C
N

N∑
k=1

ξk (2)

subject to wT
i xk − wT

j xk ≥ 1 − ξk, ∀ j ∈ S(i),

∀ i ∈ A+(yk), ∀ k ∈ {1, . . . , N},
ξk ≥ 0, ∀ k ∈ {1, . . . , N}.

The objective function is similar to (1) but has some key
differences. In the context of this hierarchical classification,
the labels in Y are identified as all nodes in the category
tree. In addition to minimizing the Euclidean norm of the
weight vector, as in the Flat SVM, the left-hand regularization
term ensures the orthogonality condition by the term |wT

i wj |.
The symmetric matrix K ∈ Rm×m (with Ki j ≥ 0 for all
i, j = 1 . . .m) encodes the hierarchical structure embedded
in the tree, and Ki j is set to 0 whenever node i is neither
an ancestor nor a dependent of node j. So, the orthogonality
condition holds for every node only for its set of ancestors.
The slack variable based term has a similar interpretation as
in the Flat SVM algorithm. The constraints also have a similar
interpretation as the Flat SVM but only consider a nodes’ sib-
lings, S(i). As in [18], A(i) are the ancestors (i.e. parents) of
node i not including itself, while A+(i) does include the node
i. Neither A(i) nor A+(i) include the root node. We used the
Regularized Dual Averaging (RDA) algorithm with optimality
bound from [18] to solve the optimization problem. Please
refer to [18] for more details about the solution technique. To
classify a test instance, we proceed level by level, where at
each level, the linear classifier generating the maximal score
among its siblings is selected, and that path is used to proceed
lower down the tree, until a leaf node is reached.

V. EXPERIMENTAL RESULTS

In this section, we empirically compare the performance
of the hierarchical learning algorithm against the Flat SVM
baseline algorithm. Each learning algorithm is trained on the
labeled training data, and its performance is evaluated on the
unseen test set. The parameter C in the SVM formulation
is taken as 100 in all our experiments. Our preliminary
investigations affirmed the fact that it is not possible to train
a model on the entire 2.5 million samples. We therefore used
the efficient mini-batch training approach in our experiments
to reduce the training time. In this technique, the entire training
data is split randomly into many batches of smaller size, and
the algorithms are trained incrementally on each batch. When
all the batches are covered in this way, a single pass or an
epoch is said to have been completed on the training data. For



5

subsequent epochs, the data is randomly shuffled again and
new mini-batches are selected. The mini-batch size is taken
as 10,000, and the training process repeated for 100 epochs
where the solution from one epoch is used as the starting
point for the next epoch. The best solution is selected based
on the accuracy on a held-out validation set. Each mini-batch
is randomly split into 70% for the actual mini-batch training
set and 30% for the validation set.

A. Binary Classification Results

The most important aspect of automated malware classi-
fication is differentiating malware from legitimate files. The
malware vs. benign detection results are depicted in Table II

Algorithm Binary Error Rate (%)

Flat SVM 3.90
Orthogonal 2.61

TABLE II
BINARY ERROR RATES IN PERCENTAGES. THE ERROR RATE FOR

ORTHOGONAL TRANSFER IS MUCH LOWER THAN THE FLAT SVM
BASELINE.

We see that the Orthogonal Transfer algorithm yields lower
error rate (2.61%) compared to the Flat SVM (3.90%). Thus,
by utilizing the label hierarchy, Orthogonal Transfer is able to
significantly reduce the binary error rate by 33.1% compared
to the Flat SVM without any additional manual effort.

We also evaluate the binary performance of the learners in
terms of the precision, recall, and F-Score in Table III. We note
that Orthogonal Transfer offers the highest precision (95.51%)
and F-Score (95.78%). Orthogonal Transfer’s recall (96.06%)
is only slightly less than that of the Flat SVM (97.96%).

Algorithm Precision (%) Recall (%) F-Score (%)

Flat SVM 89.32 97.96 93.44
Orthogonal 95.51 96.06 95.78

TABLE III
BINARY MALWARE DETECTION RESULTS. ORTHOGONAL TRANSFER HAS
THE HIGHEST PRECISION AND F-SCORE. ITS RECALL IS SLIGHTLY LESS

THAN FLAT SVM.

As reported in Table IV, we next compute the false positive
rate (FPR) and the false negative rate (FNR) for the binary
labels. In this case, a file is determined to be a false positive
if its true label is benign but is predicted by the classifier to
belong to any malware family or variant. Anti-virus companies
are much more concerned about false positives than false
negatives since removing a legitimate file may yield the
computer inoperable. The FPR for the Orthogonal Transfer
framework is much lower than the Flat SVM baseline, which
is critical.

B. Computation Time Analysis

Besides measuring the performance on the test sets, we also
report the time required to train the algorithms on 2.5 million

Algorithm FPR (%) FNR (%)

Flat SVM 4.73 2.04
Orthogonal 2.02 3.94

TABLE IV
FALSE POSITIVE RATES (FPRS) AND FALSE NEGATIVE RATES (FNRS) IN
PERCENTAGES. THE FPR FOR ORTHOGONAL TRANSFER IS MUCH LOWER

THAN THE FLAT SVM BASELINE.

samples. The training times (in hours) to complete 100 epochs
for the two algorithms studied in this paper are as follows: Flat
SVM: 165.75, Orthogonal: 61.31. These results indicate that
the Orthogonal Transfer algorithm is computationally much
more efficient in terms of training time on a per epoch basis
than the Flat SVM algorithm. It is also important to note that
while training requires days, all software is implemented in
C# in a single thread. The training time can be decreased
by implementing the system in C++ with multi-threading and
further reduced with acceleration by a GPU. Furthermore,
evaluating an unknown file using the Orthogonal Transfer
classifier is very fast due to computing the sum of several
sparse, linear classifiers at each level.

VI. RELATED WORK

Related work falls into two main categories including
malware classification and hierarchical machine learning. We
provide a summary of some of the important related work in
both areas.

Malware Classification: Given the significant threat to
users, malware classification has been an active area of re-
search recently. Ideka and Mathur provide a good overview of
previous work in this field in [1]. Kephart [5] proposed a neural
network-based system for automated malware classification.
Schultz et al. [9] compared the malware detection performance
of naive Bayes and multi-naive Bayes with signatures and an
inductive rule-learner. Kolter and Maloof [6] evaluated naive
Bayes, decision trees, support vector machines, and boosting
approaches for malware classification. Mody and Lee [13]
described a k-means approach for malware family clustering.
Bayer et al. [11] exploited locality sensitive hashing (LSH)
techniques to efficiently assemble sets of malware samples
based on the nature of their threats. Rieck et al. [10] studied
malware classification of malware families using a support
vector machine. Their approach is similar to our baseline, but
differs in several ways. They analyzed a corpus of 10,072
samples compared to 3.6M in our study. In addition, [10] does
not analyze the binary classification results.

Recently, El-Bakry [23] used an efficient Time Delay Neural
Network (TDNN) implemented in the frequency domain using
Fast Fourier Transforms (FFTs) for sequential malware classi-
fication. Ye et al. [24] proposed a hierarchical associative clas-
sifier for detecting malware in a gray list. Although this system
includes the term hierarchical in the name, this framework
merely uses a two-stage, rule-based classifier to improve detec-
tion performance; it does not utilize the label hierarchy of the
malware samples or hierarchical learning. Jang et al. [12] used



6

the Jaccard coefficient as the similarity metric together with
feature hashing for large-scale, high dimensional automated
malware analysis. A sequential approach using Hidden Markov
Models (HMMs) for malware classification was presented by
Muhaya et al. [25]. Karampatziakis [3] improved the baseline
classification of individual files included in containers (e.g.
.zip and .rar files) using two logistic regression models and
a bi-partite graph of containers and files. Based on a value
of information clustering criterion and confidence-weighted
linear classifier, Neugschwandtner et al. [8] improved sample
selection for automated analysis. Kong and Yan [7] presented
a malware family classifier which learned a metric distance to
discriminatively separate files belonging to these families.

Hierarchical Machine Learning: Hierarchical classifica-
tion has mostly been studied in the context of the support
vector machine (SVM) classifier. A good overview of the stan-
dard SVM formulation can be found in [26], [27]. Dumais and
Chen [17] proposed using the SVM for hierarchical learning
and evaluated a two layer hierarchy on a large web corpus.
Dekel et al. presented a large margin hierarchical classifier
[16]. Bianchi et al. [28] introduced the H-loss function for
training hierarchical classifiers based on the principle that
an erroneous prediction at a given node in the hierarchy
should not result in additional penalty in the subtree of the
node. The same authors also proposed the B-SVM algorithm
for hierarchical classification which approximated the Bayes
optimal classifier with respect to the H-loss and demonstrated
improved performance over hierarchical SVMs [29]. Cai and
Hofman [15] proposed the Tree Loss algorithm for hierarchical
learning. Zhou [18] demonstrated good hierarchical classifi-
cation performance using their Orthogonal Transfer algorithm,
which is evaluated in this work in the context of large-scale
malware classification. Due to its wide usage in hierarchical
classification, we adopt the SVM as the base classifier in this
work. The specific variant of SVM used in this paper was
published by Crammer and Singer [20].

VII. CONCLUSIONS

In this paper, we explore the usage of hierarchical learn-
ing algorithms for large-scale malware classification. The
malware label hierarchy is provided by the analysts during
file annotation. To the best of our knowledge, this is the
first research effort to exploit the label hierarchy to improve
malware classification accuracy without any additional extra
human effort. We tested the performances of one hierarchical
learning algorithm and one flat classification strategy on a real
world malware data with 2.5 million training samples and
1.1 million test examples. As mentioned previously, we use
the type, platform, family and variant-based label information
of a malware sample in this work. The Orthogonal Transfer
algorithm significantly outperforms the Flat SVM in terms of
the binary class error rate. This hierarchical algorithm also
offers significant improvement over flat classification in terms
of the false positive rate, precision, and F-Score. As part of
our future work, we plan to exploit the usage of multiple cores
and cluster nodes to decrease the training time.

Acknowledgment: The authors thank Dennis Batchelder for
his support and guidance during this project.

REFERENCES

[1] N. Idika and A. Mathur, “A survey of malware detection techniques,”
Purdue Univ., Tech. Rep., February 2007.

[2] D. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos,
“Polonium: Tera-scale graph mining and inference for malware detec-
tion,” in SDM, 2011.

[3] N. Karampatziakis, J. Stokes, A. Thomas, and M. Marinescu, “Using
file relationships in malware classification,” in DIMVA, 2012, pp. 1–20.

[4] Symantec, “Machine learning for anti-virus software,” http://www.
aboutdm.com/2013/04/machine-learning-for-anti-virus-software.html.

[5] J. O. Kephart, “A biologically inspired immune system for computers,”
in International Workshop on the Synthesis and Simulation of Living
Systems (Artificial Life). MIT Press, 1994, pp. 130–139.

[6] J. Kolter and M. Maloof, “Learning to detect and classify malicious
executables in the wild,” JMLR, pp. 2721–2744, 2006.

[7] D. Kong and G. Yan, “Discriminant malware distance learning on
structural information for automated malware classification,” in KDD,
2013, pp. 1357–1365.

[8] M. Neugschwandtner, P. M. Comparetti, G. Jacob, and C. Kruegel,
“Forecast: Skimming off the malware cream,” in Annual Computer
Security Applications Conference (ACSAC). IEEE Computer Society
Press, 2011.

[9] M. Schultz, E. Eskin, and E. Zadok, “Data mining methods for detection
of new malicious executables,” in IEEE Symposium on Security and
Privacy, 2001.

[10] K. Rieck, T. Holz, C. Willems, P. Dussel, and P. Laskov, “Learning and
classification of malware behavior,” in DIMVA, 2008.

[11] U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in Annual Network and
Distributed System Security Symposium (NDSS), 2009.

[12] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: Feature hashing
malware for scalable triage and semantic analysis,” in CCS, 2011.

[13] T. Lee and J. Mody, “Behavioral classification,” in Annual Conf. of the
European Institute for Computer Antivirus Research (EICAR), 2006.

[14] W. Li, J. Han, and J. Pei, “Cmar: Accurate and efficient classification
based on multiple class-association rules,” in IEEE ICDM, 2001.

[15] L. Cai and T. Hofmann, “Hierarchical document categorization with
support vector machines,” in CIKM, 2004.

[16] O. Dekel, J. Keshet, and Y. Singer, “Large margin hierarchical classifi-
cation,” in ICML, 2004.

[17] S. Dumais and H. Chen, “Hierarchical classification of web content,” in
SIGIR, 2000.

[18] D. Zhou, L. Xiao, and M. Wu, “Hierarchical classification via orthogonal
transfer,” in ICML, 2011.

[19] C. D. Manning, P. Raghavan, and H. Schutze, An Introduction to
Information Retrieval. Cambridge University Press, 2009.

[20] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” JMLR, vol. 2, pp. 265–292,
2001.

[21] Y. Nesterov, “Primal-dual subgradient methods for convex problems,”
Mathematical Programming, vol. 120, pp. 221–259, 2009.

[22] L. Xiao, “Dual averaging methods for regularized stochastic learning
and online optimization,” JMLR, vol. 11, pp. 2543–2596, 2010.

[23] H. El-Bakry, “Fast virus detection by using high speed time delay neural
networks,” Journal in Computer Virology, vol. 6, pp. 115–122, 2010.

[24] L. Ye, T. Li, K. Huanga, Q. Jiang, and Y. Chen, “Hierarchical associative
classifier (hac) for malware detection from the large and imbalanced gray
list,” Journal of Intelligent Information System, vol. 35, pp. 1–20, 2010.

[25] F. Muhaya, M. Khan, and Y. Xiang, “Polymorphic malware detection
using hierarchical hidden markov model,” in IEEE DASC, 2011.

[26] N. Cristianini and J. Shawe-Taylor, An introduction to support vector
machines. Cambridge University Press, 2000.

[27] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2007.

[28] N. Bianchi, C. Gentile, A. Tironi, and L. Zaniboni, “Hierarchical
classification: Combining bayes with svm,” in NIPS, 2005.

[29] N. Bianchi, C. Gentile, and L. Zaniboni, “Hierarchical classification:
Combining bayes with svm,” in ICML, 2006.


