
Rapid Adaptation with Conditionally Shifted Neurons

Tsendsuren Munkhdalai 1 Xingdi Yuan 1 Soroush Mehri 1 Adam Trischler 1

Abstract

We describe a mechanism by which artificial neu-
ral networks can learn rapid adaptation – the abil-
ity to adapt on the fly, with little data, to new
tasks – that we call conditionally shifted neurons.
We apply this mechanism in the framework of
metalearning, where the aim is to replicate some
of the flexibility of human learning in machines.
Conditionally shifted neurons modify their activa-
tion values with task-specific shifts retrieved from
a memory module, which is populated rapidly
based on limited task experience. On metalearn-
ing benchmarks from the vision and language
domains, models augmented with conditionally
shifted neurons achieve state-of-the-art results.

1. Introduction
The ability to adapt our behavior rapidly in response to
external or internal feedback is a primary ingredient of hu-
man intelligence. This cognitive flexibility is commonly
ascribed to prefrontal cortex (PFC) and working memory in
the brain. Neuroscientific evidence suggests that these areas
use incoming information to support task-specific temporal
adaptation and planning (Stokes et al., 2013; Siegel et al.,
2015; Miller & Buschman, 2015; Brincat & Miller, 2016).
This occurs on the fly, within only a few hundred millisec-
onds, and supports a wide variety of task-specific behaviors
(Monsell, 2003; Sakai, 2008).

On the other hand, most existing machine learning systems
are designed for a single task. They are trained through
one optimization phase after which learning ceases. Sys-
tems built in such a train-and-then-test manner do not scale
to complex, realistic environments: they require gluts of
single-task data and are prone to issues related to distribu-
tional shifts, such as catastrophic forgetting (Srivastava et al.,
2013; Goodfellow et al., 2014; Kirkpatrick et al., 2016) and
adversarial data points (Szegedy et al., 2013).

1Microsoft Research, Montréal, Québec, Canada.
Correspondence to: Tsendsuren Munkhdalai <tsend-
suren.munkhdalai@microsoft.com>.

There is growing interest and progress in building flexi-
ble, adaptive models, particularly within the framework
of metalearning (learning to learn) (Mitchell et al., 1993;
Andrychowicz et al., 2016; Vinyals et al., 2016; Bachman
et al., 2017). The goal of metalearning algorithms is the
ability to learn new tasks efficiently, given little training
data for each individual task. Metalearning models learn
this ability (to learn) by training on a distribution of related
tasks.

In this work we develop a neural mechanism for metalearn-
ing via rapid adaptation that we call conditionally shifted
neurons. Conditionally shifted neurons (CSNs), like stan-
dard artificial neurons, produce activation values based on
input from connected neurons modulated by the connection
weights. Additionally, they have the capacity to shift their
activation values on the fly based on auxiliary conditioning
information. These conditional shifts adapt model behavior
to the task at hand.

A model with CSNs operates in two phases: a descrip-
tion phase and a prediction phase. Assume, for each task
τ ∼ p(τ), that we have access to a description Dτ . In
the simplest case, this is a set of example datapoints and
their corresponding labels: Dτ = {(x′i, y′i)}ni=1.1,2 In the
description phase, the model processes Dτ and extracts con-
ditioning information as a function of its performance on
Dτ . Based on this information, it generates activation shifts
to adapt itself to the task and stores them in a key-value
memory. In the prediction phase, the model acts on unseen
datapoints xj ∈ τ , from the same task, to predict their labels
yj . To improve these predictions, the model retrieves shifts
from memory and applies them to the activations of indi-
vidual neurons. During training, the model learns the meta
procedure of how to extract conditioning information in the
description phase and generate useful conditional shifts for
the prediction phase. At test time, it uses this procedure to
adapt itself to new tasks from p(τ).

We define and investigate two forms of conditioning infor-
mation in this work (§2.3), one based on error gradients and
another based on direct feedback alignment (Lillicrap et al.,
2016; Nøkland, 2016); however, various other sources of

1More abstractly, a task description could be given by a set of
instructions or demonstrations of expert behavior.

2In a C-way, k-shot classification task, n = k × C.

ar
X

iv
:1

71
2.

09
92

6v
2

 [
cs

.L
G

]
 7

 M
ar

 2
01

8

Rapid Adaptation with Conditionally Shifted Neurons

conditioning are possible.

Our proposed neuron-level adaptation has several advan-
tages over previous methods for metalearning that adapt the
connections between neurons, for instance via fast weights
(Munkhdalai & Yu, 2017) or an optimizer (Finn et al., 2017;
Ravi & Larochelle, 2017). First, it is more efficient compu-
tationally, since the number of neurons is generally much
less than the number of weight parameters (e.g., the number
of weights scales quadratically in the number of neurons per
layer for a fully connected network). Second, conditionally
shifted neurons can be incorporated into various neural ar-
chitectures, including convolutional and recurrent networks,
without special modifications to suit the structure of such
models.

After describing the details of our framework, we demon-
strate experimentally that ResNet (He et al., 2016) and deep
LSTM (Hochreiter & Schmidhuber, 1997) models equipped
with CSNs achieve 56.88% and 71.94% accuracy on the
standard Mini-ImageNet 1- and 5-shot benchmarks, and
41.25%, 52.1%, and 57.8% accuracy on Penn Treebank 1-,
2-, and 3-shot language modeling tasks. These results mark
a significant improvement over the previous state of the art.

Our primary contributions in this paper are as follows: (i) we
propose a generic neural mechanism, conditionally shifted
neurons, by which learning systems can adapt on the fly;
(ii) we introduce direct feedback as a computationally in-
expensive metalearning signal; and (iii) we implement and
evaluate conditionally shifted neurons in several widely-
used neural network architectures.3

2. Conditionally Shifted Neurons
The core idea of conditionally shifted neurons is to modify
a network’s activation values on the fly, by shifting them as
a function of auxiliary conditioning information. A layer
with CSNs takes the following form:

ht =

{
σ(at) + σ(βt) t 6= T

softmax(at + βt) t = T
(1)

for hidden layer t or output layer T (which represents a prob-
ability distribution). The pre-activation vector at ∈ RLt , for
a layer with Lt neurons, can take various forms depending
on the network architecture (fully connected, convolutional,
etc.). The nonlinear function σ computes an element-wise
activation. βt ∈ RLt is the layer-wise conditional shift vec-
tor, determined from layer-wise conditioning information It
(defined in §2.3).

To implement a model with CSNs, we must define functions
that extract and transform the conditioning information It
into the shifts βt. For this we build on the MetaNet ar-

3We plan to release our code upon publication.

chitecture of Munkhdalai & Yu (2017). MetaNet consists
of a base learner plus a shared meta learner with work-
ing memory. For each task τ , MetaNet processes the task
description Dτ = {(x′i, y′i)}ni=1 and stores relevant “meta
information” in a key-value memory. To classify unseen
examples xj from the described task, the model queries its
working memory with an attention mechanism to generate a
set of fast weights; these modify the base learner, which in
turn predicts labels yj .

To begin, we describe model details for a fully connected
feed-forward network (FFN) with CSNs. The architecture
is depicted in Figure 1. As shown, the model factors into a
base learner, which makes predictions on inputs, and a meta
learner. The meta learner extracts conditioning information
from the base learner and uses a key-value memory to store
and retrieve activation shifts. After walking through the
model details, we define error gradient and direct feedback
variants of the conditioning information It (§2.3). In §2.4
and §2.5 we describe how CSNs can be added to ResNet
and LSTM architectures, respectively.

2.1. Feed-Forward Networks with Conditionally
Shifted Neurons

Our model operates in two phases: a description
phase, wherein it processes the task description Dτ =
{(x′i, y′i)}ni=1, and a prediction phase, wherein it acts on
unseen datapoints xj to predict their labels yj . In an episode
of training or test, we sample a task from p(τ). The model
then ingests the task description and uses what it learns
therefrom, via the conditioning information, to make predic-
tions on unseen task data.

2.1.1. BASE LEARNER

The base learner maps an input datapoint to its label pre-
diction through layers described by equation 1, where in
the FFN case, the pre-activation vector at is given by
at = Wtht−1 + bt. Weight matrix Wt and bias vector
bt are learned parameters.

The base learner operates similarly in both phases. During
the description phase, the base learner’s input is a datapoint
x′i fromDτ . Its softmax output is an estimate ŷ′i for the label
y′i. The conditional shifts βt in eq. 1 are set to 0 in this phase.

During the prediction phase, the base learner operates on
inputs xj . It receives conditional shifts βt from the meta
learner and applies them layer-wise according to eq. 1. Con-
ditioned on these shifts, the base learner computes an esti-
mate ŷj for the label yj .

2.1.2. META LEARNER

The meta learner’s operation is more complicated and differs
more significantly from phase to phase.

Rapid Adaptation with Conditionally Shifted Neurons

Memory

AttentionKeys

Values

t = 1

t

t = T

V1,1 = g(I1,1) V1,2 = g(I1,2) V1,n = g(I1,n). . .

Base

Learner
xj

ŷj

Description Phase Prediction Phase

𝐼1 𝐼2 𝐼𝑛

𝐷𝜏:

Base

Learner

𝑥′1 𝑦′1

ො𝑦1
′

L

𝑥′2 𝑦′2

ො𝑦2
′

L

𝑥′𝑛 𝑦′𝑛

ො𝑦n
′

L

. . .
Description

βt

Vt,1 = g(It,1) Vt,2 = g(It,2) Vt,n = g(It,n). . .

VT,1 = g(IT,1) VT,2 = g(IT,2) VT,n = g(IT,n). . .

k'1 = f(x'1) k'2 = f(x'2) k'n = f(x'n). . .

Base

Learner

Base

Learner

kj = f(xj)

Meta Learner

βt = 0

Figure 1. Schematic illustration of our model with conditionally shifted neurons. In the description phase, the meta learner populates
working memory with keys and values, based on the base learner’s performance on the task description; in the prediction phase, the meta
learner retrieves task-specific shifts from memory through key-based attention and feeds them to the base learner to adapt it to the task.

During the description phase, as the base learner processes
x′i ∈ Dτ , the meta learner extracts layer-wise condition-
ing information for this example, It,i, according to eq. 6
or 7. The meta learner uses the conditioning information
to generate memory values. These act as “template” condi-
tional shifts for the task, and are computed via the memory
function g:

Vt,i = g(It,i), (2)

where Vt,i ∈ IRLt encodes the shift template at layer t for
input x′i. There are n of these; we arrange them into matrix
Vt ∈ IRn×Lt over the full task description.

For parsimony, we desire a single memory function g for
all layers of the base learner, which may have different
sizes Lt. Therefore, we parameterize g as a multi-layer
perceptron (MLP) that operates independently on the vector
of conditioning information for each neuron (defined in
§2.3). More sophisticated Lt-agnostic parameterizations for
g are possible, such as recurrent networks.

In parallel during the description phase, the meta learner
constructs an embedded representation of the input that it
uses to key the memory. This is the objective of the key
function, f , which we parameterize here as an MLP with
a linear output layer. The key function generates, for each
description input, a d-dimensional key vector k′i = f(x′i).

At prediction time, the meta learner generates a memory
query kj from input xj using the key function. It uses kj to
recall layer-wise shifts βt from memory via soft attention:

α = softmax
i

(cos(kj , k
′
i)), (3)

βt = α>Vt. (4)

Note that keys correspond to inputs, not base-learner layers.
The meta learner finally feeds the layer-wise shifts βt to the
base learner to condition the computation of ŷj .

2.2. Training and Test

We train and test the model in episodes. For each episode:
we sample a training or test task from p(τ), process its
description Dτ , and then feed its unseen data forward to
obtain their label predictions. Training and test tasks are
both drawn from the same distribution, but crucially, we
partition the data such that the classes seen at training time
do not overlap with those seen at test time.

Over a collection of training episodes, we optimize the
model parameters end-to-end via stochastic gradient de-
scent (SGD). Gradients are taken with respect to the (cross-
entropy) task losses, Lτ =

∑
j LCE(ŷj , yj). In this scheme,

the model’s computational graph contains the operations for
processing the description, like the transformation of condi-

Rapid Adaptation with Conditionally Shifted Neurons

tioning information and the generation of memory keys and
values. Parameters of these operations are also optimized.

2.3. Conditioning Information

Error gradient information Inspired by the success of
MetaNets, we first consider gradients of the base learner’s
loss on the task description as the conditioning information.
To compute these error gradients we apply the chain rule
and the standard backpropagation algorithm to the base
learner. Given a true label y′i from the task description and
the model’s corresponding label prediction ŷ′i, we obtain
loss gradients for base-learner neurons at layer t as

∇t,i =
∂L(ŷ′i, y′i)

∂at
, (5)

where at is the Lt-dimensional vector of pre-activations at
layer t, ∇t,i has the same size, and we denote with L(·) a
loss function (such as the cross entropy loss on the labels).
Note that L here is not the target of optimization via SGD.

We obtain the conditioning information It,i,` for each neu-
ron (indexed by `) using the gradient preprocessing formula
of Andrychowicz et al. (2016):

It,i,` =

{(
log(|∇t,i,`|)

p , sgn(∇t,i,`)
)

if |∇t,i,`| ≥ e−p

(−1, ep∇t,i,`) otherwise
(6)

where sgn is the signum function and we set p = 7. We
use this preprocessing to smooth variation in It,i,`, since
gradients with respect to different base-learner activations
can have very different magnitudes. By eq. 6, each neuron
obtains a 2-dimensional vector of conditioning information.
In this case, we can interpret eq. 1 as a one-step, transformed
gradient update on the neuron activations via βt. “Raw” gra-
dients are transformed through preprocessing, the memory
read and write operations, and the nonlinearity σ.

Because backpropagation is inherently sequential, this in-
formation is expensive to compute. It becomes increasingly
costly for deeper networks, such as RNNs processing long
sequences.

Direct feedback information Direct feedback (DF) infor-
mation is inspired by feedback alignment methods (Lillicrap
et al., 2016; Nøkland, 2016) and biologically plausible deep
learning (Bengio et al., 2015). We obtain the DF information
for base-learner neurons at layer t as

It,i,` = σ′(at,`) · (ŷ′i − y′i), (7)

where σ′(·) represents the derivative of the nonlinear ac-
tivation function σ and (ŷ′i − y′i) is the derivative of the
cross entropy loss with respect to the softmax input. Thus,
the DF conditioning information for each neuron is the

derivative of the loss function scaled by the derivative of the
activation function. In the DF case, each neuron obtains a
C-dimensional vector of information, with C the number
of output classes. We can compute this conditioning infor-
mation for all neurons in a network simultaneously, with
a single multiplication. This is more efficient than sequen-
tially locked backpropagation-based error gradients. Fur-
thermore, to obtain DF information, it is sufficient that only
the loss and neuron activation functions are differentiable.
This is more relaxed than for backpropagation methods. We
demonstrate the effectiveness of both conditioning variants
in §4.

2.4. Deep Residual Networks with CSNs

For ResNets (He et al., 2016) we incorporate conditionally
shifted neurons into the output of a residual block. Let us
denote the residual block as ResBlock, which is defined as
follows:

h1 = ReLU(conv(x))

h2 = ReLU(conv(h1))

h3 = conv(h2)

h4 = conv(x)

at = h3 + h4

where x and at are the inputs to the block and the output
pre-activations, respectively. Function conv denotes a con-
volutional layer, which may optionally be followed by a
batch normalization (Ioffe & Szegedy, 2015) layer. The
activations ht of the CSNs for the ResBlock are computed
as:

ht = σ(at) + σ(βt)

where βt is the task-specific shift retrieved from the memory,
constructed based on the activation values at analogously
to the FFN case; i.e., the conditioning information is com-
puted for neurons at the output of each residual block. We
stack several residual blocks with CSNs to construct a deep
adaptive ResNet model. We use the ReLU function as the
nonlinearity σ in this model.

2.5. Long Short-Term Memory Networks with CSNs

Given the current input xt, the previous hidden state ht−1,
and the previous memory cell state ct−1, an LSTM model
with CSNs computes its gates, new memory cell states, and
hidden states at time step t with the following update rules:

it = Sigmoid(Wi[xt;ht−1] + bi)

ft = Sigmoid(Wf [xt;ht−1] + bf)

ot = Sigmoid(Wo[xt;ht−1] + bo)

ct = σ(Wv[xt;ht−1] + bv)� it + ct−1 � ft
ht = (σ(ct) + σ(βt))� ot

Rapid Adaptation with Conditionally Shifted Neurons

where� represents element-wise multiplication, [.; .] is con-
catenation, and βt is the task-specific shift from the memory.
In the LSTM case, the memory is constructed by processing
conditioning information extracted from the memory cell
ct. By stacking such layers together we build a deep LSTM
model that adapts across both depth and time. We use the
tanh function as the nonlinearity σ in this model.

3. Related Work
Among the many problems in supervised, reinforcement,
and unsupervised learning that can be framed as metalearn-
ing, few-shot learning has emerged as a natural and popular
test bed. Few-shot supervised learning refers to a scenario
where a learner is introduced to a sequence of tasks, where
each task entails multi-class classification given a single or
very few labeled examples per class. A key challenge in this
setting is that the classes or concepts vary across the tasks;
thus, models require a capacity for rapid adaptation in order
to recognize new concepts on the fly.

Few-shot learning problems were previously addressed us-
ing metric learning methods (Koch, 2015). Recently, there
has been a shift towards building flexible models for these
problems within the learning-to-learn paradigm (Mishra
et al., 2017; Santoro et al., 2016). Vinyals et al. (2016)
unified the training and testing of a one-shot learner under
the same procedure and developed an end-to-end, differen-
tiable nearest-neighbor method for one-shot learning. More
recently, one-shot optimizers were proposed by Ravi &
Larochelle (2017); Finn et al. (2017). The MAML frame-
work (Finn et al., 2017) learns a parameter initialization
from which a model can be adapted rapidly to a given task
using only a few steps of gradient updates. To learn this ini-
tialization it makes use of more sophisticated second-order
gradient information. Here we harness only first-order gradi-
ent information, or the simpler direct feedback information.

As highlighted, the architecture of our model with condi-
tionally shifted neurons is closely related to Meta Networks
(Munkhdalai & Yu, 2017). The MetaNet modifies synaptic
connections (weights) between neurons using fast weights
(Schmidhuber, 1987; Hinton & Plaut, 1987) to implement
rapid adaptation. While MetaNet’s fast weights enable flexi-
bility, it is very expensive to modify these weights when the
connections are dense. Neuron-level adaptation as proposed
in this work is significantly more efficient while lending
itself to a range of network architectures, including ResNet
and LSTM. Other previous work on metalearning has also
formulated the problem as two-level learning: specifically,
“slow” learning of a meta model across several tasks, and
“fast” learning of a base model that acts within each task
(Schmidhuber, 1987; Bengio et al., 1990; Hochreiter et al.,
2001; Mitchell et al., 1993; Vilalta & Drissi, 2002; Mishra
et al., 2017). Schmidhuber (1993) discussed the use of net-

work weight matrices themselves for continuous adaptation
in dynamic environments.

Viewed as a form of feature-wise transformation, CSNs
are closely related to conditional normalization techniques
(Lei Ba et al., 2015; De Vries et al., 2017; Perez et al., 2017).
FiLM (Perez et al., 2017), the most similar such approach,
modulates CNN feature maps using global scale and shift
operations conditioned on an auxiliary input modality.In
contrast, CSNs apply shifts to individual neurons’ activa-
tions, locally, and this modification is based on the model’s
behavior on the task description rather than the input itself.

In the case of gradient-based conditioning information, our
approach can be viewed as a synthesis of a conditional nor-
malization model (in the style of FiLM) with a learned opti-
mizer (in the style of Andrychowicz et al. (2016)). Specifi-
cally, the learned memory and key functions, g and f , trans-
form error gradients into the conditioning shifts βt, which
are then applied like a one-step update to the activation
values. A CSN model uses this learned optimizer on the fly.

4. Experimental Evaluation
We evaluate the proposed CSNs on tasks from the vision
and language domains. Below we describe the datasets we
evaluate on and the according preprocessing steps, followed
by test results and an ablation study.

4.1. Few-shot Image Classification

In the vision domain, we used two widely adopted few-
shot classification benchmarks: the Omniglot and Mini-
ImageNet datasets.

Omniglot consists of images from 1623 classes from 50
different alphabets, with only 20 images per class (Lake
et al., 2015). As in previous studies, we randomly selected
1200 classes for training and 423 for testing and augmented
the training set with 90, 180 and 270 degree rotations. We
resized the images to 28 × 28 pixels for computational
efficiency.

For the Omniglot benchmark we performed 5- and 20-way
classification tests, each with one or five labeled examples
from each class as the description Dτ . We use a convolu-
tional network (CNN) with 64 filters as the base learner.
This network has 5 convolutional layers, each of which uses
3× 3 convolutions followed by the ReLU nonlinearity and
a 2 × 2 max-pooling layer. Convolutional layers are fol-
lowed by a fully connected (FC) layer with softmax output.
Another CNN with the same architecture is used for the
key function f . We use CSNs in the last four layers of
the CNN components, referring to this model as “adaCNN.”
Full implementation details can be found in Appendix A.

Table 1 shows that our adaCNN model achieves competitive,

Rapid Adaptation with Conditionally Shifted Neurons

Table 1. Omniglot few-shot classification test accuracy for error gradient (∇) and direct feedback (DF) conditioning information.
5-way 20-way

Model 1-shot 5-shot 1-shot 5-shot

Siamese Net (Koch, 2015) 97.3 98.4 88.2 97.0
MANN (Santoro et al., 2016) 82.8 94.9 - -
Matching Nets (Vinyals et al., 2016) 98.1 98.9 93.8 98.5
MAML (Finn et al., 2017) 98.7 ± 0.4 99.9 ± 0.3 95.8 ± 0.3 98.9 ± 0.2
MetaNet (Munkhdalai & Yu, 2017) 98.95 - 97.0 -
TCML (Mishra et al., 2017) 98.96 ± 0.2 99.75 ± 0.11 97.64 ± 0.3 99.36 ± 0.18

adaCNN (∇) 98.41 ± 0.16 99.27 ± 0.12 95.95 ± 0.43 98.48 ± 0.06
adaCNN (DF) 98.42 ± 0.21 99.37 ± 0.28 96.12 ± 0.31 98.43 ± 0.05

Table 2. Mini-ImageNet few-shot classification test accuracy for error gradient (∇) and direct feedback (DF) conditioning information.
5-way

Model 1-shot 5-shot

Matching Nets (Vinyals et al., 2016) 43.6 55.3
MetaLearner LSTM (Ravi & Larochelle, 2017) 43.4 ± 0.77 60.2 ± 0.71
MAML (Finn et al., 2017) 48.7 ± 1.84 63.1 ± 0.92
MetaNet (Munkhdalai & Yu, 2017) 49.21 ± 0.96 -

adaCNN (∇) 48.26 ± 0.63 62.80 ± 0.41
adaCNN (DF) 48.34 ± 0.68 62.00 ± 0.55

TCML (Mishra et al., 2017) 55.71 ± 0.99 68.88 ± 0.92

adaResNet (∇) 56.62 ± 0.69 71.69 ± 0.67
adaResNet (DF) 56.88 ± 0.62 71.94 ± 0.57

though not state-of-the-art, results on the Omniglot tasks.
There is an obvious ceiling effect among the best performing
models as accuracy saturates near 100%.

Mini-ImageNet features 84× 84-pixel color images from
100 classes (64/16/20 for training/validation/test splits) and
each class has 600 exemplar images. We ran our experi-
ments on the class subset released by Ravi & Larochelle
(2017). Compared to Omniglot, Mini-ImageNet has fewer
classes (100 vs 1623) with more labeled examples provided
of each class (600 vs 20). Given this larger number of
examples, we evaluated a similar adaCNN model with 32
filters as well as a model with more sophisticated ResNet
components (“adaResNet”) on the Mini-ImageNet 5-way
classification tasks. The ResNet architecture follows that
of TCML (Mishra et al., 2017) with two exceptions due to
memory constraints. Instead of two 1× 1 convolutional lay-
ers with 2048 and 512 filters we use only a single such layer
with 1024 filters, and the ReLU nonlinearity instead of its
leaky variant. We incorporate CSNs into the last two resid-
ual blocks as well as the two fully connected output layers.
Full implementation details can be found in Appendix A.

For every 400 training tasks, we tested the model for another
400 tasks sampled from the validation set. If the model
performance exceeded the previous best validation result,
we applied it to the test set. Following previous approaches

that we compare with in Table 2, we sampled another 400
tasks randomly from the test set to report model accuracy.

Unlike Omniglot, there remains significant room for im-
provement on Mini-ImageNet. As shown in Table 2, on
this more challenging task, CNN-based models with con-
ditionally shifted neurons achieve performance just below
that of the best CNN-based approaches like MAML and
MetaNet (recall that these modify weight parameters rather
than activation values). The more sophisticated adaResNet
model, on the other hand, achieves state-of-the-art results.
The best-performing adaResNet (DF) yields almost 10%
improvement over the corresponding adaCNN model and
improves over the previous best result of TCML by 1.16%
and 3.06% on the one and five shot 5-way classification
tasks, respectively. Note that TCML likewise uses a ResNet
architecture. The best accuracy among five different test
runs of the 2-layer adaLSTM with DF conditioning was
72.91% on the five-shot task.

4.2. Few-shot Language Modeling

To evaluate the effectiveness of recurrent models with condi-
tionally shifted neurons, we ran experiments on the few-shot
Penn Treebank (PTB) language modeling task introduced
by Vinyals et al. (2016).

Rapid Adaptation with Conditionally Shifted Neurons

Table 3. Penn Treebank few-shot classification test accuracy for error gradient (∇) and direct feedback (DF) conditioning information.
5-way (400 random/all-inclusive)

Model 1-shot 2-shot 3-shot

LSTM-LM oracle (Vinyals et al., 2016) 72.8 72.8 72.8
Matching Nets (Vinyals et al., 2016) 32.4 36.1 38.2

2-layer LSTM + adaFFN (∇) 32.55/33.2 44.15/46.0 50.4/51.7
1-layer adaLSTM (∇) 36.55/37.7 43.25/44.6 50.7/52.1
2-layer adaLSTM (∇) 43.1/43.0 52.05/54.2 57.35/58.4
2-layer LSTM + adaFFN (DF) 33.65/35.3 46.6/47.8 51.4/52.6
1-layer adaLSTM (DF) 36.35/36.3 41.6/43.4 49.1/50.1
2-layer adaLSTM (DF) 41.25/43.2 52.1/52.9 57.8/58.8

In this task, a model is given a query sentence with one
missing word and a support set (i.e., description) of one-
hot-labeled sentences that also have one missing word each.
One of the missing words in the description set is identical
to that missing from the query sentence. The model must
select the label of this corresponding sentence.

Following Vinyals et al. (2016), we split the PTB sentences
into training and test such that, for the test set, target words
for prediction and the sentences in which they appear are
unseen during training. Concretely, we removed the test
target words as well as sentences containing those words
from the training data. This process necessarily reduces the
training data and increases out-of-vocabulary (OOV) test
words. We used the same 1000 target words for testing as
provided by Vinyals et al. (2016).

We evaluated two models with conditionally shifted neurons
on 1-, 2-, and 3-shot language modelling (LM) tasks. In
both cases, we represent words with randomly initialized
dense embeddings. For the first model we stacked a 3-layer
feed-forward net with CSNs (adaFFN) on top of an LSTM
network (LSTM+adaFFN) at each prediction timestep. In
this model, only the adaFFN can adapt to the task while
it processes the hidden state of the underlying LSTM. The
LSTM encoder builds up the context for each word and
provides a generic (non-task-specific) representation to the
adaFFN. Both components are trained jointly.

The second model we propose for this task is more flex-
ible, an LSTM with conditionally shifted neurons in the
recurrence (adaLSTM). This entire model is adapted with
task-specific shifts at every time step. For few-shot classi-
fication output, a softmax layer with CSNs is stacked on
top of the adaLSTM. Comparing LSTM+adaFFN and adaL-
STM, the former is much faster since we only adapt the
activations of the three feedforward layers, but it lacks full
flexibility since the LSTM is unaware of the current task
information. We also evaluated deep (2-layer) versions of
both LSTM+adaFFN and adaLSTM models. Full imple-
mentation details can be found in Appendix A.

We used two different methods to form test tasks for evalu-

ation. First, we randomly sampled 400 tasks from the test
data and report the average accuracy. Second, we make sure
to include all test words in the task formulation. We ran-
domly partition the 1000 target words into 200 groups and
solve each group as a task. In the random approach there is
a chance that a word could be missed or included multiple
times in different tasks. However, the random approach also
enables formulation of an exponential number of test tasks.

Table 3 summarizes our results. The approximate upper
bound achieved by the oracle LSTM-LM of Vinyals et al.
(2016) is 72.8%. Our best accuracy – around 58% on the
3-shot task – comes using a 2-layer adaLSTM, and improves
over the Matching Nets results by 11.1%, 16.0% and 19.6%
for 1-, 2-, and 3-shot tasks, respectively. Comparing model
variants, adaLSTM consistently outperforms the standard
LSTM augmented with a conditionally shifted output FFN,
and deeper models yield higher accuracy. Providing more
sentences for the target word increases performance, as ex-
pected. These results indicate that our model’s few-shot lan-
guage modelling capabilities far exceed those of Matching
Networks (Vinyals et al., 2016). Some of this improvement
surely arises from adaLSTM’s recurrent structure, which
is known to apply well to sequence-based tasks and in the
language domain. However, it is one of the strengths of
conditionally shifted neurons, over alternative approaches
like Matching Networks, that they can be ported easily to
various neural architectures.

Comparing direct feedback information to the gradient-
based variant across the full suite of experiments, we ob-
serve overall that DF information performs competitively
well. Even more positively, DF information speeds up the
the model runtime considerably. For example, the 2-layer
adaLSTM processed 400 test episodes in 200 seconds using
gradient information vs. 160 seconds for DF information,
representing a speedup of about 25%.

4.3. Ablation Study

To better understand our model, we performed an ablation
study on adaCNN trained on Mini-ImageNet and the 1-layer

Rapid Adaptation with Conditionally Shifted Neurons

adaLSTM trained on PTB. Results are shown in Figure 2
and Figure 3, respectively.

45.47 46.53
48.26

28.5

46.46
48.32

0

10

20

30

40

50

60

g = λ Raw β Baseline One-layer g Raw β Baseline

Error Gradient Direct Feedback

Figure 2. Model ablation for adaCNN tested on the Mini-ImageNet
one-shot task. Blue: g as a scalar multiplier of∇t,i (gradient case)
or perceptron (DF case); Green: β without normalization; Red:
baseline model.

20.05

29.1

36.55

25.6

28.35

36.35

0

5

10

15

20

25

30

35

40

g = λ Raw β Baseline One-layer g Raw β Baseline

Error Gradient Direct Feedback

Figure 3. Model ablation on the one-shot language modeling task,
for a single layer adaLSTM. We report average accuracy on 400
random test tasks. Yellow: g as a scalar multiplier of∇t,i (gradient
case) or perceptron (DF case); Violet: β without normalization;
Grey: baseline model.

Our first ablation was to determine the effect of normalizing
the task shifts βt through the nonlinear activation function
σ. Ablating the activation function from eq. 1 and simply
adding βt resulted in a slight performance drop on the Mini-
ImageNet task and a significant decrease (around 7%) on
the one-shot LM task, for both variants of conditioning
information. We conclude that squashing the conditional
shift βt to the same range as the neuron’s standard activation
value is beneficial.

Our second ablation evaluates variations on the function g
for transforming the conditioning information It,i into the
memory values Vt,i. In the case of gradient-based condi-

tioning information, we remove the preprocessing of eqn. 6
and replace the learned MLP with a simple learned scalar,
λ ∈ R, that multiplies the gradient vector ∇t,i. In this
case we can more clearly interpret the conditional shift as a
one-step gradient update on the activation values (although
this update is still modulated by the memory read procedure
and the function σ). As shown in Figure 2, the adaCNN
model with learned scaling loses about 3 percentage points
of accuracy on the image classification task. However, as
per Figure 3, adaLSTM performance plummets with learned
scaling, dropping to 20% test accuracy (random chance).

For direct feedback conditioning information, we cannot
use a scalar parameter because we have a C-dimensional
information vector for each neuron (recall §2.3). We there-
fore parameterize g as a one-layer perceptron in this case
rather than a deep MLP. Using a simple perceptron to pro-
cess the direct feedback information decreased test accuracy
significantly on the Mini-ImageNet and LM tasks (drops of
over 10%). This highlights that a deeper mapping function
is crucial for processing DF conditioning information.

We finally attempted to use a fixed word-embedding layer
for the LM task. A 2-layer adaLSTM (∇) model with fixed
embeddings performed quite well, obtaining 42.65/43.7%
and 51.45/51.7% accuracy on 1- and 2-shot problems; this
is competitive with the results given in Table 3.

5. Conclusion
We introduced conditionally shifted neurons, a mechanism
for rapid adaptation in neural networks. Conditionally
shifted neurons are generic and easily incorporated into
various neural architectures. They are also computationally
efficient compared to alternative metalearning methods that
adapt synaptic connections between neurons. We proposed
two variants of conditioning information for use with CSNs,
one based on error gradients and another based on feedback
alignment methods. The latter is more efficient because it
does not require a sequential backpropagation procedure,
and achieves competitive performance with the former. We
demonstrated empirically that models with conditionally
shifted neurons improve the state of the art on metalearning
benchmarks from the vision and language domains.

Rapid Adaptation with Conditionally Shifted Neurons

References
Andrychowicz, Marcin, Denil, Misha, Gomez, Sergio, Hoff-

man, Matthew W, Pfau, David, Schaul, Tom, and de Fre-
itas, Nando. Learning to learn by gradient descent by
gradient descent. In Advances in Neural Information
Processing Systems, pp. 3981–3989, 2016.

Bachman, Philip, Sordoni, Alessandro, and Trischler, Adam.
Learning algorithms for active learning. In Precup, Doina
and Teh, Yee Whye (eds.), Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 301–310,
International Convention Centre, Sydney, Australia, 06–
11 Aug 2017. PMLR. URL http://proceedings.
mlr.press/v70/bachman17a.html.

Bengio, Yoshua, Bengio, Samy, and Cloutier, Jocelyn.
Learning a synaptic learning rule. Université de
Montréal, Département d’informatique et de recherche
opérationnelle, 1990.

Bengio, Yoshua, Lee, Dong-Hyun, Bornschein, Jorg, Mes-
nard, Thomas, and Lin, Zhouhan. Towards biologically
plausible deep learning. arXiv preprint arXiv:1502.04156,
2015.

Brincat, Scott L and Miller, Earl K. Prefrontal cortex net-
works shift from external to internal modes during learn-
ing. Journal of Neuroscience, 36(37):9739–9754, 2016.

De Vries, Harm, Strub, Florian, Mary, Jérémie, Larochelle,
Hugo, Pietquin, Olivier, and Courville, Aaron C. Modu-
lating early visual processing by language. In Advances in
Neural Information Processing Systems, pp. 6597–6607,
2017.

Finn, Chelsea, Abbeel, Pieter, and Levine, Sergey. Model-
agnostic meta-learning for fast adaptation of deep net-
works. In Precup, Doina and Teh, Yee Whye (eds.),
Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 1126–1135, International
Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.
press/v70/finn17a.html.

Goodfellow, Ian J, Mirza, Mehdi, Xiao, Da, Courville,
Aaron, and Bengio, Yoshua. An empirical investiga-
tion of catastrophic forgetting in gradient-based neural
networks. In ICLR 2014, 2014.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision,
pp. 1026–1034, 2015.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 770–778, 2016.

Hinton, Geoffrey E and Plaut, David C. Using fast weights
to deblur old memories. In Proceedings of the ninth
annual conference of the Cognitive Science Society, pp.
177–186, 1987.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Hochreiter, Sepp, Younger, A Steven, and Conwell, Peter R.
Learning to learn using gradient descent. In International
Conference on Artificial Neural Networks, pp. 87–94.
Springer, 2001.

Ioffe, Sergey and Szegedy, Christian. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32Nd
International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, pp. 448–
456. JMLR.org, 2015. URL http://dl.acm.org/
citation.cfm?id=3045118.3045167.

Kirkpatrick, James, Pascanu, Razvan, Rabinowitz, Neil,
Veness, Joel, Desjardins, Guillaume, Rusu, Andrei A,
Milan, Kieran, Quan, John, Ramalho, Tiago, Grabska-
Barwinska, Agnieszka, et al. Overcoming catas-
trophic forgetting in neural networks. arXiv preprint
arXiv:1612.00796, 2016.

Koch, Gregory. Siamese neural networks for one-shot image
recognition. PhD thesis, University of Toronto, 2015.

Lake, Brenden M, Salakhutdinov, Ruslan, and Tenenbaum,
Joshua B. Human-level concept learning through prob-
abilistic program induction. Science, 350(6266):1332–
1338, 2015.

Lei Ba, Jimmy, Swersky, Kevin, Fidler, Sanja, et al. Predict-
ing deep zero-shot convolutional neural networks using
textual descriptions. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 4247–4255,
2015.

Lillicrap, Timothy P, Cownden, Daniel, Tweed, Douglas B,
and Akerman, Colin J. Random synaptic feedback
weights support error backpropagation for deep learning.
Nature communications, 7, 2016.

Miller, Earl K and Buschman, Timothy J. Working mem-
ory capacity: Limits on the bandwidth of cognition.
Daedalus, 144(1):112–122, 2015.

Mishra, Nikhil, Rohaninejad, Mostafa, Chen, Xi, and
Abbeel, Pieter. Meta-learning with temporal convolu-
tions. arXiv preprint arXiv:1707.03141, 2017.

http://proceedings.mlr.press/v70/bachman17a.html
http://proceedings.mlr.press/v70/bachman17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167

Rapid Adaptation with Conditionally Shifted Neurons

Mitchell, Tom M, Thrun, Sebastian B, et al. Explanation-
based neural network learning for robot control. Advances
in neural information processing systems, pp. 287–287,
1993.

Monsell, Stephen. Task switching. Trends in cognitive
sciences, 7(3):134–140, 2003.

Munkhdalai, Tsendsuren and Yu, Hong. Meta networks.
In Precup, Doina and Teh, Yee Whye (eds.), Pro-
ceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 2554–2563, International
Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.
press/v70/munkhdalai17a.html.

Nøkland, Arild. Direct feedback alignment provides learn-
ing in deep neural networks. In Advances in Neural
Information Processing Systems, pp. 1037–1045, 2016.

Perez, Ethan, Strub, Florian, De Vries, Harm, Dumoulin,
Vincent, and Courville, Aaron. Film: Visual reason-
ing with a general conditioning layer. arXiv preprint
arXiv:1709.07871, 2017.

Ravi, Sachin and Larochelle, Hugo. Optimization as a
model for few-shot learning. In ICLR 2017, 2017.

Sakai, Katsuyuki. Task set and prefrontal cortex. Annu. Rev.
Neurosci., 31:219–245, 2008.

Santoro, Adam, Bartunov, Sergey, Botvinick, Matthew,
Wierstra, Daan, and Lillicrap, Timothy. Meta-learning
with memory-augmented neural networks. In Proceed-
ings of The 33rd International Conference on Machine
Learning, pp. 1842–1850, 2016.

Schmidhuber, Jürgen. Evolutionary principles in self-
referential learning. PhD thesis, Technical University
of Munich, 1987.

Schmidhuber, Jrgen. A ‘self-referential’ weight matrix. In
IN PROCEEDINGS OF THE INTERNATIONAL CON-
FERENCE ON ARTIFICIAL NEURAL NETWORKS, pp.
446–451. Springer, 1993.

Siegel, Markus, Buschman, Timothy J, and Miller, Earl K.
Cortical information flow during flexible sensorimotor
decisions. Science, 348(6241):1352–1355, 2015.

Srivastava, Rupesh K, Masci, Jonathan, Kazerounian,
Sohrob, Gomez, Faustino, and Schmidhuber, Jürgen.
Compete to compute. In Advances in neural informa-
tion processing systems, pp. 2310–2318, 2013.

Stokes, Mark G, Kusunoki, Makoto, Sigala, Natasha, Nili,
Hamed, Gaffan, David, and Duncan, John. Dynamic

coding for cognitive control in prefrontal cortex. Neuron,
78(2):364–375, 2013.

Szegedy, Christian, Zaremba, Wojciech, Sutskever, Ilya,
Bruna, Joan, Erhan, Dumitru, Goodfellow, Ian, and Fer-
gus, Rob. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

Tokui, Seiya, Oono, Kenta, Hido, Shohei, and Clay-
ton, Justin. Chainer: a next-generation open
source framework for deep learning. In Proceed-
ings of Workshop on Machine Learning Systems
(LearningSys) in The Twenty-ninth Annual Conference
on Neural Information Processing Systems (NIPS),
2015. URL http://learningsys.org/papers/
LearningSys_2015_paper_33.pdf.

Vilalta, Ricardo and Drissi, Youssef. A perspective view and
survey of meta-learning. Artificial Intelligence Review,
18(2):77–95, 2002.

Vinyals, Oriol, Blundell, Charles, Lillicrap, Tim, Wierstra,
Daan, et al. Matching networks for one shot learning. In
Advances in Neural Information Processing Systems, pp.
3630–3638, 2016.

http://proceedings.mlr.press/v70/munkhdalai17a.html
http://proceedings.mlr.press/v70/munkhdalai17a.html
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf
http://learningsys.org/papers/LearningSys_2015_paper_33.pdf

Rapid Adaptation with Conditionally Shifted Neurons

A. Additional Implementation Details
The hyperparameters for our models are listed in Tables 4
and 5. Key size d was 64 throughout all experiments. A
dropout rate of 0.2 was applied to each layer of adaFFN. For
the other adaptive models, the input dropout rate was set to
0.2 or 0.0. The dropout for the last two layers were varied
as shown in Table 4 and 5. Due to memory constraints, we
used adaLSTM with a smaller number of hidden units (i.e.,
200 vs 300) for deep models when applying to 3-shot tasks.

The neural network weights were initialized using He et al.
(2015)’s method. We set the hard gradient clipping thresh-
old for adaCNN model to 10. No gradient clipping was
performed for the other models. We listed the setup for
optimizers in Table 4 and 5. For Adam optimizer, the rest
of the hyperparameters were set to their default values (i.e.,
β1 = 0.9, β2 = 0.999, and ε = 10−8).

Although different parameterizations for the meta learner
function g may improve the performance, for simplicity
we used a 3-layer MLP with ReLU activation with 20 or
40 units per layer. This MLP acts coordinate-wise and
processes conditioning information for each neuron inde-
pendently.

Empirically, we found that selecting the vector from Vt
corresponding to the key k′i with maximum cosine similarity
to the query kj (hard attention) gave similar performance to
soft attention.

We occasionally observed difficulty in optimizing the
LSTM+adaFFN models, often seeing no improvement in
the training loss from certain initializations. Decreasing
the learning rate and in case of DF information applying
dropouts to adaFFN layers helped training this model.

Models were implemented using the Chainer (Tokui et al.,
2015) framework4.

Table 4. Hyperparameters for few-shot image classification tasks
Model Layers Filters Dropout rate Optimizer

adaCNN (∇) 5 32 0.0, 0.3, 0.3 Adam (α=0.001)
adaCNN (DF) 5 32 0.2, 0.3, 0.3 Adam (α=0.001)
adaResNet (∇) 4 64, 96, 128, 256 0.2, 0.5, 0.5 SGD with momentum (lr=0.01, m=0.9)
adaResNet (DF) 4 64, 96, 128, 256 0.2, 0.5, 0.5 SGD with momentum (lr=0.01, m=0.9)

Table 5. Hyperparameters for few-shot language modelling tasks
Model Hidden unit size Dropout rate Optimizer

2-layer LSTM + adaFFN (∇) 300 - Adam (α=0.0003)
2-layer LSTM + adaFFN (DF) 300 0.2, 0.2, 0.2 Adam (α=0.0003)
1-layer adaLSTM (∇) 300 - Adam (α=0.001)
1-layer adaLSTM (DF) 300 - Adam (α=0.001)
2-layer adaLSTM (∇) 300, 200 - Adam (α=0.001)
2-layer adaLSTM (DF) 300, 200 - Adam (α=0.001)

4https://chainer.org/

