
Workshop track - ICLR 2018

IN REINFORCEMENT LEARNING, ALL OBJECTIVE
FUNCTIONS ARE NOT EQUAL

Romain Laroche & Harm van Seijen
Microsoft Research Montréal, Canada
romain.laroche@microsoft.com

ABSTRACT

We study the learnability of value functions. We get the reward back propagation
out of the way by fitting directly a deep neural network on the analytically computed
optimal value function, given a chosen objective function. We show that some
objective functions are easier to train than others by several magnitude orders. We
observe in particular the influence of the γ parameter and the decomposition of the
task into subtasks.

1 INTRODUCTION

Figure 1: Fruit collection do-
main

Most of Reinforcement Learning (RL, Sutton & Barto, 1998) re-
search is focused on the training process: how to propagate the
reward information across the states, in order to implement planning
capabilities into the agent. Deep Reinforcement Learning (Mnih
et al., 2013) relies on experience replay and other tricks to allow
steady training of the optimal value function: V ∗. Only very re-
cently, some papers started to tackle the question of V ∗ learning
efficiency (Xu et al., 2017; Lehnert et al., 2018). This extended
abstract proposes an experimental study along these lines.

We intend to show that the value function is easier to learn depending
on the choice of the objective function. We consider a fruit collection
task where the agent has to navigate through a 5 × 5 (5 fruits are
randomly placed at the beginning of each episode, see Figure 1).
This is small enough to be a solvable Travelling Salesman Problem
and large enough to count more than 1,000,000 possible states:

nbstates = nbpos

nbmax∑
nbfruits=0

(
nbpos − 1

nbfruits

)
= 25

5∑
k=0

(
24

k

)
= 1, 386, 375. (1)

A deep neural network (DNN) is fitted from a limited amount of samples to the ground-truth value
function V π

∗

γ for various objective functions: TSP-obj is the optimal number of turns to gather all the
fruits, RL-obj is the optimal γ-discounted return, and DEC-obj is the decomposed return as defined
in Laroche et al. (2017); Van Seijen et al. (2017). We also study the effect of the γ discount factor
hyperparameter on the learnability of the function. All the trained DNNs are then evaluated on the
Travelling Salesman Problem criteria: the time to gather all the fruits. To evaluate their performance,
actions are selected greedily by moving the agent up, down, left, or right to the neighbouring grid cell
of highest value.

Our results show that the more complex the objective function is, the most difficult it is to train
the DNN. In particular, we show that TSP-obj is extremely difficult to train and that the DEC-obj
approach is faster than RL-obj to train by a magnitude order. It also shows that low γ values yield poor
results as expected, because the value function tends to be very close to zero, but more surprisingly,
classically chosen high γ > 0.9 values are also suboptimal. On this task, γ values around 0.7 or 0.8
seem to be fastest to train bot h on RL-obj and DEC-obj.
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2 EXPERIMENTAL SETTING

All trainings are performed from the same state and the same network: similarly to the Taxi Do-
main (Dietterich, 1998), we incorporate the location of the fruits into the state representation by
using a 50 dimensional bit vector, where the first 25 entries are used for fruit positions, and the last
25 entries are used for the agent’s position. The DNN feeds this bit-vector as the input layer into
two dense hidden layers with 100 and then 50 units. The output is a single linear head representing
the state-value, or a multiple head in the case of the vector DEC-obj target. In order to assess the
value function complexity, we train for each discount factor setting a DNN of fixed size on 1000
random states with their ground truth values. Each DNN is trained over 500 epochs using the Adam
optimizer (Kingma & Ba, 2014) with default parameters.

We tried to train the network on each objective function with an unlimited number of samples and we
found that TSP-obj and RL-obj were able to largely surpass the optimal DEC-obj performance. The
difference we are going to observe are therefore not explained by a lack of representation capacity
in the DNN. In our further experiments, this learning problem is fully supervised on 1000 samples,
allowing us to show how sample-wise efficient a DNN can capture V ∗ while ignoring the burden of
finding the optimal policy and estimating its value functions through TD-backups or value iteration.

The training difference solely lies in the four objective function targets that are considered:

• The TSP-obj target is the natural objective function, as defined by the Travelling Salesman
Problem: the number of turns to gather all the fruits:

yTSP (x) = − min
σ∈Σk

[
k∑
i=1

d(xσ(i−1), xσ(i))

]
,

where k is the number of fruits remaining in state x, where Σk is the ensemble of all
permutations of integers between 1 and k, where σ is one of those permutations, where x0

is the position of the agent in x, where xi for 1 ≤ i ≤ k is the position of fruit with index i,
where d(xi, xj) is the distance (||·||1 in our gridworld) between positions xi and xj .

• The RL-obj target is the objective function defined for an RL setting, which depends on the
discount factor γ:

yRL(x) = max
σ∈Σk

[
k∑
i=1

γ
∑i
j=1 d(xσ(j−1),xσ(j))

]
,

with the same notations as for TSP.

• The summed DEC-obj target does not involve the search into the set of permutations and
can be considered simpler to this extent:

yego(x) =

[
k∑
i=1

γd(x0,xi)

]
,

with the same notations as for TSP.

• The vector DEC-obj target is the same as the summed one, except that the target is now a
vector, separated into as many channels as potential fruit position:

yego(x) =

{
γd(x0,xi) if there is a fruit in xi,
0 otherwise.

3 RESULTS AND DISCUSSION

Figure 2 displays the performance of the theoretical optimal policy for each objective function in
dashed lines. The theoretical optimal policy can be searched with brute force (the problem is small
enough to allow it). We compute the optimal value of the state by taking the value of the best order of
fruit collection. TSP-obj and RL-obj targets largely surpass the DEC-obj one. However, the networks
trained on the limited data of 1000 samples yield completely different result (shown in solid lines).
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Figure 2: Value function training.

The TSP-obj target is the hardest to train on. The RL-obj target follows as the second hardest to train
on. The Dec-obj target is easier to train on, even without any state space reduction, or even without
any reward/return decomposition (summed version). Additionally, if the target value is decomposed
(vector version), the training is further accelerated, which was to be expected since the signal is richer.
Finally, we found that the DEC-obj performance tends to dramatically decrease when γ gets close to
1, because of attractors’ presence (Laroche et al., 2017). We consider this small experiment to show
that the complexity of objective function is critical and that decomposing it may make it simpler and
therefore easier to train by a factor 10, even without any state space reduction.

We also observe the value function learnability dependency on γ that was reported in previous
works (Petrik & Scherrer, 2009; Lehnert et al., 2018). The performance curves of the policies greedy
with respect to the trained DNNs present a pronounced U-shape. For small γ values, the range of the
value function (and thus the action gap) collapses quickly as one moves away from fruit locations.
In this case, both models cannot reach a high enough precision and hence perform worse for low
γ values. Further, for very high γ values action-gaps collapse, because the Fruit Collection Task
contains terminal states, which we believe also results in reduced performance of both DNNs.

If those preliminary results do not allow us to give general recommendations, they underline the
importance of the choice of the objective function, and the fact that, it is sometimes preferable to aim
at sub-optimal solutions that are easier to train.
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