
1

Boosting Information Spread:
An Algorithmic Approach

Yishi Lin, Wei Chen Member, IEEE, John C.S. Lui Fellow, IEEE

Abstract—The majority of influence maximization (IM) studies
focus on targeting influential seeders to trigger substantial infor-
mation spread in social networks. Motivated by the observation
that incentives could “boost” users so that they are more likely to
be influenced by friends, we consider a new and complementary
k-boosting problem which aims at finding k users to boost so to
trigger a maximized “boosted” influence spread. The k-boosting
problem is different from the IM problem because boosted users
behave differently from seeders: boosted users are initially unin-
fluenced and we only increase their probability to be influenced.
Our work also complements the IM studies because we focus on
triggering larger influence spread on the basis of given seeders.
Both the NP-hardness of the problem and the non-submodularity
of the objective function pose challenges to the k-boosting
problem. To tackle the problem on general graphs, we devise
two efficient algorithms with the data-dependent approximation
ratio. To tackle the problem on bidirected trees, we present
an efficient greedy algorithm and a dynamic programming that
is a fully polynomial-time approximation scheme. Experiments
using real social networks and synthetic bidirected trees verify
the efficiency and effectiveness of the proposed algorithms. In
particular, on general graphs, boosting solutions returned by our
algorithms achieves boosts of influence that are up to several
times higher than those achieved by boosting intuitive solutions
with no approximation guarantee. We also explore the “budget
allocation” problem experimentally, demonstrating the benefits
of allocating the budget to both seeders and boosted users.

Index Terms—Influence maximization, Information boosting,
Social networks, Viral marketing

I. INTRODUCTION

W ITH the popularity of online social networks, viral
marketinghas become a powerful tool for companies to

promote sales. In viral marketing campaigns, companies target
influential users by offering free products or services with the
hope of triggering a chain reaction of adoption. These targeted
users are often called Initial adopters or seeds. Motivated
by the need for effective viral marketing strategies, influence
maximization has become a fundamental research problem in
the past decade. The goal of influence maximization is usually
to identify influential initial adopters [1–8].

In practical marketing campaigns, companies often consider
a mixture of promotion strategies. Besides targeting influential
users as initial adopters, we list some others as follows.

Manuscript received July 10, 2017. Yishi Lin and John C.S. Liu are partially
supported by the GRF #14630815. Wei Chen is partially supported by the
National Natural Science Foundation of China (Grant No. 61433014).

Yishi Lin and John C.S. Lui are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong, Hong Kong. (Emails:
yishilin14@gmail.com, cslui@@cse.cuhk.edu.hk)

Wei Chen is with Microsoft Research, Beijing, China. (Email:
weic@microsoft.com)

• Incentive programs: Companies offer incentives such as
coupons or free trials to attract potential customers. Targeted
customers are more likely to be influenced by their friends.

• Social media advertising: Companies reach intended audi-
ences via advertising. According to the “Global Trust in
Advertising” survey [9], owned online channels are the
second most trusted advertising formats, second only to
recommendations from family and friends. We believe that
customers targeted by ads are more likely to follow their
acquaintances’ purchases.

• Referral marketing: Companies encourage customers to re-
fer others to use the product by offering rewards such as
cash back. In this case, targeted customers are more likely
to influence their friends.

These marketing strategies are able to “boost” the influence
transferring through customers. Furthermore, for companies,
the cost of “boosting” a customer (e.g., the average redemption
and distribution cost per coupon, or the advertising cost
per customer) is much lower than the cost of nurturing an
influential user as an initial adopter and a product evangelist.
Although identifying influential initial adopters have been
actively studied, very little attention has been devoted to
studying how to utilize incentive programs or other strategies
to further increase the influence spread of initial adopters.

In this paper, we study the problem of finding k boosted
users so that when their friends adopt a product, they are more
likely to make the purchase and continue to influence others.
Motivated by the need for modeling boosted customers, we
propose a novel influence boosting model. In our model, seed
users generate influence same as in the classical Independent
Cascade (IC) model. In addition, we introduce the boosted
user as a new user type. They represent customers with
incentives such as coupons. They are uninfluenced at the
beginning of the influence propagation process. However, they
are more likely to be influenced by their friends and further
spread the influence to others. In other words, they “boost”
the influence transferring through them. Under the influence
boosting model, we study how to boost the influence spread
given initial adopters. More precisely, given initial adopters,
we are interested in identifying k users among other users,
so that the expected influence spread upon “boosting” them is
maximized. Because of the differences in behaviors between
seed users and boosted users, our work is very different from
influence maximization studies focusing on selecting seeds.

Our work also complements the studies of influence max-
imization problems. First, compared with nurturing an initial
adopter, boosting a potential customer usually incurs a lower
cost. For example, companies may need to offer free products
to initial adopters, but only need to offer coupons to boost

2

potential customers. With both our methods that identify users
to boost and algorithms that select initial adopters, companies
have more flexibility in allocating their marketing budgets.
Second, initial adopters are sometimes predetermined. For
example, they may be advocates of a particular brand or promi-
nent bloggers in the area. In this case, our study suggests how
to effectively utilize incentive programs or similar marketing
strategies to take the influence spread to the next level.
Contributions. We study a novel problem of how to boost
the influence spread when the initial adopters are given. We
summarize our contributions as follows.
• We formulate a k-boosting problem that asks how to

maximize the boost of influence spread under a novel
influence boosting model. The k-boosting problem is NP-
hard. Computing the boost of influence spread is #P-hard.
Moreover, the boost of influence spread does not possess
the submodularity, meaning that the greedy algorithm does
not provide performance guarantee.

• We present approximation algorithms PRR-Boost and
PRR-Boost-LB for the k-boosting problem. For the k-
boosting problem on bidirected trees, we present a greedy
algorithm Greedy-Boost based on a linear-time exact
computation of the boost of influence spread and a fully
polynomial-time approximation scheme (FPTAS) DP-Boost
that returns near-optimal solutions. 1 DP-Boost provides a
benchmark for the greedy algorithm, at least on bi-directed
trees, since it is very hard to find near optimal solutions in
general cases. Moreover, the algorithms on bidirected trees
may be applicable to situations where information cascades
more or less follow a fixed tree architecture.

• We conduct extensive experiments using real social net-
works and synthetic bidirected trees. Experimental results
show the efficiency and effectiveness of our proposed algo-
rithms, and their superiority over intuitive baselines.

Paper organization. Section II provides background. We
describe the influence boosting model and the k-boosting prob-
lem in Section III. We present building blocks of PRR-Boost
and PRR-Boost-LB for the k-boosting problem in Section IV,
and the detailed algorithm design in Section V. We present
Greedy-Boost and DP-Boost for the k-boosting problem on
bidirected trees in Section VI. We show experimental results
in Sections VII-VIII. Section IX concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we provide backgrounds about influence
maximization problems and related works.
Classical influence maximization problems. Kempe et al. [1]
first formulated the influence maximization problem that asks
to select a set S of k nodes so that the expected influence
spread is maximized under a predetermined influence propaga-
tion model. The Independent Cascade (IC) model is one clas-
sical model that describes the influence diffusion process [1].
Under the IC model, given a graph G = (V,E), influence
probabilities on edges and a set S ⊆ V of seeds, the influence

1An FPTAS for a maximization problem is an algorithm that given any
ε > 0, it can approximate the optimal solution with a factor 1 − ε, with
running time polynomial to the input size and 1/ε.

propagates as follows. Initially, nodes in S are activated.
Each newly activated node u influences its neighbor v with
probability puv . The influence spread of S is the expected
number of nodes activated at the end of the influence diffusion
process. Under the IC model, the influence maximization
problem is NP-hard [1] and computing the expected influence
spread for a given S is #P-hard [4]. A series of studies have
been done to approximate the influence maximization problem
under the IC model and other models [3, 4, 6–8, 11–14].
Influence maximization on trees. Under the IC model, tree
structure makes the influence computation tractable. To devise
greedy “seed-selection” algorithms on trees, several studies
presented methods to compute the “marginal gain” of influence
spread on trees [4, 15]. Our computation of “marginal gain
of boosts” on trees is more advanced than the previous
methods: It runs in linear-time, it considers the behavior of
“boosting”, and we assume that the benefits of “boosting” can
be transmitted in both directions of an edge. On bidirected
trees, Bharathi et al. [16] described an FPTAS for the classical
influence maximization problem. Our FPTAS on bidirected
trees is different from theirs because “boosting” a node and
targeting a node as a “seed” have significantly different effects.
Boost the influence spread. Several works studied how to rec-
ommend friends or inject links into social networks in order to
boost the influence spread [17–22]. Lu et al. [23] studied how
to maximize the expected number of adoptions by targeting
initial adopters of a complementing product. Chen et al. [24]
considered how to select a subset of seed content providers
and a subset of seed customers so that the expected number of
influenced customers is maximized. Their model differs from
ours in that they only consider influence originators selected
from content providers, which are separated from the social
network, and influence boost is only from content providers
to consumers in the social network. Yang et al. [22] studied
how to offer discounts assuming that the probability of a
customer being an initial adopter is a function of the discounts.
Different from the above studies, we study how to boost the
spread of influence when seeds are given. This article is an
extended version of our conference paper [25] that formulated
the k-boosting problem and presented algorithms for it. We
add two new algorithms that tackle the k-boosting problem in
bidirected trees, and report new experimental results.

III. MODEL AND PROBLEM DEFINITION

In this section, we first define the influence boosting model
and the k-boosting problem. Then, we highlight the challenges.

A. Model and Problem Definition

Traditional studies of the influence maximization problem
focus on how to identify a set of k influential users (or seeds)
who can trigger the largest influence diffusion. In this paper,
we aim to boost the influence propagation assuming that seeds
are given. We first define the influence boosting model.

Definition 1 (Influence Boosting Model). Suppose we are
given a directed graph G=(V,E) with n nodes and m edges,
two influence probabilities puv and p′uv (with p′uv > puv) on

3

each edge euv , a set S ⊆ V of seeds, and a set B ⊆ V
of boosted nodes. Influence propagates in discrete time steps
as follows. If v is not boosted (resp. is boosted), each of its
newly-activated in-neighbor u influences v with probability
puv (resp. p′uv).

In Definition 1, we assume that “boosted” users are more
likely to be influenced. Our study can also be adapted to the
case where boosted users are more influential: if a newly-
activated user u is boosted, she influences her neighbor v with
probability p′uv instead of puv . To simplify the presentation,
we focus on the influence boosting model in Definition 1.

s v0 v1

ps,v0 =0.2

p′s,v0 =0.4

pv0,v1 =0.1

p′v0,v1 =0.2

B σS(B) ∆S(B)

∅ 1.22 0.00
{v0} 1.44 0.22
{v1} 1.24 0.02
{v0, v1} 1.48 0.26

Fig. 1: Example of the influence boosting model (S={s}).

Let σS(B) be the expected influence of S upon boosting
nodes in B. We refer to σS(B) as the boosted influence spread.
Let ∆S(B) = σS(B)−σS(∅). We refer to ∆S(B) as the boost
of influence spread of B, or simply the boost of B. Consider
the example in Figure 1. We have σS(∅) = 1.22, which is
essentially the influence of S in the IC model. When we boost
node v0, we have σS({v0}) = 1 + 0.4 + 0.04 = 1.44, and
∆S({v0}) = 0.22. We now formulate the k-boosting problem.

Definition 2 (k-Boosting Problem). Given a directed graph
G = (V,E), influence probabilities puv and p′uv on every
edges euv , and a set S ⊆ V of seed nodes, find a boost set B ⊆
V with k nodes, such that the boost of influence spread of B
is maximized. That is, find B∗ = arg maxB⊆V,|B|≤k ∆S(B).

By definition, the k-boosting problem is very different
from the classical influence maximization problem. Moreover,
boosting nodes that significantly increase the influence spread
when used as additional seeds could be extremely inefficient.
For example, in Figure 1, if we are allowed to select one
more seed, we should select v1. However, if we can boost a
node, boosting v0 is much better than boosting v1. Section VII
provides more experimental results.

B. Challenges of the Boosting Problem

We now analyze the k-boosting problem and show the
challenges. Theorem 1 summarizes the hardness results.

Theorem 1 (Hardness). The k-boosting problem is NP-hard.
Computing ∆S(B) given S and B is #P-hard.

Proof. The NP-hardness is proved by a reduction from the
NP-complete Set Cover problem [26]. The #P-hardness of the
computation is proved by a reduction from the #P-complete
counting problem of s-t connectedness in directed graphs [27].
The full analysis can be found in the appendix.

Non-submodularity of the boost of influence. Because of
the above hardness results, we explore approximation algo-
rithms to tackle the problem. In most influence maximization
problems, the influence of the seed set S (i.e., the objective

function) is a monotone and submodular function of S.2

Thus, a natural greedy algorithm provides an approximation
guarantee [1, 6–8, 14, 28]. However, the objective function
∆S(B) in our problem is neither submodular nor super-
modular on the set B of boosted nodes. On one hand,
when we boost several nodes on different parallel paths from
seeds, their overall boosting effect exhibits a submodular
behavior. On the other hand, when we boost several nodes
on a path starting from a seed, their boosting effects can be
cumulated, generating a larger overall effect than the sum of
their individual boosting effect. This is in fact a supermodular
behavior. To illustrate, consider the graph in Figure 1, we
have ∆S({v0, v1}) − ∆S({v0}) = 0.04, which is larger
than ∆S({v1}) − ∆S(∅) = 0.02. In general, the boosted
influence has a complicated interaction between supermodular
and submodular behaviors when the boost set grows, and is
neither supermodular nor submodular. The non-submodularity
of ∆S(·) indicates that the boosting set returned by the greedy
algorithm may not have the (1−1/e)-approximation guarantee.
Therefore, the non-submodularity of the objective function
poses an additional challenge.

IV. BOOSTING ON GENERAL GRAPHS: BUILDING BLOCKS

In this section, we present three building blocks for solving
the k-boosting problem: (1) a state-of-the-art influence max-
imization framework, (2) the Potentially Reverse Reachable
Graph for estimating the boost of influence spread, and (3)
the Sandwich Approximation strategy [23] for maximizing
non-submodular functions. Our algorithms PRR-Boost and
PRR-Boost-LB integrate the three building blocks. We will
present their detailed algorithm design in Section V.

A. State-of-the-art influence maximization techniques

One state-of-the-art influence maximization framework is
the Influence Maximization via Martingale (IMM) method [8]
based on the idea of Reverse-Reachable Sets (RR-sets) [6]. We
utilize the IMM method in this paper. But other RR-set-based
frameworks such as the Stop-and-Stare Algorithm (SSA) and
the Dynamic Stop-and-Stare Algorithm (D-SSA) [14] could
also be applied.
RR-sets. An RR-set for a node r is a random set R of nodes,
such that for any seed set S, the probability that R ∩ S 6= ∅
equals the probability that r can be activated by S in a random
diffusion process. Node r may also be selected uniformly at
random from V , and the RR-set will be generated accordingly
with r. One key property of RR-sets is that the expected
influence of S equals to n · E[I(R ∩ S 6= ∅)] for all S ⊆ V ,
where I(·) is the indicator function and the expectation is taken
over the randomness of R.
General IMM algorithm. The IMM algorithm has two phases.
The sampling phase generates a sufficiently large number of
random RR-sets such that the estimation of the influence
spread is “accurate enough”. The node selection phase greedily
selects k seed nodes based on their estimated influence spread.

2 A set function f is monotone if f(S) ≤ f(T) for all S ⊆ T ; it is
submodular if f(S ∪{v})− f(S) ≥ f(T ∪{v})− f(T) for all S ⊆ T and
v 6∈ T , and it is supermodular if −f is submodular.

4

If generating a random RR-set takes time O(EPT), IMM
returns a (1− 1/e− ε)-approximate solution with probability
at least 1−n−`, and runs in O(EPTOPT ·(k+`)(n+m) log n/ε2)
expected time, where OPT is the optimal expected influence.

B. Potentially Reverse Reachable Graphs

We now describe how we estimate the boost of influence.
The estimation is based on the concept of the Potentially
Reverse Reachable Graph (PRR-graph) defined as follows.

Definition 3 (Potentially Reverse Reachable Graph). Let r be
a node in G. A Potentially Reverse Reachable Graph (PRR-
graph) R for a node r is a random graph generated as follows.
We first sample a deterministic copy g of G: each edge euv
is “live” in g with probability puv , “live-upon-boost” with
probability p′uv−puv , and “blocked” with probability 1−p′uv .
The PRR-graph R is the minimum subgraph of g containing
all paths from seed nodes to r through non-blocked edges in
g. We refer to r as the “root node”. When r is also selected
from V uniformly at random, we simply refer to the generated
PRR-graph as a random PRR-graph (for a random root).

r

v1

v4

v6

v0

v3

v2

v5

v7

PRR-graph R

v8

v9

v10

live

live

upon boost

blocked

• Estimating the boost
– fR(∅) = 0
– fR({v1}) = 1
– fR({v3}) = 1
– fR({v2, v5}) = 1

• Critical nodes
– CR = {v1, v3}

• Estimating the lower bound
– µ(B)=I(B∩CR 6= ∅)

Fig. 2: Example of a Potentially Reverse Reachable Graph.

Figure 2 shows an example of a PRR-graph R. The directed
graph G contains 12 nodes and 16 edges. Node r is the
root node. Shaded nodes are seed nodes. Solid, dashed and
dotted arrows with crosses represent live, live-upon-boost and
blocked edges, respectively. The PRR-graph R is the subgraph
in the dashed box. It contains 9 nodes and 13 edges. Nodes
and edges outside the dashed box do not belong to the PRR-
graph because they are not on any paths from seed nodes to
r that only contain non-blocked edges. By definition, a PRR-
graph may contain loops. For example, in Figure 2, R contains
a loop among nodes v1, v5, and v2.
Estimating the boost of influence. Let R be a given PRR-
graph with root r. By definition, every edge in R is either live
or live-upon-boost. We say a path in R is live if and only if
it contains only live edges. We say that a path is live upon
boosting B if and only if the path is not a live one, but every
edge euv on it is either live or live-upon-boost with v∈B. For
example, in Figure 2, the path from v3 to r is live, and the
path from v7 to r via v4 and v1 is live upon boosting {v1}.
Define fR(B) : 2V →{0, 1} as: fR(B) = 1 if and only if, in
R, (1) there is no live path from seed nodes to r; and (2) a path
from a seed node to r is live upon boosting B. Intuitively, in
the deterministic graph R, fR(B) = 1 if and only if the root
node is inactive without boosting, and active upon boosting

nodes in B. In Figure 2, if B = ∅, there is no live path from
the seed node v7 to r upon boosting B. Therefore, we have
fR(∅) = 0. There is a live path from the seed node v7 to r if
we boost v1, thus we have fR({v1}) = 1. Similarly, we have
fR({v3}) = fR({v2, v5}) = 1. Based on the above definition
of fR(·), we have the following lemma.

Lemma 1. For any B ⊆ V , we have n ·E[fR(B)] = ∆S(B),
where the expectation is taken over the randomness of R.

Proof. For a random PRR-graph R, Pr[fR(B) = 1] equals
the difference between probabilities that a random node in G
is activated given that we boost B and ∅.

Let R be a set of independent random PRR-graphs, define

∆̂R(B) =
n

|R|
·
∑
R∈R

fR(B),∀B ⊆ V. (1)

By Chernoff bound, ∆̂R(B) closely estimates ∆S(B) for any
B ⊆ V if |R| is sufficiently large.

C. Sandwich Approximation Strategy

To tackle the non-submodularity of function ∆S(·), we
apply the Sandwich Approximation (SA) strategy [23]. First,
we find submodular lower and upper bound functions of
∆S , denoted by µ and ν. Then, we select node sets B∆,
Bµ and Bν by greedily maximizing ∆S , µ and ν under
the cardinality constraint of k. Ideally, we return Bsa =
arg maxB∈{Bµ,Bν ,B∆}∆S(B) as the final solution. Let the
optimal solution of the k-boosting problem be B∗ and let
OPT = ∆S(B∗). Suppose Bµ and Bν are (1 − 1/e − ε)-
approximate solutions for maximizing µ and ν, we have

∆S(Bsa) ≥
µ(B∗)

∆S(B∗)
· (1− 1/e− ε) ·OPT, (2)

∆S(Bsa) ≥
∆S(Bν)

ν(Bν)
· (1− 1/e− ε) ·OPT. (3)

Thus, to obtain a good approximation guarantee, at least one
of µ and ν should be close to ∆S . In this work, we derive
a submodular lower bound µ of ∆S using the definition of
PRR-graphs. Because µ is significantly closer to ∆S than any
submodular upper bound we have tested, we only use the
lower bound function µ and the “lower-bound side” of the
SA strategy with approximation guarantee in Inequality (2).
Submodular lower bound of ∆S . Let R be a PRR-graph
with the root node r. Let CR = {v|fR({v}) = 1}. We refer
to nodes in CR as critical nodes of R. Intuitively, the root
node r becomes activated if we boost any node in CR. For
any B ⊆ V , define f−R (B) = I(B ∩ CR 6= ∅). By definition
of CR and f−R (·), we have f−R (B) ≤ fR(B) for all B ⊆ V .
Moreover, because the value of f−R (B) is based on whether
the node set B intersects with a fixed set CR, f−R (B) is a
submodular function on B. For any B ⊆ V , define µ(B) = n·
E[f−R (B)] where the expectation is taken over the randomness
of R. Lemma 2 shows the properties of the function µ.

Lemma 2. We have µ(B) ≤ ∆S(B) for all B ⊆ V . Moreover,
µ(B) is a submodular function of B.

5

Proof. For all B⊆V , we have µ(B)≤∆S(B) because we have
f−R (B) ≤ fR(B),∀R. Moreover, µ(B) is submodular on B
because f−R (B) is submodular on B for any PRR-graph R.

Our experiments show that µ is close to ∆S especially for
small k (e.g., less than a thousand). Define

µ̂R(B) =
n

|R|
·
∑
R∈R

f−R (B),∀B ⊆ V.

Because f−R (B) is submodular on B for any PRR-graph R,
µ̂R(B) is submodular on B. Moreover, by Chernoff bound,
µ̂R(B) is close to µ(B) when |R| is sufficiently large.
Remarks on the lower bound function µ(B). The lower
bound function µ(B) does correspond to a physical diffusion
model, as we now explain. Roughly speaking, µ(B) is the
influence spread in a diffusion model with the boost set B,
and the constraint that at most one edge on the influence
path from a seed node to an activated node can be boosted.
More precisely, on every edge euv with v ∈ B, there are
three possible outcomes when u tries to activate v: (a) normal
activation: u successfully activates v without relying on the
boost of v (with probability puv), (b) activation by boosting:
u successfully activates v but relying on the boost of v (with
probability p′uv−puv); and (c) no activation: u fails to activate
v (with probability 1 − p′uv). In the diffusion model, each
activated node records whether it is normally activated or
activated by boosting. Initially, all seed nodes are normally
activated. If a node u is activated by boosting, we disallow u
to activate its out-neighbors by boosting. Moreover, when u
normally activates v, v inherits the status from u and records
its status as activated by boosting. However, if later u can
be activated again by another in-neighbor normally, u can
resume the status of being normally activated, resume trying
to activate its out-neighbors by boosting. Furthermore, this
status change recursively propagates to u’s out-neighbors that
were normally activated by u and inherited the “activated-by-
boosting” status from u, so that they now have the status of
“normally-activated” and can activate their out-neighbors by
boosting. All the above mechanisms are to insure that the chain
of activation from any seed to any activated node uses at most
one activation by boosting.

Admittedly, the above model is convoluted, while the
PRR-graph description of µ(B) is more direct and is easier
to analyze. Indeed, we derived the lower bound function
µ(B) directly from the concept of PRR-graphs first, and
then “reverse-engineered” the above model from the PRR-
graph model. Our insight is that by fixing the randomness
in the original influence diffusion model, it may be easier
to derive submodular lower-bound or upper-bound functions.
Nevertheless, we believe the above model also provides some
intuitive understanding of the lower bound model — it is
precisely submodular because it disallows multiple activations
by boosting in any chain of activation sequences.

V. BOOSTING ON GENERAL GRAPHS: ALGORITHM
DESIGN

In this section, we first present how we generate random
PRR-graphs. Then we obtain the overall algorithms by inte-
grating all building blocks.

A. Generating random PRR-graphs

We classify PRR-graphs into three categories. Let R be a
PRR-graph with root node r. (1) Activated: If there is a live
path from a seed node to r; (2) Hopeless: There is no path from
seeds to r with at most k non-live edges; (3) “Boostable”:
not the above two categories. If R is not boostable (i.e. case
(1) or (2)), we have fR(B) = f−R (B) = 0 for all B ⊆ V .
Therefore, for “non-boostable” PRR-graphs, we only count
their occurrences and we terminate the generation of them
once we know they are not boostable. Algorithm 1 depicts
the generation of a random PRR-graph in two phases. The
first phase (Lines 1-19) generates a PRR-graph R. If R is
boostable, the second phase compresses R to reduce its size.
Figure 3 shows the results of two phases, given that the status
sampled for every edge is same as that in Figure 2.

Super-seed
{v4, v7}

r

v1

v4

v6

v0

v3

v2

v5

v7

v8

removed
later

(a) Results of phase I

Super-seed
{v4, v7}

r

v1

v4v3

v2

v5

v7

(b) Results of phase II

Fig. 3: Generation of a PRR-Graph. (Solid and dashed ar-
rows represent live and live-upon-boost edges respectively.)

Algorithm 1: Generating a random PRR-graph (G,S, k)

1 Select a random node r as the root node
2 if r ∈ S then return R is activated
3 Create a graph R with a singleton node r
4 Create a double-ended queue Q with (r, 0)
5 Initialize dr[r]← 0 and dr[v]← +∞,∀v 6= r
6 while Q is not empty do
7 (u, dur)← Q.dequeue front()
8 if dur > dr[u] then continue // we’ve processed u
9 for each non-blocked incoming edge evu of u do

10 dvr ← I(evu is live-upon-boost) + dur
11 if dvr > k then continue // pruning
12 Add evu to R
13 if dvr < dr[v] then
14 dr[v]← dvr
15 if v ∈ S then
16 if dr[v] = 0 then return R is activated

17 else if dvr=dur then Q.enqueue front((v, dvr))
18 else Q.enqueue back((v, dvr))

19 if there is no seed in R then return R is hopeless
20 Compress the boostable R to reduce its size
21 return a compressed boostable R

Phase I: Generating a PRR-graph. Let r be a random node.
We include into R all non-blocked paths from seed nodes
to r with at most k live-upon-boost edges via a a backward

6

Breadth-First Search (BFS) from r. The status of each edge
(i.e., live, live-upon-boost, blocked) is sampled when we first
process it. The detailed backward BFS is as follows. Define
the distance from u to v as the minimum number of nodes
we have to boost so that at least a path from u to v becomes
live. For example, in Figure 3a, the distance from v7 to r is
one. We use dr[·] to maintain the distances from nodes to the
root node r. Initially, we have dr[r] = 0 and we enqueue
(r, 0) into a double-ended queue Q. We repeatedly dequeue
and process a node-distance pair (u, dur) from the head of Q,
until the queue is empty. Note that the distance dur in a pair
(u, dur) is the shortest known distance from u to r when the
pair was enqueued. Thus we may find dur > dr[u] in Line 8.
Pairs (u, dur) in Q are in the ascending order of the distance
dur and there are at most two different values of distance
in Q. Therefore, we process nodes in the ascending order of
their shortest distances to r. When we process a node u, for
each of its non-blocked incoming edge evu, we let dvr be the
shortest distance from v to r via u. If dvr > k, all paths from
v to r via u are impossible to become live upon boosting at
most k nodes, therefore we ignore evu in Line 11. This is in
fact a pruning strategy, which is effective especially for small
values of k. For large values of k, only a small number of
paths need to be pruned due to the small-world property of
real social networks. If dvr ≤ k, we insert evu into R, update
dr[v] and enqueue (v, dvr) if necessary. If we find out that the
distance from a seed node to r is zero, we know R is activated
and we terminate the generation (Line 16). If we do not visit
any seed node during the backward BFS, R is hopeless and
we terminate the generation (Line 19).
Remarks. At the end of phase I, R may include extra nodes
and edges (e.g., non-blocked edges not on any non-blocked
paths from seeds to the root). For example, Figure 3a shows
the results of the first phase, given that we are constructing a
PRR-graph according to the root node and sampled edge status
in Figure 2. There is an extra edge from v8 to v2. All extra
nodes and edges will be removed in the compression phase.
Phase II: Compressing the PRR-graph. When we reach
Line 20, R is boostable. In practice, we observe that we can
remove and merge a significant fraction of nodes and edges
from R while keeping values of fR(B) and f−R (B) for all
|B| ≤ k same as before. Therefore, we compress boostable
PRR-graphs to prevent the memory usage from becoming
a bottleneck. Figure 3b shows the compressed result. The
compression phase contains two steps. First, observing that
nodes v4 and v7 are activated without boosting any node, we
merge them into a single “super-seed” node. Then, we remove
nodes v6, v8 and their incident edges because they are not on
any paths from the super-seed node to the root node r. Next,
observing that there are live paths from nodes v0, v1, v2 and
v3 to root r, we remove their outgoing edges and directly link
them to r. After doing so, we remove node v0 because it is
not on any path from the super-seed node to r.

The first part of the compression merges nodes into a
super-seed node. We run a forward BFS from seeds in R
and compute the shortest distance dS [v] from seeds to v
for every node v in R. Let X = {v|dS [v] = 0}, we have
fR(B) = fR(B\X) for all B ⊆ V because whether we boost

any subset of X has nothing to do with whether the root node
of R is activated. Thus, we merge nodes in X as a single
super-seed node. Finally, we clean up nodes and edges not on
any paths from the super-seed node to the root node r.

In the second part, we add live edges so that nodes
connected to r through live paths are directly linked to r. We
also clean up nodes and edges that are not necessary for later
computation. For a node v, let d′r[v] be the shortest distance
from v to r without going through the super-seed. If a node v
satisfies d′r[v] +dS [v] > k, every path going through v cannot
be live with at most k nodes boosted, therefore we remove v
and its adjacent edges. If a non-root node v satisfies d′r[v] = 0,
we remove its outgoing edges and add a live edge from v to
r. In fact, in a boostable R, if a node v satisfies d′r[v] = 0, we
must have dr[v] = 0 in the first phase. In our implementation,
if a node v satisfies dr[v] = 0, we in fact clear outgoing edges
of v and add the live edge evr to R in the first phase. Finally,
we remove “non-super-seed” nodes with no incoming edges.
Time complexity. The cost for the first phase of the PRR-
graph generation is linear to the number of edges visited
during the generation. The compression phase runs linear to
the number of uncompressed edges generated in the generation
phase. Section VII shows the average number of uncompressed
edges in boostable PRR-graphs in several social networks.

B. PRR-Boost Algorithm

Algorithm 2 depicts PRR-Boost. It integrates PRR-graphs,
the IMM algorithm and the Sandwich Approximation strategy.

Algorithm 2: PRR-Boost(G,S, k, ε, `)

1 `′ = ` · (1 + log 3/ log n)
2 R ← SamplingLB(G,S, k, ε, `′) // sampling in IMM [8]

using the PRR-graph generation of Algo. 1
3 Bµ ← NodeSelectionLB(R, k) // maximize µ
4 B∆ ← NodeSelection(R, k) // maximize ∆S

5 Bsa = arg maxB∈{B∆,Bµ} ∆̂R(B)

6 return Bsa

Lines 1-3 utilize the IMM algorithm [8] with the PRR-
graph generation to maximize the lower bound µ of ∆S

under the cardinality constraint of k. Line 4 greedily selects
a set B∆ of nodes with the goal of maximizing ∆S , and we
reuse PRR-graphs in R to estimate ∆S(·). Ideally, we should
return Bsa = arg maxB∈{Bµ,B∆}∆S(B). Because evaluating
∆S(B) is #P-hard, we select Bsa between Bµ and B∆ with
the larger estimated boost of influence in Line 5.
Approximation ratio. Let B∗µ be the optimal solution for
maximizing µ under the cardinality constraint of k, and let
OPTµ = µ(B∗µ). By the analysis of the IMM method, we have
the following lemma.

Lemma 3. In Algorithm 2, define ε1 = ε · α/((1 −
1/e)α + β) where α =

√
`′ log n+ log 2, and β =√

(1− 1/e) · (log
(
n
k

)
+ `′ log n+ log 2). With a probability

7

of at least 1 − n−`
′
, the number of PRR-graphs generated

in Line 2 satisfies

|R| ≥
(2− 2/e) · n · log

((
n
k

)
· 2n`′

)
(ε− (1− 1/e) · ε1)

2 ·OPTµ

(
Th.2 by [8]

)
. (4)

Given that Inequality (4) holds, with probability at least 1 −
n−`

′
, the set Bµ returned by Line 3 satisfies

n·µ̂R(Bµ)≥(1−1/e)(1− ε1) ·OPTµ
(
Th.1 by [8]

)
. (5)

The following lemma shows that boosting Bsa leads to a
large expected boost.

Lemma 4. Given that Inequalities (4)-(5) hold, with a prob-
ability of at least 1 − n−`′ , we have ∆S(Bsa) ≥ (1 − 1/e −
ε) ·OPTµ ≥ (1− 1/e− ε) · µ(B∗).

Proof. (outline) Let B be a boost set with k nodes, we say
that B is a bad set if ∆S(B) < (1− 1/e− ε) ·OPTµ. Let B
be an arbitrary bad set with k nodes. If we return B, we must
have ∆̂R(B) > ∆̂R(Bµ), and we can prove that Pr[∆̂R(B) >
∆̂R(Bµ)] ≤ n−̀ ′/

(
n
k

)
. Because there are at most

(
n
k

)
bad sets

with k nodes, and because OPTµ ≥ µ(B∗), Lemma 4 holds.
The full proof can be found in the appendix.

Complexity. Let EPT be the expected number of edges
explored for generating a random PRR-graph. Generating a
random PRR-graph runs in O(EPT) expected time, and the
expected number of edges in a random PRR-graph is at
most EPT . Denote the size of R as the total number of
edges in PRR-graphs in R. Lines 1-3 of PRR-Boost are
essentially the IMM method with the goal of maximizing µ.
By the analysis of the general IMM method, both the expected
complexity of the sampling step in Line 2 and the size of R
are O(EPTOPTµ

· (k + `)(n + m) log n/ε2). The node selection
in Line 3 corresponds to the greedy algorithm for maximum
coverage, thus runs in time linear to the size of R. Line 4 runs
in O(EPTOPTµ

·k(k+`)(n+m) log n/ε2) expected time, because
updating ∆̂R(B ∪ {v}) for all v /∈ B ∪ S takes time linear to
the size of R after we insert a node into B.

From Lemmas 3-4, we have ∆S(Bsa) ≥ (1−1/e−ε)·µ(B∗)
w.p. at least 1 − 3n−`

′
= 1 − n−`. Together with the above

complexity analysis, we have the following theorem.

Theorem 2. With a probability of at least 1−n−`, PRR-Boost
returns a (1−1/e−ε)· µ(B∗)

∆S(B∗) -approximate solution. Moreover,
it runs in O(EPTOPTµ

·k · (k+`)(n+m) log n/ε2) expected time.

The approximation ratio in Theorem 2 depends on µ(B∗)
∆S(B∗) ,

which should be close to one if the lower bound function
µ(B) is close to the boost of influence ∆S(B), when ∆S(B)
is large. Section VII demonstrates that µ(B) is indeed close
to ∆S(B) in real datasets.

C. The PRR-Boost-LB Algorithm

PRR-Boost-LB is a simplification of PRR-Boost where we
return the node set Bµ as the final solution. Recall that the
estimation of µ only relies on the critical node set CR of
each boostable PRR-graph R. In the first phase of the PRR-
graph generation, if we only need to obtain CR, there is no

need to explore incoming edges of a node v if dr[v] > 1.
Moreover, in the compression phase, we can obtain CR right
after computing dS [·] and we can terminate the compression
earlier. The sampling phase of PRR-Boost-LB usually runs
fasterbecause we only need to generate CR for each boostable
PRR-graph R. In addition, the memory usage is significantly
lower than that for PRR-Boost, because the averaged number
of “critical nodes” in a random boostable PRR-graph is
small in practice. In summary, compared with PRR-Boost,
PRR-Boost-LB has the same approximation factor but runs
faster than PRR-Boost. We will compare PRR-Boost and
PRR-Boost-LB by experiments in Section VII.

D. Discussion: The Budget Allocation Problem

A question one may raise is what is the best strategy if
companies could freely decide how to allocation budget on
both seeding and boosting. A heuristic method combing influ-
ence maximization algorithms and PRR-Boost is as follows.
We could test different budget allocation strategy. For each
allocation, we first identify seeds using any influence maxi-
mization algorithm, then we find boosted user by PRR-Boost.
Finally, we could choose the budget allocation strategy leading
to the largest boosted influence spread among all tested ones.
In fact, the budget allocation problem could be much harder
than the k-boosting problem itself, and its full treatment is
beyond the scope of this study and is left as a future work.

VI. BOOSTING ON BIDIRECTED TREES

In this section, we study the k-boosting problem where
influence propagates on bidirected trees.

On bidirected trees, the computation of the boost of in-
fluence spread becomes tractable. We are able to devise an
efficient greedy algorithm and an approximation algorithm
with a near-optimal approximation ratio. This demonstrates
that the hardness of the k-boosting problem is partly due to
the graph structure, and when we restrict to tree structures, we
are able to find near-optimal solutions. Moreover, using near-
optimal solutions as benchmarks enables us to verify that a
greedy node selection method on trees in fact returns near-
optimal solutions in practice. Besides, our efforts on trees will
help to designing heuristics for the k-boosting problem on
general graphs, or for other related problems in the future.
Bidirected trees. A directed graph G is a bidirected tree if
and only if its underlying undirected graph (with directions and
duplicated edges removed) is a tree. For simplicity of notation,
we assume that every two adjacent nodes are connected by two
edges, one in each direction. We also assume that nodes are
activated with probability less than one, because nodes that
will be activated for sure could be identified in linear time
and they could be treated as seeds. Figure 4 shows an example
of a bidirected tree. The existence of bidirected edges brings
challenges to the algorithm design, because the influence may
flow from either direction between a pair of neighboring nodes.

In this section, we first present how to compute the exact
boosted influence spread on bidirected trees, and a greedy
algorithm Greedy-Boost based on it. Then, we present a
rounded dynamic programming DP-Boost, which is a fully

8

v0

v2v1 v3

S = {v1, v3}
p = 0.1, p′ = 0.19 for all edges

Fig. 4: A bidirected tree with 4 nodes and 6 directed edges.

polynomial-time approximation scheme. Greedy-Boost is ef-
ficient but does not provide the approximation guarantee.
DP-Boost is more computationally expensive but guarantees
a near-optimal approximation ratio. We leave all proofs of
this section in the appendix.

A. Computing the boosted influence spread

We first present how to compute the boosted influence
spread in a bidirected tree. It serves as a building block for
the greedy algorithm that iteratively selects nodes with the
maximum marginal gain of the boosted influence spread.

We separate the computation into three steps. (1) We refer
to the probability that a node gets activated (i.e., influenced)
as its “activation probability”. For every node u, we compute
the increase of its activation probability when it is inserted
into B. (2) If we regard a node u as the root of the tree, the
remaining nodes could be categorized into multiple “subtrees”,
one for each neighbor of u. For every node u, we compute
intermediate results that help us to determine the increase of
influence spread in each such “subtree” if we insert u into
B. (3) Based on the previous results, we compute σS(B) and
σS(B ∪ {u}) for every node u. If necessary, we are able to
obtain ∆S(B ∪ {u}) from σS(B ∪ {u})− σS(∅).
Notations. Let pBu,v be the influence probability of an edge
euv given that we boost nodes in B. Similarly, let pbu,v be
the influence probability of euv , where b ∈ {0, 1} indicates
whether v is boosted. We use N(u) to denote the set of
neighbors of node u. Given neighboring nodes u and v, we use
Gu\v to denote the subtree of G obtained by first removing
node v and then removing all nodes not connected to u. To
avoid cluttered notation, we slightly abuse the notation and
keep using S and B to denote seed users and boosted users in
Gu\v , although some nodes in S or B may not be in Gu\v .
Step I: Activation probabilities. For a node u, let apB(u)
be the activation probability of u when we boost B. For
v ∈ N(u), let apB(u\v) be the activation probability of
node u in Gu\v when we boost B. For example, in Figure 4,
suppose B = ∅, we have apB(v0) = 1− (1− p)2

= 0.19 and
apB(v0\v1) = p = 0.1. We have the following lemma.

Lemma 5. Given a node u, if u is a seed node (i.e., u ∈ S),
we have apB(u) = 1 and apB(u\v) = 1 for all v ∈ N(u).
Otherwise, we have

apB(u) =1−
∏

v∈N(u)

(
1−apB(v\u)·pBv,u

)
, (6)

apB(u\v) =1−
∏

w∈N(u)\{v}

(
1−apB(w\u)·pBw,u

)
,∀v ∈ N(u), (7)

apB(u\v) =1−
(
1−apB(u\w)

)
·
1−apB(w\u)·pBw,u
1−apB(v\u)·pBv,u

,

∀v, w ∈ N(u), v 6= w. (8)

Algorithm 3: Computing Activation Probabilities

1 Initialize apB(u\v),∀u, v ∈ N(u) as “not computed”
2 foreach u ∈ V do
3 foreach v ∈ N(u) do
4 ComputeAP(u, v) // compute apB(u\v)

5 foreach u ∈ V do
6 if u ∈ S then apB(u)← 1
7 else apB(u)← 1−

∏
v∈N(u)(1− apB(v\u) · pBv,u)

8 Procedure ComputeAP(u, v)
9 if we have not computed apB(u\v) then

10 if u ∈ S then apB(u\v)← 1
11 else if we have not computed apB(u\w) for any

w ∈ N(u)\{v} then
12 foreach w ∈ N(u)\{v} do ComputeAP(w, u)
13 apB(u\v)←1−

∏
w∈N(u)\{v}(1−apB(w\u)pBw,u)

14 else
15 Suppose we know apB(u\w) for w ∈ N(u)\{v}
16 ComputeAP(w, u)
17 apB(u\v)← 1−(1−apB(u\w))· 1−apB(w\u)·pBw,u

1−apB(v\u)·pBv,u

Algorithm 3 depicts how we compute activation proba-
bilities. Lines 1-4 initialize and compute apB(u\v) for all
neighboring nodes u and v. Lines 5-7 compute apB(u) for
all nodes u. The recursive procedure ComputeAP(u, v) for
computing apB(u\v) works as follows. Line 9 avoids the
recomputation. Line 10 handles the trivial case where node
u is a seed. Lines 11-13 compute the value of apB(u\v)
using Equation (7). Lines 14-17 compute apB(u\v) more
efficiently using Equation (8), taking advantages of the known
apB(u\w) and apB(v\u). Note that in Line 17, the value of
apB(v\u) must have been computed, because we have com-
puted apB(u\w), which relies on the value of apB(v\u). For
a node u, given the values of apB(w\u) for all w ∈ N(u), we
can compute apB(u\v) for all v ∈ N(u) in O(|N(u)|). Then,
for a node u, given values of apB(w\u) for all w ∈ N(u),
we can compute apB(u) in O(|N(u)|). Therefore, the time
complexity of Algorithm 3 is O(

∑
u |N(u)|) = O(n), where

n is the number of nodes in the bidirected tree.
Step II: More intermediate results. Given that we boost B,
we define gB(u\v) as the gain of the influence spread in Gu\v
when we add node u into the current seed set S. Formally,
gB(u\v) is defined as gB(u\v) = σ

Gu\v
S∪{u}(B) − σ

Gu\v
S (B),

where σ
Gu\v
S (B) is the boosted influence spread in Gu\v when

the seed set is S and we boost B. In Figure 4, we have
Gv0\v1

= G\{e01, e10}. Suppose B = ∅, when we insert v0

into S, the boosted influence spread in Gv0\v1
increases from

1.11 to 2.1, thus gB(v0, v1) = 0.99. We compute gB(u\v) for
all neighboring nodes u and v by the following lemma.

Lemma 6. Given a node u, if it is a seed node, we have
gB(u\v) = 0. Otherwise, for any v ∈ N(u), we have

gB(u\v) =
(

1−apB(u\v)
)
·
(

1 +
∑

w∈N(u)\{v}

pBu,w · gB(w\u)

1− apB(w\u) · pBw,u

)
.

(9)

9

Moreover, for v, w ∈ N(u) and v 6= w, we have

gB(u\v) =
(
1− apB(u\v)

)
·
(gB(u\w)

1− apB(u\w)

+
pBu,w · gB(w\u)

1− apB(w\u) · pBw,u
−

pBu,v · gB(v\u)

1− apB(v\u) · pBv,u

)
. (10)

Equation (9) shows how to compute gB(u\v) by definition.
Equation (10) provides a faster way to compute gB(u\v),
taking advantages of the previously computed values. Using
similar algorithm in Algorithm 3, we are able to compute
gB(u\v) for all u and v ∈ N(u) in O(n).
Step III: The final computation. Recall that σS(B) is the
boosted influence spread, we have σS(B) =

∑
v∈V apB(v).

The following lemma shows how we compute σS(B ∪ {u}).

Lemma 7. Given a node u, if it is a seed node or a boosted
node, we have σS(B ∪ {u}) = σS(B). Otherwise, we have

σS(B ∪ {u}) = σS(B) + ∆apB(u)

+
∑

v∈N(u)

pBu,v ·∆apB(u\v) · gB(v\u), (11)

where ∆apB(u) := apB∪{u}(u) − apB(u) = 1 −∏
v∈N(u)

(
1−apB(v\u) ·p′v,u

)
−apB(u) and ∆apB(u\v) :=

apB∪{u}(u\v) − apB(u\v) = 1 −
∏
w∈N(u)\{v}

(
1 −

apB(w\u) · p′w,u
)
− apB(u\v).

The intuition behind Equation (11) is as follows. Let Vv\u ⊆
V be the set of nodes in Gv\u ⊆ G. When we insert a node u
into B, ∆apB(u) is the increase of the activation probability
of u itself, and pBu,v · ∆apB(u\v) · gB(v\u) is the increase
of the number of influenced nodes in Vv\u. The final step
computes σS(B) and σS(B ∪ {u}) for all nodes u in O(n).
Putting it together. Given a bidirected tree G and a set of
boosted nodes B, we can compute σS(B) and σS(B ∪ {u})
for all nodes u in three steps. The total time complexity of
all three steps is O(n), where n is the number of nodes. The
above computation also allows us to compute ∆S(B ∪ {u})
for all u. To do so, we have to compute ap∅(·) in extra, then
we have σS(∅) =

∑
v ap∅(v) and ∆S(B ∪ {u}) = σS(B ∪

{u})− σS(∅).
Greedy-Boost. Based on the linear-time computation of
σS(B∪{u}) for all nodes u, Greedy-Boost iteratively inserts
into set B a node u that maximizes σS(B∪{u}), until |B| = k.
Greedy-Boost runs in O(kn).

B. A Rounded Dynamic Programming

In this part, we present a rounded dynamic programming
DP-Boost, which is a fully polynomial-time approximation
scheme. DP-Boost requires that the tree has a root node. Any
node could be assigned as the root node. Denote the root node
by r. For ease of presentation, we assume here that every node
has at most two children. We leave details about DP-Boost
for general bidirected trees in the appendix.
Bottom-up exact dynamic programming. For notational
convenience, we assume that r has a virtual parent r′ and
pr′r = p′r′r = 0. Given a node v, let VTv be the set of nodes
in its subtree. Define g(v, κ, c, f) as the maximum expected

boost of nodes in VTv under the following conditions. (1)
Assumption: The parent of node v is activated with probability
f if we remove VTv from G. (2) Requirement: We boost at
most κ nodes in VTv , and node v is activated with probability
c if we remove nodes not in VTv . It is possible that for some
node v, the second condition could never be satisfied (e.g., v is
a seed but c < 1). In that case, we define g(v, κ, c, f) := −∞.

By definition, maxc g(r, k, c, 0) is the maximum boost of
the influence upon boosting at most k nodes. However, the
exact dynamic programming is infeasible in practice because
we may have to calculate g(v, κ, c, f) for exponentially many
choices of c and f . To tackle this problem, we propose a
rounded dynamic programming and call it DP-Boost.
High level ideas. Let δ ∈ (0, 1) be a rounding parameter. We
use bxcδ to denote the value of x rounded down to the nearest
multiple of δ. We say x is rounded if and only if it is a multiple
of δ. For simplicity, we consider 1 as a rounded value. In
DP-Boost, we compute a rounded version of g(v, κ, c, f) only
for rounded values of c and f . Then, the number of calculated
entries would be polynomial in n and 1/δ. Let g′(v, κ, c, f)
be the rounded version of g(v, κ, c, f), DP-Boost guarantees
that g′(v, κ, c, f) ≤ g(v, κ, c, f) and g′(v, κ, c, f) gets closer
to g(v, κ, c, f) when δ decreases.

Definition 4 defines DP-Boost. An important remark is that
g′(·) is equivalent to the definition of g(·) if we ignore all the
rounding (i.e., assuming

⌊
x
⌋
δ

= x, ∀x).

Definition 4 (DP-Boost). Let v be a node. Denote the parent
node of v by u.
• Base case. Suppose v is a leaf node. If c 6= I(v ∈ S), let
g′(v, κ, c, f) = −∞; otherwise, let

g′(v, κ, c, f) = max
{

1−(1−c)(1−f · pI(κ>0)
u,v)−ap∅(v), 0

}
.

• Recurrence formula. Suppose v is an internal node. If v is
a seed node, we let g′(v, κ, c, f) = −∞ for c 6= 1, and
otherwise let

g′(v, κ, 1, f) = max
κ=

∑
κvi

∑
i

g′(vi, κvi , cvi , 1).

If v is a non-seed node, we use C ′(v, κ, c, f) to denote the
set of consistent subproblems of g′(v, κ, c, f). Subproblems
(κvi , cvi , fvi ,∀i) are consistent with g′(v, κ, c, f) if they
satisfy the following conditions:

b = κ−
∑
i

κvi ∈ {0, 1}, c=
⌊
1−
∏
i

(
1−cvi · pbvi,v

)⌋
δ
,

fvi=
⌊
1−(1−f · pbu,v)

∏
j 6=i

(
1−cvj · pbvj ,v

)⌋
δ
,∀i.

If C ′(v, κ, c, f) = ∅, let g′(v, κ, c, f) =−∞; otherwise, let

g′(v, κ, c, f) = max
(κvi ,fvi ,cvi ,∀i)
∈C′(v,κ,c,f),
b=k−

∑
i κvi

(∑
i g
′(vi,κvi ,cvi ,fvi)+

max{1−(1−c)(1−f ·pbu,v)−ap∅(v),0}

)
.

Rounding and relaxation. Because we compute g′(v, κ, c, f)
only for rounded c and f , in order to find consistent subprob-
lems of g′(v, κ, c, f) for an internal node v, we slightly relax
the requirements of c and fvi as shown in Definition 4. Our
relaxation guarantees that g′(v, κ, c, f) is at most g(v, κ, c, f).

10

The rounding and relaxation may result in a loss of the boosted
influence spread of the returned boosting set. However, as we
shall show later, the loss is bounded.
DP-Boost. We first determine the rounding parameter δ by

δ =
ε ·max(LB, 1)∑

u∈V
∑
v∈V p

(k)(u v)
, (12)

where LB is a lower bound of the optimal boost of influence,
and p(k)(u v) is defined as the probability that node u
can influence node v given that we boost edges with top-k
influence probability along the path. The value of LB could
be obtained by Greedy-Boost in O(kn). The denominator of
Equation (12) could be computed via depth-first search starting
from every node, each takes time O(kn). Thus, we can obtain
δ in O(kn + kn2) = O(kn2). With the rounding parameter
δ, DP-Boost computes the values of g′(·) bottom-up. For a
leaf node v, it takes O(k/δ2) to compute entries g′(v, κ, c, f)
for all κ, rounded c and rounded f . For an internal node v,
we enumerate over all combinations of f , b ∈ {0, 1}, and κvi ,
cvi for children vi. For each combination, we can uniquely
determine the values for κ, c and fvi for all children vi, and
update g′(v, κ, c, f) accordingly. For an internal node v, the
number of enumerated combinations is O(k2/δ3), hence we
can compute all k/δ2 entries g′(v, . . .) in O(k2/δ3). The total
complexity of DP-Boost is O(kn2+n·k2/δ3) = O(k2n7/ε3).
To conclude, we have the following theorem about DP-Boost.
The approximation guarantee is proved in the appendix.

Theorem 3. Assuming the optimal boost is at least one,
DP-Boost is a fully-polynomial time approximation scheme,
it returns a (1− ε)-approximate solution in O(k2n7/ε3).

Refinements. We compute possible ranges of c and f for
every node v. And we only compute g′(v, k, c, f) for c and
f within those ranges. Let cLv (resp. fLv) be the lower bound
of possible values of cv (resp. fv) for node v. For a node v,
we let cLv = 1 if v is a seed, let cLv = 0 if v is a leaf node,
and let cLv =

⌊
1−

∏
i(1− cLvi · pvi,v)

⌋
δ
. otherwise. For the

root node r, we let fLr = 0. For the i-th child vi of node v,
let fLvi =

⌊
1− (1− fLu · puv)

∏
j(1− cLvj · pvj ,v)

⌋
δ
, where u

is the parent of v. The upper bound of values of c and f for
every node is computed assuming all nodes are boosted, via a
method similar to how to we compute the lower bound.
General DP-Boost. Computing g′(v, . . .) for general bidi-
rected trees is far more complicated. We leave all details in
the appendix and only list the main results here. Given that the
optimal boost of influence is at least one, DP-Boost returns
a (1− ε)-approximate solution in O(k2n9/ε3). In addition, if
the number of children of every node is O(1) DP-Boost runs
in O(k2n7/ε3).

VII. EXPERIMENTS ON GENERAL GRAPHS

We conduct extensive experiments using real social net-
works to evaluate PRR-Boost and PRR-Boost-LB, and
show their superiority over intuitive baselines. Experiments
were conduct on a Linux machine with an Intel Xeon
E5620@2.4GHz CPU and 30 GB memory. The generation
of PRR-graphs and the estimation of objective functions are
parallelized with OpenMP and executed using eight threads.

Table 1: Statistics of datasets and seeds (all directed)

Description Digg Flixster Twitter Flickr

number of nodes (n) 28K 96K 323K 1.45M
number of edges (m) 200K 485K 2.14M 2.15M
average influence probability 0.239 0.228 0.608 0.013
influence of 50 influential seeds 2.5K 20.4K 85.3K 2.3K
influence of 500 random seeds 1.8K 12.5K 61.8K 0.8K

Datasets. We use four social networks Flixster [29], Digg [30],
Twitter [31] and Flickr [32]. All dataset have directed social
connections, and actions of users with timestamps (e.g., rating
movies, voting for stories, re-tweeting URLs, marking favorite
photos). We learn influence probabilities on edges using a
widely accepted method by Goyal et al. [33]. We remove edges
with zero influence probability and keep the largest weakly
connected component. Table 1 summaries our datasets.
Boosted influence probabilities. To the best of our knowl-
edge, no existing work quantitatively studies how influence
among people changes respect to different kinds of “boosting
strategies”. For every edge euv we let the boosted influence
probability p′uv be 1− (1− puv)β (β>1). We refer to β as the
boosting parameter. Due to the large number of combinations
of parameters, we fix β = 2 unless otherwise specified.
Intuitively, β = 2 indicates that every activated neighbor of
a boosted node v has two independent chances to activate v.
We also provide experiments showing the impacts of β.
Seed selection. We select seeds in two ways. (i) We use the
IMM method [8] to select 50 influential nodes. In practice,
the selected seeds typically correspond to highly influential
customers selected with great care. Table 1 summaries the
expected influence spread of selected seeds. (ii) We randomly
select five sets of 500 seeds. The setting maps to the situation
where some users become seeds spontaneously. Table 1 shows
the average expected influence of five sets of selected seeds.
Baselines. Because there is no existing algorithm applicable to
the k-boosting problem, we compare our proposed algorithms
with several heuristic baselines listed below.

• HighDegreeGlobal: Starting from an empty node set B, we
iteratively adds a node with the highest weighted degree to
B, until k nodes are selected. We use four definitions of
the weighted degree, for a node u /∈ (S ∪ B), they are:
(1) the sum of influence probabilities on outgoing edges
(i.e.,

∑
euv

puv); (2) the “discounted” sum of influence
probabilities on outgoing edges (i.e.,

∑
euv,v /∈B puv); (3)

the sum of the boost of influence probabilities on incoming
edges (i.e.,

∑
evu

[p′vu − pvu]); (4) the “discounted” sum of
the boost of influence probabilities on incoming edges (i.e.,∑
evu,v /∈B [p′vu − pvu]). Each definition outperforms others

in some experiments, and we report the best result.
• HighDegreeLocal: HighDegreeLocal differs from HighDe-

greeGlobal in that we first consider nodes close to seeds.
We first try to select k nodes among neighbors of seeds. If
we can boost more nodes, we continue to select from nodes
that are two-hops away from seeds. We repeat until k nodes
are selected. We also report the best solution selected using
four definitions of the weighted degree.

• PageRank: We use the PageRank baseline for the influence

11

maximization problems [4]. When a node u has influence
on v, it implies that node v “votes” for the rank of u. The
transition probability on edge euv is pvu/

∑
ewu

pwu. The
restart probability is 0.15. We compute the PageRank until
two consecutive iteration differ for at most 10−4 in L1 norm.

• MoreSeeds: We adapt the IMM method to select k more seeds
with the goal of maximizing the final expected influence
spread. We return the selected k seeds as the boosted nodes.

We do not compare our algorithms to the greedy algorithm
with Monte-Carlo simulations. Because it is extremely com-
putationally expensive even for the classical influence maxi-
mization [1, 7].
Settings. For PRR-Boost and PRR-Boost-LB, we let ε = 0.5
and ` = 1 so that both algorithms return (1−1/e−ε)· µ(B∗)

∆S(B∗) -
approximate solution with probability at least 1 − 1/n. To
enforce fair comparison, for all algorithms, we evaluate the
boost of influence spread by 20, 000 Monte-Carlo simulations.

A. Influential seeds

In this part, we report results where the seeds are 50
influential nodes. The setting here maps to the real-world
situation where the initial adopters are highly influential users
selected with great care. We run each experiment five times
and report the average results.
Quality of solution. Figure 5 compares the solutions returned
by different algorithms. Both PRR-Boost and PRR-Boost-LB
outperform other baselines. PRR-Boost always return the best
solution, and PRR-Boost-LB returns solutions with slightly
lower but comparable quality. In addition, MoreSeeds returns
solutions with the lowest quality. This is because nodes
selected by MoreSeeds are typically in the part of graph not
covered by the existing seeds so that they could generate larger
marginal influence. In contrast, boosting nodes are typically
close to seeds to make the boosting result more effective. Thus,
our empirical result further shows that k-boosting problem
differs significantly from the influence maximization problem.
Running time. Figure 6 shows the running time. The running
time of both PRR-Boost and PRR-Boost increases when
k increases. This is mainly because the number of random
PRR-graphs required increases. Figure 6 also shows that the
running time is in general proportional to the number of nodes
and edges for Digg, Flixster and Twitter, but not for Flickr.
This is mainly because of the significantly smaller average
influence probabilities on Flickr, and the accordingly lower
cost for generating a random PRR-graph (i.e., EPT) as we
will show shortly in Table 2. In Figure 6, we also label
the speedup of PRR-Boost-LB compared with PRR-Boost.
Together with Figure 5, we can see that PRR-Boost-LB
returns solutions with quality comparable to PRR-Boost but
runs faster. Because our algorithms consistently outperform
heuristic methods with no performance guarantee in all tested
cases, we do not compare the running time of our algorithms
with heuristic methods to avoid cluttering the results.
Effectiveness of the compression phase. Table 2 shows
the compression ratio of PRR-graphs and memory usages of
our algorithms, demonstrating the importance of compressing
PRR-graphs. The compression ratio is the ratio between the

PRR−Boost PRR−Boost−LB HighDegreeGlobal
HighDegreeLocal PageRank MoreSeeds

0
(0%)

160
(6%)

320
(13%)

480
(19%)

0 1000 2000 3000 4000 5000
Number of boosted nodes

B
oo

st
 o

f i
nf

lu
en

ce

(a) Digg

0
(0%)

1200
(6%)

2400
(12%)

3600
(18%)

0 1000 2000 3000 4000 5000
Number of boosted nodes

B
oo

st
 o

f i
nf

lu
en

ce

(b) Flixster

0
(0%)

2000
(2%)

4000
(5%)

6000
(7%)

0 1000 2000 3000 4000 5000
Number of boosted nodes

B
oo

st
 o

f i
nf

lu
en

ce

(c) Twitter

0
(0%)

700
(30%)

1400
(61%)

2100
(91%)

0 1000 2000 3000 4000 5000
Number of boosted nodes

B
oo

st
 o

f i
nf

lu
en

ce

(d) Flickr

Fig. 5: Boost of the influence versus k (influential seeds).

k=100 k=1000 k=5000

0.1

1

10

100

1000

Digg Flixster Twitter Flickr

R
un

ni
ng

 ti
m

e
(s

)

(a) PRR-Boost

2.
2x

2.
1x 2.

0x 3.
6x

3.
7x

3.
2x

1.
9x

1.
9x

1.
9x

1.
7x

1.
8x

1.
8x

0.1

1

10

100

1000

Digg Flixster Twitter Flickr

R
un

ni
ng

 ti
m

e
(s

)

(b) PRR-Boost-LB

Fig. 6: Running time (influential seeds).

average number of uncompressed edges and average number
of edges after compression in boostable PRR-graphs. Besides
the total memory usage, we also show in parenthesis the mem-
ory usage for storing boostable PRR-graphs. It is measured
as the additional memory usage starting from the generation
of the first PRR-graph. For example, for the Digg dataset
and k = 100, for boostable PRR-graphs, the average number
of uncompressed edges is 1810.32, the average number of
compressed edges is 2.41, and the compression ratio is 751.59.
Moreover, the total memory usage of PRR-Boost is 0.07GB
with around 0.01GB being used to storing “boostable” PRR-
graphs. The compression ratio is high in practice for two
reasons. First, many nodes visited in the first phase cannot
be reached by seeds. Second, among the remaining nodes,
many of them can be merged into the super-seed node, and
most non-super-seed nodes are be removed because they are
not on paths from the super-seed node to the root node.
The high compression ratio and the memory used for storing
compressed PRR-graphs show that the compression phase is
indispensable. For PRR-Boost-LB, the memory usage is much
lower because we only store critical nodes of boostable PRR-
graphs and most boostable PRR-graph only has a few critical
nodes in our experiments with β = 2. If one is indifferent
about the slightly difference between the quality of solutions

12

Table 2: Memory usage and compression ratio (influential
seeds). Numbers in parentheses are memory usage for
storing PRR-graphs.

k Dataset PRR-Boost PRR-Boost-LB

Compression Ratio Memory (GB) Memory (GB)

100
Digg 1810.32 / 2.41 = 751.79 0.07 (0.01) 0.06 (0.00)
Flixster 3254.91 / 3.67 = 886.90 0.23 (0.05) 0.19 (0.01)
Twitter 14343.31 / 4.62 = 3104.61 0.74 (0.07) 0.69 (0.02)
Flickr 189.61 / 6.86 = 27.66 0.54 (0.07) 0.48 (0.01)

5000
Digg 1821.21 / 2.41 = 755.06 0.09 (0.03) 0.07 (0.01)
Flixster 3255.42 / 3.67 = 886.07 0.32 (0.14) 0.21 (0.03)
Twitter 14420.47 / 4.61 = 3125.37 0.89 (0.22) 0.73 (0.06)
Flickr 189.08 / 6.84 = 27.64 0.65 (0.18) 0.50 (0.03)

returned by PRR-Boost-LB and PRR-Boost, we suggest to use
PRR-Boost-LB because of its lower running time and lower
memory usage.
Approximation factors. Recall that the approximate ratio
of PRR-Boost and PRR-Boost-LB depends on µ(B∗)

∆S(B∗) . The
closer to one the ratio is, the better the approximation guar-
antee is. With B∗ being unknown due to the NP-hardness of
the problem, we show the ratio when the boost is relatively
large. We obtain 300 sets of k boosted nodes by replacing
a random number of nodes in Bsa by other non-seed nodes,
where Bsa is the solution returned by PRR-Boost. For a set
B, we use PRR-graphs generated for finding Bsa to estimate
µ(B)

∆S(B) . Figure 7 shows the ratios for generated sets B as a
function of ∆S(B) for varying k. Because we intend to show
the ratio when the boost of influence is large, we ignore points
corresponding to sets whose boost of influence is less than
50% of ∆S(Bsa). For all datasets, the ratio is above 0.94,
0.83 and 0.74 for k = 100, 1000, 5000, respectively. The ratio
is closer to one when k is smaller. In practice, most boostable
PRR-graphs have critical nodes. When k is smaller, a node
set B that could result in a large boost of influence tends to
contain more nodes that are critical in many boostable PRR-
graphs. For example, for Twitter, when k = 100, among
PRR-graphs that have critical nodes and are activated upon
boosting Bsa, above 98% of them have their critical nodes
boosted (i.e., in Bsa). For a given PRR-graph R, if B contains
its critical nodes, we have f−R (B) = fR(B). Therefore,
when k is smaller, µ(B)

∆S(B) =
E[f−R (B)]

E[fR(B)] tends to be closer to
one. For example, for Twitter, when k increases from 100
to 5000, among PRR-graphs whose root nodes are activated
upon boosting Bsa, the fraction of them having critical nodes
decreases from around 98% to 88%. Accordingly, the ratio of
µ(Bsa)/∆S(Bsa) decreased by around 9% when k increases
from 100 to 5000.
Effects of the boosted influence probabilities. The larger
the boosting parameter β is, the larger the optimal boost is.
Figure 8 shows the effects of β on the boost of influence
and the running time. Figure 8a shows that PRR-Boost and
PRR-Boost-LB return comparable solutions with varying β for
Flixster and Flickr. For Twitter, we consider the slightly de-
generated performance of PRR-Boost-LB acceptable because
PRR-Boost-LB runs significantly faster. Figure 8b shows that
the running time of PRR-Boost increases when β increases,
but the running time of PRR-Boost-LB remains almost un-
changed. Thus, PRR-Boost-LB is more scalable to larger

Digg Flixster Twitter Flickr
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●
●●

●●●●●●●●
●●
●●●●●
●
●
●●
●●●
●●●●●●●
●
●●
●
●●
●
●●
●
●●●
●●●●
●
●●
●●●●●
●●●●
●●●●●●
●●●●●●●
●
●●●●
●
●●●
●
●●●●
●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●

0.7
0.8
0.9
1.0

0.7
0.8
0.9
1.0

0.7
0.8
0.9
1.0

k=
100

k=
1000

k=
5000

250 500 750
1000

1000
2000

3000
4000

2000
4000

6000
500

1000
1500

2000

Boost of the influence spread

R
at

io

Fig. 7: Sandwich Approximation: µ(B)
∆S(B) (influential

seeds).

●

●

PRR−Boost (Twitter) PRR−Boost (Flixster) PRR−Boost (Flickr)
PRR−Boost−LB (Twitter) PRR−Boost−LB (Flixster) PRR−Boost−LB (Flickr)

●

●
●

●
●

●

●
●

●
●

2000

4000

6000

8000

2 3 4 5 6
Boosting parameter

B
oo

st
 o

f i
nf

lu
en

ce

(a) Boost of influence

●
● ●

●
●

● ● ● ● ●0

50

100

150

200

250

2 3 4 5 6
Boosting parameter

R
un

ni
ng

 ti
m

e
(s

)

(b) Running time

Fig. 8: Effects of the boosting parameter (influential seeds,
k = 1000).

boosted influence probabilities on edges. In fact, when β
increases, a random PRR-graph tends to be larger. The running
time of PRR-Boost increases mainly because the cost for
PRR-graph generation increases. However, when β increases,
we observe that the cost for obtaining “critical nodes” for a
random PRR-graph does not change much, thus the running
time of PRR-Boost-LB remains almost unchanged. Figure 9
shows the approximation ratio of the sandwich approximation
strategy with varying boosting parameters. For every dataset,
when the boosting parameter increases, the ratio of µ(B)

∆S(B) for
large ∆S(B) remains almost the same. This suggests that both
our proposed algorithms remain effective when we increase the
boosted influence probabilities on edges.

B. Random seeds

In this part, we select five sets of 500 random nodes as
seeds for each dataset. The setting here maps to the real
situation where some users become seeds spontaneously. All
experiments are conducted on five sets of random seeds, and
we report the average results.
Quality of solution. We select up to 5000 nodes and compare
our algorithms with baselines. From Figure 10, we can draw
conclusions similar to those drawn from Figure 5 where
the seeds are highly influential users. Both PRR-Boost and
PRR-Boost-LB outperform all baselines.
Running time. Figure 11 shows the running time of
PRR-Boost and PRR-Boost-LB, and the speedup of
PRR-Boost-LB compared with PRR-Boost. Figure 11b shows
that PRR-Boost-LB runs up to three times faster than

13

Digg Flixster Twitter Flickr

●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●
●
●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●●●

●● ●●

●●●●●●●●●
●●●●●●

●●●●
●●●●●●●●●●●●●

●●●
●
●●●●●

●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●

●●●

●
●●●

●
●●●●●

●
●●●●●

●●●●●●
●●
●●●●●

●
●
●●
●
●●

●●
●
●●
●●●●●●●●●●●●●●●

●
●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●●
●●●

0.7
0.8
0.9
1.0

0.7
0.8
0.9
1.0

0.7
0.8
0.9
1.0

β
=

4
β

=
5

β
=

6

400 600 800
1000

2000
2500

3000
3500

4000
4000

5000
6000

7000
1200

1600
2000

Boost of the influence spread

R
at

io

Fig. 9: Sandwich Approximation: µ(B)
∆S(B) (influential seeds,

k = 1000).

PRR−Boost PRR−Boost−LB HighDegreeGlobal
HighDegreeLocal PageRank MoreSeeds

0
(0%)

220
(12%)

440
(24%)

660
(36%)

0 1000 2000 3000 4000 5000
Number of boosted nodes

B
oo

st
 o

f i
nf

lu
en

ce

(a) Digg

0
(0%)

2200
(18%)

4400
(35%)

6600
(53%)

0 1000 2000 3000 4000 5000
Number of boosted nodes

B
oo

st
 o

f i
nf

lu
en

ce

(b) Flixster

0
(0%)

3300
(5%)

6600
(11%)

9900
(16%)

0 1000 2000 3000 4000 5000
Number of boosted nodes

B
oo

st
 o

f i
nf

lu
en

ce

(c) Twitter

0
(0%)

400
(49%)

800
(99%)

1200
(148%)

0 1000 2000 3000 4000 5000
Number of boosted nodes

B
oo

st
 o

f i
nf

lu
en

ce

(d) Flickr

Fig. 10: Boost of the influence versus k (random seeds).

PRR-Boost. Together with Figure 10, PRR-Boost-LB is in
fact both efficient and effective given randomly selected seeds.
Effectiveness of the compression phase. Table 3 shows
the compression ratio of PRR-Boost, and the memory usage
of both proposed algorithms. Given randomly selected seed
nodes, the compression step of PRR-graphs is also very
effective. Together with Table 2, we can conclude that the
compression phase is an indispensable step for both cases
where the seeds are highly influence users or random users.
Approximation factors in the Sandwich Approximation. The
approximate ratio of PRR-Boost and PRR-Boost-LB depends
ratio µ(B∗)

∆S(B∗) . We use the same method to generate different
sets of boosted nodes B as in the previous sets of experiments.
Figure 12 shows the ratios for generated sets B as a function
of ∆S(B) for k ∈ {100, 1000, 5000}. For all four datasets, the
ratio is above 0.76, 0.62 and 0.47 for k = 100, 1000, 5000,
respectively. As from Figure 7, the ratio is closer to one
when k is smaller. Compared with Figure 7, we observe that
the ratios in Figure 12 are lower. The main reason is that,
along with many PRR-graphs with critical nodes, many PRR-
graphs without critical nodes are also boosted. For example,
for Twitter, when k = 5000, among PRR-graphs whose root

k=100 k=1000 k=5000

0.1

1

10

100

1000

Digg Flixster Twitter Flickr

R
un

ni
ng

 ti
m

e
(s

)

(a) PRR-Boost

1.
9x

2.
0x

1.
9x

3.
1x

3.
0x

3.
1x 1.

7x
1.

7x

1.
7x

2.
1x

2.
1x

2.
0x

0.1

1

10

100

1000

Digg Flixster Twitter Flickr

R
un

ni
ng

 ti
m

e
(s

)

(b) PRR-Boost-LB

Fig. 11: Running time (random seeds).

Table 3: Memory usage and compression ratio (random
seeds).

k Dataset PRR-Boost PRR-Boost-LB

Compression Ratio Memory (GB) Memory (GB)

100
Digg 3069.15 / 5.61 = 547.28 0.07 (0.01) 0.06 (0.00)
Flixster 3754.43 / 25.83 = 145.37 0.24 (0.06) 0.19 (0.01)
Twitter 16960.51 / 56.35 = 300.96 0.78 (0.11) 0.68 (0.01)
Flickr 701.84 / 18.12 = 38.73 0.56 (0.09) 0.48 (0.01)

5000
Digg 3040.94 / 5.59 = 544.19 0.12 (0.06) 0.07 (0.01)
Flixster 3748.74 / 25.86 = 144.94 0.71 (0.53) 0.21 (0.03)
Twitter 16884.86 / 57.29 = 294.72 1.51 (0.84) 0.72 (0.05)
Flickr 701.37 / 18.10 = 38.75 1.00 (0.53) 0.50 (0.03)

nodes are activated upon boosting Bsa, around 25% of them
do not have critical nodes, and around 3% of them have
critical nodes but their critical nodes are not in Bsa. Note
that, although the approximation guarantee of our proposed
algorithms decreases as k increases, Figure 10 shows that our
proposed algorithms still outperform all other baselines.

Digg Flixster Twitter Flickr

●
●●●
●
●
●
●
●●●
●●●●●●●●
●●●●
●●●●
●●●●●●
●●●●●●●
●
●●●●●●●
●●
●
●
●
●●●
●●●●●●●
●
●●●●●●●●
●
●●●
●●●●●●●
●
●●●●●
●●
●●
●●●●●
●●● ●●●

●

●
●
●●
●●
●

●●
●
●
●●●●●
●●●●●
●
●
●●
●●●
●●●●●●
●●●●●
●●●●●
●
●●●●●●
●
●●●●●●
●
●●●
●
●●●●●●●
●●●●●
●
●●●●●
●
●●
●
●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●
●●●●●●●●
●●●

●
●

●●●
●●●●●●●●
●
●
●●
●●●

●●
●●
●●
●
●
●
●●●
●
●●
●
●●●
●

●●

●

●●●●
●●
●●●
●
●
●●
●

●

●

●
●●●
●
●
●
●
●
●●●
●●●●
●

●●●
●●
●●●
●
●●●
●
●●●●
●●

●
●●●

●
●●
●●●●●
●●●

●
●●
●●
●●●
●
●●●●●●
●●● ●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●

0.4
0.6
0.8
1.0

0.4
0.6
0.8
1.0

0.4
0.6
0.8
1.0

k=
100

k=
1000

k=
5000

250 500 750
2000

4000
6000

2000
4000

6000
8000

300 600 900
1200

Boost of the influence spread

R
at

io

Fig. 12: Sandwich Approximation: µ(B)
∆S(B) (random seeds).

C. Budget allocation between seeding and boosting

In this part, we explore the budget allocation problem
where a company can decide both the number of seeders
and the number of users to boost. We assume that we can
target 100 users as seeds with all the budget, and targeting
a seed user costs 100 to 800 times as much as boosting
a user. For example, suppose targeting a seeder costs 100
times as much as boosting a user, we can boost 100 more
users if we target one less seed user. We explore the expected
influence spreads with different budget allocations. Given the
budget allocationwe first identify influential seeds using the
IMM method, then we use PRR-Boost to select boosted users.

14

Seed cost / Boost cost 800x 400x 200x 100x

22000

24000

26000

28000

20% 40% 60% 80% 100%
Fraction of budget for seeds

B
oo

st
ed

 in
flu

en
ce

(a) Flixster

3000

4000

5000

6000

20% 40% 60% 80% 100%
Fraction of budget for seeds

B
oo

st
ed

 in
flu

en
ce

(b) Flickr

Fig. 13: Budget allocation between seeding and boosting.

Figure 13 shows the results for Flixster and Flickr. Spending
a mixed budget among initial adopters and boosting users
achieves higher final influence spread than spending all budget
on initial adopters. For example, for cost ratio of 800 between
seeding and boosting, if we choose 80% budget for seeding
and 20% for boosting, we would achieve around 20% and 92%
higher influence spread than pure seeding, for Flixster and
Flickr respectively. Moreover, the best budget mix is different
for different networks and different cost ratio, suggesting the
need for specific tuning and analysis for each case.

VIII. EXPERIMENTS ON BIDIRECTED TREES

In this section, we show experimental results of DP-Boost
and Greedy-Boost for bidirected trees. We show that
DP-Boost efficiently approximates the k-boosting problem for
bidirected trees with thousands of nodes. And, Greedy-Boost
returns near-optimal solutions.

For a given number of nodes n, we construct a complete
(undirected) binary tree with n nodes, then we replace each
undirected edge by two directed edges, one in each direction.
We assign influence probabilities on edges according to the
Trivalency model. For each edge euv , puv is randomly chosen
from {0.001, 0.01, 0.1}. Moreover, for every edge euv , let
p′uv = 1−(1− puv)2. For every tree, we select 50 seeds using
the IMM method. We compare Greedy-Boost and DP-Boost.
The boost of influence of the returned sets are computed
exactly. We run each experiment five times with randomly
assigned influence probabilities and report the average results.
Greedy-Boost v.s. DP-Boost with varying ε. For DP-Boost,
the value of ε controls the tradeoff between the accuracy and
computational costs. Figure 14 shows that, for DP-Boost, the
running time decreases dramatically when ε increases, but
the boost is almost unaffected. Because DP-Boost returns
(1 − ε)-approximate solutions, it provides a benchmark for
the greedy algorithm. Figure 14a shows that the greedy
algorithm Greedy-Boost returns near-optimal solutions in
practice. Moreover, Figure 14b shows Greedy-Boost is orders
of magnitude faster than DP-Boost with ε = 1 where the
theoretical guarantee is in fact lost.
Greedy-Boost versus DP-Boost with varying tree sizes.
Figure 15 compares Greedy-Boost and DP-Boost (ε =
0.5) for trees with varying sizes. Figure 15a suggests that
Greedy-Boost always return near-optimal solutions on trees
with varying sizes. Figure 15b demonstrates the efficiency of
Greedy-Boost. Results for smaller values of k are similar.

● DP−Boost (eps=0.2) DP−Boost (eps=0.4) DP−Boost (eps=0.6)
DP−Boost (eps=0.8) DP−Boost (eps=1) Greedy−Boost

●
● ● ● ●

0.1

1.0

10.0

100.0

50 100 150 200 250
Number of boosted nodes

B
oo

st
 o

f i
nf

lu
en

ce

(a) Boost of influence

● ●
●

●
●

0.1

1.0

10.0

100.0

50 100 150 200 250
Number of boosted nodes

R
un

ni
ng

 ti
m

e
(s

)

(b) Running time

Fig. 14: The greedy algorithm versus the rounded dynamic
programming on random bidirected trees with 2000 nodes.

● DP−Boost (k=150) DP−Boost (k=200) DP−Boost (k=250)
Greedy−Boost (k=150) Greedy−Boost (k=200) Greedy−Boost (k=250)

●

●
●

● ●

12

13

14

15

1000 2000 3000 4000 5000
Number of nodes

B
oo

st
 o

f i
nf

lu
en

ce
(a) Boost of influence

●
●

● ● ●

0.1

1.0

10.0

100.0

1000 2000 3000 4000 5000
Number of nodes

R
un

ni
ng

 ti
m

e
(s

)

(b) Running time

Fig. 15: The greedy algorithm versus the rounded dynamic
programming on random bidirected trees with varies sizes.

IX. CONCLUSION

In this work, we address a novel k-boosting problem that
asks how to boost the influence spread by offering k users
incentives so that they are more likely to be influenced
by friends. For the k-boosting problem on general graphs,
we develop efficient approximation algorithms, PRR-Boost
and PRR-Boost-LB, that have data-dependent approximation
factors. Both PRR-Boost and PRR-Boost-LB are delicate inte-
gration of Potentially Reverse Reachable Graphs and the state-
of-the-art techniques for influence maximization problems. For
the k-boosting problem on bidirected trees, we present an
efficient greedy algorithm Greedy-Boost based on a linear-
time exact computation of the boost of influence spread, and
we also repsent a fully polynomial-time approximation scheme
DP-Boost. We conduct extensive experiments on real datasets
to evaluatie PRR-Boost and PRR-Boost-LB. Results demon-
strate the superiority of our proposed algorithms over intuitive
baselines. Compared with PRR-Boost, experimental results
show that PRR-Boost-LB returns solution with comparable
quality but has significantly lower computational costs. On real
social networks, we also explore the scenario where we are
allowed to determine how to spend the limited budget on both
targeting initial adopters and boosting users. Experimental
results demonstrate the importance of studying the problem
of targeting initial adopters and boosting users with a mixed
strategy. We also conduct experiments on synthetic bidirected
to show the efficiency and effectiveness of our proposed algo-
rithms Greedy-Boost and DP-Boost for trees. In particular,
we show via experiments that Greedy-Boost is extremely
efficient and returns near-optimal solutions in practice.

15

The proposed “boosting” problem has several more future
directions. One direction is to design more efficient approx-
imation algorithms or effective heuristics for the k-boosting
problem. This may requires new techniques about how to
tackle the non-submodularity of the objective function. These
new techniques may also be applied to solve other existing
or future questions in the area of influence maximization.
Another direction is to investigate similar problems under
other influence diffusion models, for example the well-known
Linear Threshold (LT) model. We believe the general question
of to how to boost the spread of information is of great
importance and it deserves more attention.

REFERENCES

[1] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in SIGKDD, 2003, pp. 137–146.

[2] T. Carnes, C. Nagarajan, S. M. Wild, and A. van Zuylen, “Maximizing
influence in a competitive social network: A follower’s perspective,” in
EC, 2007, pp. 351–360.

[3] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in SIGKDD, 2009, pp. 199–208.

[4] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in SIGKDD,
2010, pp. 1029–1038.

[5] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in
social networks under the linear threshold model,” in ICDM, 2010, pp.
88–97.

[6] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in SODA, 2014, pp. 946–957.

[7] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal
time complexity meets practical efficiency,” in SIGMOD, 2014, pp. 75–
86.

[8] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in SIGMOD, 2015, pp. 1539–1554.

[9] “Global trust in advertising,” http://www.nielsen.com/us/en/insights/
reports/2015/global-trust-in-advertising-2015.html, accessed: 2016-09-
18.

[10] Y. Lin, W. Chen, and J. C. S. Lui, “Boosting information spread: An
algorithmic approach,” arXiv:1602.03111 [cs.SI], 2016.

[11] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in SIGKDD,
2007, pp. 420–429.

[12] A. Goyal, W. Lu, and L. V. Lakshmanan, “Celf++: Optimizing the
greedy algorithm for influence maximization in social networks,” in
WWW, 2011, pp. 47–48.

[13] W. Chen, L. V. S. Lakshmanan, and C. Castillo, “Information and
influence propagation in social networks,” Synthesis Lectures on Data
Management, 2013.

[14] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks,” in
ICDM, 2016, pp. 695–710.

[15] K. Jung, W. Heo, and W. Chen, “Irie: Scalable and robust influence
maximization in social networks,” in ICDM, 2012, pp. 918–923.

[16] S. Bharathi, D. Kempe, and M. Salek, “Competitive influence maximiza-
tion in social networks,” in International Workshop on Web and Internet
Economics, 2007, pp. 306–311.

[17] V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt, “Recommendations to
boost content spread in social networks,” in WWW, 2012, pp. 529–538.

[18] D.-N. Yang, H.-J. Hung, W.-C. Lee, and W. Chen, “Maximizing ac-
ceptance probability for active friending in online social networks,” in
SIGKDD, 2013, pp. 713–721.

[19] S. Antaris, D. Rafailidis, and A. Nanopoulos, “Link injection for boost-
ing information spread in social networks,” Social Network Analysis and
Mining, vol. 4, no. 1, pp. 1–16, 2014.

[20] D. Rafailidis, A. Nanopoulos, and E. Constantinou, “with a little help
from new friends: Boosting information cascades in social networks
based on link injection,” Journal of Systems and Software, vol. 98, pp.
1–8, 2014.

[21] D. Rafailidis and A. Nanopoulos, “Crossing the boundaries of com-
munities via limited link injection for information diffusion in social
networks,” in WWW, 2015, pp. 97–98.

[22] Y. Yang, X. Mao, J. Pei, and X. He, “Continuous influence maximiza-
tion: What discounts should we offer to social network users?” in ICDM,
2016, pp. 727–741.

[23] W. Lu, W. Chen, and L. V. Lakshmanan, “From competition to comple-
mentarity: comparative influence diffusion and maximization,” VLDB,
vol. 9, no. 2, pp. 60–71, 2015.

[24] W. Chen, F. Li, T. Lin, and A. Rubinstein, “Combining traditional mar-
keting and viral marketing with amphibious influence maximization,” in
EC, 2015, pp. 779–796.

[25] Y. Lin, W. Chen, and J. C. S. Lui, “Boosting information spread: An
algorithmic approach,” in ICDE, 2017, pp. 883–894.

[26] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972, pp. 85–103.

[27] L. G. Valiant, “The complexity of enumeration and reliability problems,”
SIAM Journal on Computing, vol. 8, no. 3, pp. 410–421, 1979.

[28] Y. Lin and J. C. Lui, “Analyzing competitive influence maximization
problems with partial information: An approximation algorithmic frame-
work,” Performance Evaluation, vol. 91, pp. 187–204, 2015.

[29] M. Jamali and M. Ester, “A matrix factorization technique with trust
propagation for recommendation in social networks,” in RecSys, 2010,
pp. 135–142.

[30] T. Hogg and K. Lerman, “Social dynamics of digg,” EPJ Data Science,
vol. 1, no. 1, p. 5, 2012.

[31] N. O. Hodas and K. Lerman, “The simple rules of social contagion,”
Scientific reports, vol. 4, 2014.

[32] M. Cha, A. Mislove, and K. P. Gummadi, “A measurement-driven
analysis of information propagation in the flickr social network,” in
WWW, 2009, pp. 721–730.

[33] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” in WSDM, 2010, pp. 241–250.

APPENDIX A
PROOFS

Theorem 1 (Hardness). The k-boosting problem is NP-hard.
Computing ∆S(B) given S and B is #P-hard.

Lemma 8 proves the NP-hardness of the k-boosting prob-
lem, and Lemma 9 shows the #P-hardness of the boost
computation.

Lemma 8. The k-boosting problem is NP-hard.

s

c2c1 c3

x1 x2 x3 x4 x5 x6

|VC | = |C| = m

|VX | = |X| = n

p = 0.5, p′ = 1

p = p′ = 1

Fig. 16: Illustration of the NP-hardness graph construc-
tion: X = {x1, x2, . . . , x6}, C = {C1, C2, C3}, C1 =
{x1, x2, x3}, C2 = {x2, x3, x4}, C3 = {x4, x5, x6}, with
m = 3, n = 6.

Proof. We prove Lemma 8 by a reduction from the NP-
complete Set Cover problem [26]. The Set Cover problem is
as follows: Given a ground set X = {e1, e1, . . . , en} and a
collection C of subsets C = {C1, C2, . . . , Cm} of X , we want
to know whether there exist k subsets in C so that their union
is X . We assume that every element in X is covered by at
least one set in C. We reduce the Set Cover problem to the
k-boosting problem as follows.

Given an arbitrary instance of the Set Cover problem. We
define a corresponding directed tripartite graph G with 1 +
m + n nodes. Figure 16 shows how we construct the graph

http://www.nielsen.com/us/en/insights/reports/2015/global-trust-in-advertising-2015.html
http://www.nielsen.com/us/en/insights/reports/2015/global-trust-in-advertising-2015.html

16

G. Node s is a seed node. Node set VC = {c1, c2, . . . , cm}
contains m nodes, where node ci corresponds to the set Ci in
C. Node set VX = {x1, x2, . . . , xn} contains n nodes, where
node xi corresponds to the element ei in X . For every node
ci ∈ VC , there is a directed edge from s to ci with an influence
probability of 0.5 and a boosted influence probability of 1.
Moreover, if a set Ci contains an element ej in X , we add a
directed edge from ci to xj with both the influence probability
and the boosted influence probability on that edge being 1.
Denote the degree of the node xi ∈ VX by dxi . When we do
not boost any nodes in G (i.e., B = ∅), the expected influence
spread of S = {s} in G can be computed as σS(∅) = 1+m+∑
xi∈VX

(
1−0.5dxi

)
. The Set Cover problem is equivalent to

deciding if there is a set B of k boosted nodes in graph G so
that σS(B) = σS(∅) + ∆S(B) = 1 + n+m. Because the Set
Cover problem [26] is NP-complete, the k-boosting problem
is NP-hard.

Lemma 9. Computing ∆S(B) given S and B is #P-hard.

G1

p = 0.5
s t t′

G2

ptt′ = 0.5

p′tt′ = 1

Fig. 17: Illustration of the #P-hardness graph construction.

Proof. We prove Lemma 9 by a reduction from the #P-
complete counting problem of s-t connectedness in a directed
graph [27]. An instance of the s-t connectedness is a directed
graph G1 = (V,E) and two nodes s and t in the graph. The
problem is to count the number of subgraphs of G1 in which
s is connected to t. This problem is equivalent to computing
the probability that s is connected to t when each edge in G1

has an independent probability of 0.5 to be connected, and
another 0.5 to be disconnected.

We reduce this problem to the computation of the boost of
influence spread. Let G2 = (V ∪{t′}, E∪{ett′}) be a directed
graph. Figure 17 shows the construction of G2. In G2, let
S = {s}, B = {t′}. Moreover, let puv = 0.5 and p′uv =
1 for every edge euv in G2. We compute ∆S(B) for graph
G2. Then, ∆S(B)/(p′tt′ − ptt′) = 2∆S(B) is the probability
that s is connected to t in G1, when each edge in G1 has
an independent probability of 0.5 to be connected. Thus, we
solve the s-t connectedness counting problem. Because the s-
t connectedness problem is #P-complete, the computation of
the boost of influence spread (i.e., ∆S(B)) is #P-hard.

Lemma 4. Given that Inequalities (4)-(5) hold, with a prob-
ability of at least 1 − n−`′ , we have ∆S(Bsa) ≥ (1 − 1/e −
ε) ·OPTµ ≥ (1− 1/e− ε) · µ(B∗).

Proof. Let B be a boost set with k nodes, we say that B is a
bad set if ∆S(B) < (1−1/e−ε) ·OPTµ. To prove Lemma 4,
we first show that each bad boost set with k nodes is returned
by Algorithm 2 with a probability of at most (1− n−`′)/

(
n
k

)
.

Let B be an arbitrary bad set with k nodes, we have

∆S(B) < (1− 1/e− ε) ·OPTµ. (13)

If we return B as the Bsa, we must have ∆̂R(B) > ∆̂R(Bµ).
Therefore, the probability that B is returned is upper bounded
by Pr[∆̂R(B) > ∆̂R(Bµ)]. From Inequality (5) and Inequal-
ity (13), we have

n · µ̂R(Bµ)−∆S(B)

≥(1− 1/e) · (1− ε1) ·OPTµ − (1− 1/e− ε) ·OPTµ
=(ε− (1− 1/e) · ε1) ·OPTµ.

Let ε2 = ε− (1− 1/e) · ε1, we have

Pr[∆̂R(B) > ∆̂R(Bµ)]

≤Pr[∆̂R(B) > µ̂R(Bµ)]

≤Pr[n · ∆̂R(B)−∆S(B) > n · µ̂R(Bµ)−∆S(B)]

≤Pr[n · ∆̂R(B)−∆S(B) > ε2 ·OPTµ].

Let p = ∆S(B)/n, we know p = E[fR(B)] from Lemma 1.
Recall that θ = |R| and ∆̂R(B) =

(∑
R∈R fR(B)

)
/θ. Let

δ =
ε2·OPTµ

np , by Chernoff bound, we have

Pr
[
n · ∆̂R(B)−∆S(B) > ε2 ·OPTµ

]
= Pr

[∑
R∈R

fR(B)− θp > ε2 ·OPTµ
np

· θp

]

≤ exp
(
− δ2

2 + δ
· θp
)

= exp
(
−

ε22 ·OPT 2
µ

2n2p+ ε2 ·OPTµ · n
· θ
)

≤ exp
(
−

ε22·OPT 2
µ

2n(1−1/e−ε)·OPTµ+ε2·OPTµ·n
·θ
)

(by Ineq (13))

≤ exp
(
− (ε− (1− 1/e) · ε1)2 ·OPTµ

n · (2− 2/e)
· θ
)

≤ exp
(
− log

((
n
k

)
· (2n`

′
)
))

(by Ineq (4))

≤n−`
′
/
(
n
k

)
.

Because there are at most
(
n
k

)
bad sets B with k nodes,

by union bound, the probability that Algorithm 2 returns a
bad solution is at most n−`

′
. Because OPTµ ≥ µ(B∗),

the probability that Algorithm 2 returns a solution so that
∆S(Bsa) < (1− 1/e− ε) · µ(B∗) is also at most n−`

′
.

Lemma 5. Given a node u, if u is a seed node (i.e., u ∈ S),
we have apB(u) = 1 and apB(u\v) = 1 for all v ∈ N(u).
Otherwise, we have

apB(u) =1−
∏

v∈N(u)

(
1−apB(v\u)·pBv,u

)
, (6)

apB(u\v) =1−
∏

w∈N(u)\{v}

(
1−apB(w\u)·pBw,u

)
,∀v ∈ N(u), (7)

apB(u\v) =1−
(
1−apB(u\w)

)
·
1−apB(w\u)·pBw,u
1−apB(v\u)·pBv,u

,

∀v, w ∈ N(u), v 6= w. (8)

Proof. Suppose we boost the node set B. Equation (6) holds
from the fact that node u does not get influenced if and only if
all its neighbors (i.e., N(u)) fail to influence it. Equation (7)
holds from the fact that node u does not get influenced if and
only if all of its neighbors in Gu\v (i.e., N(u)\{v}) fail to
influence it. Equation (8) is a direct result from Equation (7),

17

and we have 1−apB(v\u)·pBv,u > 0 because we have assumed
that non-seed nodes are activated with probability less than
one.

Lemma 6. Given a node u, if it is a seed node, we have
gB(u\v) = 0. Otherwise, for any v ∈ N(u), we have

gB(u\v) =
(

1−apB(u\v)
)
·
(

1 +
∑

w∈N(u)\{v}

pBu,w · gB(w\u)

1− apB(w\u) · pBw,u

)
.

(9)

Moreover, for v, w ∈ N(u) and v 6= w, we have

gB(u\v) =
(
1− apB(u\v)

)
·
(gB(u\w)

1− apB(u\w)

+
pBu,w · gB(w\u)

1− apB(w\u) · pBw,u
−

pBu,v · gB(v\u)

1− apB(v\u) · pBv,u

)
. (10)

Proof. In Gu\v , suppose we insert the node u into the seed
set. The activation probability of node u itself increases
from apB(u\v) to 1, increases by 1 − apB(u\v). Let node
w be a neighbor of u in Gu\v . The probability that u
could be activated by nodes other than w increases from
1−

∏
x∈N(u)\{v,w}(1− apB(x\u) · pBx,u) to 1, increases by∏

x∈N(u)\{v,w}

(
1− apB(x\u) · pBx,u

)
=

1− apB(u\v)

1− apB(w\u) · pBw,u
.

In the above equation, we have 1 − apB(w\u) · pBw,u > 0
because we assume that non-seed nodes are activated with
probability less than one. By definition of gB(u\v), we have

gB(u\v) = (1− apB(u\v))

+
∑

w∈N(u)
w 6=v

1− apB(u\v)

1− apB(w\u) · pBw,u
· pBu,w · gB(w\u),

and Equation (9) holds. Equation (10) can be derived directly
from Equation (9).

Lemma 7. Given a node u, if it is a seed node or a boosted
node, we have σS(B ∪ {u}) = σS(B). Otherwise, we have

σS(B ∪ {u}) = σS(B) + ∆apB(u)

+
∑

v∈N(u)

pBu,v ·∆apB(u\v) · gB(v\u), (11)

where ∆apB(u) := apB∪{u}(u) − apB(u) = 1 −∏
v∈N(u)

(
1−apB(v\u) ·p′v,u

)
−apB(u) and ∆apB(u\v) :=

apB∪{u}(u\v) − apB(u\v) = 1 −
∏
w∈N(u)\{v}

(
1 −

apB(w\u) · p′w,u
)
− apB(u\v).

Proof. If u ∈ B or u ∈ S, it is obvious that σS(B ∪ {u}) =
σS(B). Now, consider u ∈ V \(B ∪ S), and we insert node u
into the boost set B. The value of ∆apB(u) is the increase
of the activation probability of node u itself. The value of
∆apB(u\v) is the increase of the activation probabilities of
node u in Gu\v . Suppose v is a neighbor of u. Let Vv\u be the
set of nodes in Gv\u. In graph G, when we insert node u into
B, the expected number of activated nodes in Vv\u increases
by pBu,v ·∆apB(u\v) · gB(v, u). Thus, we have Equation (11)
holds.

Theorem 3. Assuming the optimal boost is at least one,
DP-Boost is a fully-polynomial time approximation scheme,
it returns a (1− ε)-approximate solution in O(k2n7/ε3).

The proof of Theorem 3 relies on the following lemma.

Lemma 10. We have a1a2− b1b2 ≤ (a1− b1) + (a2− b2) for
0 ≤ ai ≤ 1, 0 ≤ bi ≤ 1.

Proof. The complexity of DP-Boost has been analyzed in
the paper. Let B∗ be the optimal solution of the k-boosting
problem, and assume ∆S(B∗) ≥ 1. Let B̃ be the solution
returned by DP-Boost. To prove Theorem 3, we only need to
prove that we have

∆S(B̃) ≥ (1− ε)∆S(B∗). (14)

Suppose we boost nodes in B∗. For every node v, let κ∗v =
|B∗ ∩ Tv| be the number of nodes boosted in Tv , let c∗v be
the probability that node v is activated in Tv and let f∗v be
the probability that node v’s parent is activated in G\Tv . If v
is the root node, let f∗v = 0. For every node v, let u be the
parent of v and let vi be the i-th child of v, we have

g(v, κ∗v, c
∗
v, f
∗
v) =

(∑
vi

g(vi, κ
∗
vi , c

∗
vi , f

∗
vi)
)

+ 1− (1− f∗v · pB
∗

u,v)(1− c∗v)− ap∅(v), (15)

∆S(B∗) =
∑
v∈V

(
1− (1− f∗v · pB

∗

u,v)(1− c∗v)− ap∅(v)
)
.

(16)

Define p∗(x y) as the probability that node x can influence
node y, given that B∗ is boosted. If x = y, we let p∗(x
y) = 1.

We now assign rounded values c̃v and f̃v for all
node v. The assignment guarantees that for every inter-
nal node v, (κ∗vi , c̃vi , f̃vi ,∀i) is a consistent subproblem of
g′(v, κ∗v, c̃v, f̃v).

We first assign values c̃v for every node v in G. We will
show that for every node v we have

c∗v − c̃v ≤ δ ·
∑
x∈Tv

p∗(x v). (17)

We assign values of c̃ from leaf nodes to the root node.
For a leaf node v, let c̃v =

⌊
c∗v
⌋
δ

and Inequality (17)
holds. For every internal seed node v, let c̃v = 1 and
Inequality (17) holds. For every non-seed internal node v, let
c̃v =

⌊
1−

∏
vi

(1− c̃vi · pB
∗

vi,v)
⌋
δ
, and Inequality (17) can be

verified as follows.

c∗v−c̃v = 1−
∏
vi

(
1−c∗vi · p

B∗

vi,v

)
−
⌊
1−
∏
vi

(
1−c̃vi · pB

∗

vi,v

)⌋
δ

≤δ+
∑
vi

(c∗vi−c̃vi) · p
B∗

vi,v ≤ δ+
∑
vi

(
δ
∑
x∈Tvi

p∗(x vi) · pB
∗

vi,v

)
≤δ

∑
x∈Tv

p∗(x v)

The first inequality holds from Lemma 10, and the second
inequality holds by induction.

18

Now, we assign values f̃v for every node v from root to
leaf. For every non-root node v, denote its parent by u, we
will show that our assignment satisfies

f∗v − f̃v ≤ δ ·
∑

x∈G\Tv

p∗(x u). (18)

For the root node r, we have f∗r = 0, and we let f̃r = 0. For an
internal seed node v and the i-th child vi of v, let f̃vi = 1 and
Inequality (18) holds for vi because f∗vi = 1. For an internal
non-seed node v and its child vi, denote the parent of v by u,
let f̃vi =

⌊
1− (1− f̃v · pB

∗

u,v)
∏
j 6=i

(
1− c̃vj · pB

∗

vj ,v

)⌋
δ
. Then,

Inequality (18) can be verified as follows.

f∗vi − f̃vi ≤ δ + (f∗v − f̃v) · pB
∗

u,v +
∑
j 6=i

(c∗vj − c̃vj) · p
B∗

vj ,v

≤ δ + δ ·
∑

x∈G\Tv

p∗(x v) + δ ·
∑
j 6=i

∑
x∈Tvj

p∗(x v)

≤ δ ·
∑

x∈G\Tvi

p∗(x v)

The first inequality holds from Lemma 10, and the second
inequality holds by induction.

For every internal node v, from how we assign the values
of c̃v and f̃v , we can conclude that (κ∗vi , c̃vi , f̃vi ,∀i) is a
consistent subproblem of g′(v, κ∗v, c̃v, f̃v).

Let B̃ be the set of nodes returned by DP-Boost, we have

∆S(B̃) ≥
∑
v∈V

max
{

1− (1− f̃v · pB
∗

u,v)(1− c̃v)− ap∅(v), 0
}
,

where we use u to denote the parent of v. Moreover, we have

∆S(B∗)−∆S(B̃) ≤
∑
v∈V

(
(f∗v − f̃v) · pB

∗

u,v + (c∗v − c̃v)
)

≤ δ
∑
v∈V

(∑
x∈G\Tv

p∗(x v)+
∑
x∈Tv

p∗(x v)
)

≤ δ
∑
v∈V

∑
x∈V

p∗(x v) ≤ δ
∑
v∈V

∑
x∈V

p(k)(x v).

Finally, recall that the rounding parameter δ of DP-Boost is
δ = ε·max(LB,1)∑

v∈V
∑
x∈V p

(k)(x v)
, where LB is a lower bound of

∆S(B∗). We can conclude that ∆S(B̃) ≥ (1−ε)·∆S(B∗).

APPENDIX B
DP-BOOST FOR GENERAL BIDIRECTED TREES

In this section, we extend DP-Boost in Section VI-B to
tackle the k-boosting problem on general bidirected trees. On
general bidirected trees, there is no restriction of the number
of children of nodes. For the exact dynamic programming,
the description in Section VI-B naturally works for general
bidirected trees. However, the generalization of DP-Boost is
non-trivial and the definition of consistent subproblem is much
more involved. Formally, the general DP-Boost is as follows.

Definition 5 (General DP-Boost). Let v be a node. Denote
the parent node of v by u.
• Base case. Suppose v is a leaf node. If c 6= I(v ∈ S), let
g′(v, κ, c, f) = −∞; otherwise, let

g′(v, κ, c, f) = max
{

1−(1−c)(1−f · pI(κ>0)
u,v)−ap∅(v), 0

}
.

Algorithm 4: General DP-Boost (G,S, k, ε)

1 Bgreedy = Greedy-Boost(G,S, k)

2 δ =
ε·max(∆S(Bgreedy),1)

2
∑
v∈V

∑
x∈V p

(k)(x v)
// rounding parameter

3 for nodes v from leaf to root do // compute g′(. . .)
4 if v is a leaf then Leaf(v)
5 else if v is a seed then InternalSeed(v)
6 else if v has non child then NonseedWithChild(v)
7 else NonseedWithChildren(v)
8 return node set B corresponding to maxc g

′(r, k, c, 0)

• Recurrence formula. Suppose v is an internal node. If v is
a seed node, we let g′(v, κ, c, f) = −∞ for c 6= 1, and let

g′(v, κ, 1, f) = max
κ=

∑
κvi

∑
i

g′(vi, κvi , cvi , 1).

If v is a non-seed node with d ≥ 1 children. We use
C ′(v, κ, c, f) to denote the set of consistent subproblems
of g′(v, κ, c, f). For 1 ≤ i ≤ d, define

δv(i) =

{
δ
d−2 1 < i < d,

0 otherwise.

Subproblems (κvi , cvi , fvi ,∀i) are consistent with
g′(v, κ, c, f) if they satisfy the following conditions.
– About κ and κvi : κ =

∑
vi
κvi + b where b ∈ {0, 1}.

– About c and cvi : c =
⌊
xd
⌋
δ
, where x0 = 0 and xi =⌊

1− (1− xi−1)(1− cvi · pbvi,v)
⌋
δv(i)

for 1 ≤ i ≤ d.

– About f and fvi : fvi =
⌊
1− (1− xi−1)(1− yi)

⌋
δ

for 1 ≤ i ≤ d, where yd = f · pbu,v and yi =⌊
1− (1− yi+1)(1− cvi+1

· pbvi+1,v)
⌋
δv(i)

for 1 ≤ i ≤ d.

If C ′(v, κ, c, f) = ∅, let g′(v, κ, c, f) =−∞; otherwise, let

g′(v, κ, c, f) = max
(κvi ,fvi ,cvi ,∀i)
∈C′(v,κ,c,f),
b=k−

∑
i κvi

(∑
i g
′(vi,κvi ,cvi ,fvi)+

max{1−(1−c)(1−f ·pbu,v)−ap∅(v),0}

)
.

For a bidirected tree where every node has at most two
children, Definition 5 degenerates to Definition 4. Definition 5
defines consistent subproblems of g′(v, κ, c, f), with some
intermediate variables xi and yi. Intuitively, when there is
no rounding, xi is the probability that v is activated in
Tv\(∪j>iTvj), and yi is the probability that v is activated
in G\(∪j≤iTvj). To prevent the number of possible values of
xi and yi from growing exponentially with d, we also round
xi and yi for all 1 < i < d.

Algorithm 4 depicts the framework of the general
DP-Boost. First, Lines 1-2 determine the rounding parameter
δ. With the rounding parameter δ, we compute the values of
g′(. . .) bottom-up. There are four subroutines that compute
the values of g′(v, . . .) for different types of nodes. We will
describe each subroutine in detail. For notational convenience,
in the remaining of this section, we use u to denote the parent
of node v when the context is clear.
Leaf(v): Suppose node v is a leaf node, we assign
g′(v, κ, c, f) for all κ, and rounded value of c and f by

19

Algorithm 5: InternalSeed(v)
1 Initialize g′(v, κ, c, f)← −∞ for all 0 ≤ κ ≤ k and

rounded c and f
2 Initialize h(i, κ)← 0, for 0 ≤ i ≤ d and 0 ≤ κ ≤ k
3 for i← 1 to d do // d is the number of children of v
4 for κvi ← 0 to k do
5 maxg ← maxcvi g

′(vi, κvi , cvi , 1) // fvi = 1

6 for κ← κvi to k do
7 h(i, κ) =

max
{
h(i, κ), h(i− 1, κ− κvi) + maxg

}
8 forall 0 ≤ κ ≤ k and rounded f do
9 g′(v, κ, 1, f)← h(d, κ) // boost κ nodes among the

first d subtrees

Definition 5. There are O(k/δ2) entries, assigning each entry
takes O(1) time. Thus, the complexity of this subroutine is
O(k/δ2).
InternalSeed(v): Suppose node v is a internal seed node
with d children (d ≥ 1). We first initialize g′(v, κ, c, f) = −∞
for all κ and rounded values of c and f . Because v is a seed
node, node v is activated in Tv with probability c = 1 and
we must have fvi = 1 for the i-th child vi of v. However,
the number of assignments of (κvi , cvi , fvi = 1,∀i) can still
grow exponentially with the number of children, because cvi
for each children vi could have up to 1/δ possible values.
To tackle this problem, we define a helper function h(i, κ)
for 1 ≤ i ≤ d and 0 ≤ κ ≤ k. When there is no rounding,
the value of h(i, κ) is the maximum increase of the expected
number of activated nodes in ∪j≤iTvj (i.e., the first i subtrees
of v), given that we boost at most κ nodes in the first i subtrees
of v. Formally, h(i, κ) is defined as follows:

h(i, κ) = max
κ=

∑i
j=1 κj


i∑

j=1

max
cvj

{
g′(vj , κvj , cvj , 1)

} .

Assuming h(0, κ) = 0 for all κ. The value of h(i, κ) for i > 1
can be efficiently computed as follows:

h(i, κ) = max
0≤κvi≤κ

{
h(i− 1, κ− κvi) + max

cvi
g′(vi, κvi , cvi , 1)

}
.

(19)

Algorithm 5 depicts InternalSeed(v). The complexity of
this subroutine is O(d · k · (k + 1/δ)).
NonseedWithChild(v): Suppose v is a non-seed node with
one child. We first initialize g′(v, κ, c, f) = −∞ for all κ and
rounded values of c and f . Then, we compute g′(v, κ, c, f)
by Definition 5. Algorithm 6 depicts this subroutine. The
complexity of this subroutine is O(k/δ2).
NonseedWithChildren(v): Suppose node v is a non-
seed node with d ≥ 2 children. Similar to the subrou-
tine InternalSeed(·), we need a helper function. Let
h(b, i, κ, xi, zi) be the helper function, where b ∈ {0, 1},
2 ≤ i ≤ d. Moreover, for h(b, i, κ, xi, zi), we only consider

Algorithm 6: NonseedWithChild(v)
1 Initialize g′(v, κ, c, f)← −∞ for all 0 ≤ κ ≤ k and

rounded c and f
2 forall b ∈ {0, 1}, rounded cv1

, f do
3 c←

⌊
cv1
· pbv1,v

⌋
δ
, fv1

←
⌊
f · pbu,v

⌋
δ

4 boostv ← max
{

1− (1− c)(1− f · pbu,v)− ap∅(v), 0
}

5 for κ = b to k do
6 g′(v, κ, c, f)← max

{
g′(v, κ, c, f), g′(v1, κ−

b, cv1 , fv1) + boostv
}

values of xi and zi that are multiples of δv(i). The helper
function h(b, i, κ, xi, y) is formally defined as follows.

h(b, i,κ, xi, zi) = max

i∑
j=1

g(vj , κvj , cvj , fvj)

s.t. κ =
i∑

j=1

κvj + b, x0 = 0,

xj =
⌊
1−(1−xj−1)(1−cvj · pbvj ,v)

⌋
δv(j)

(1 ≤ j ≤ i),

yi = zi · pbu,v if i = d and yi = zi otherwise

yj =
⌊
1−(1−yj+1)(1−cvj+1

· pbvj+1,v)
⌋
δv(j)

(1 ≤ j < i)

fvj =
⌊
1−(1−xj−1)(1−yj)

⌋
δ

(1 ≤ j ≤ i)

When there is no rounding, h(b, i, κ, x, y) is the maximum
boost of first i subtrees of v given that (1) b indicates whether
we boost node v; (2) κ− b nodes are boosted in ∪j≤iTvj ; (3)
x is the probability that v is activated in Tv\(∪j>iTvj); and
(4) y is the probability that v is activated in G\(∪j≤iTvj).
Comparing the above definition of the helper function to
Definition 5, we know

g′(v, κ, c, f) = max
0≤b≤I(κ>0)

(
h(b,d,κ−b,c,f)

+ max{1−(1−c)(1−f ·pbu,v)−ap∅(v),0}

)
For the boundary case where i = 2, the helper function is
computed by its definition. When 2 < i ≤ d, the helper
function is computed efficiently as follows.

h(b, i,κ, xi, zi) = max
(
h(b,i−1,κ−κvi ,xi−1,zi−1)

+g′(vi,κvi ,cvi ,fvi)

)
s.t. 0 ≤ κvi ≤ κ, xi =

⌊
1− (1− xi−1)(1− cvi · pbvi,v)

⌋
δv(i)

yi = zi · pbu,v if i = d and yi = zi otherwise

zi−1 =
⌊
1− (1− cvi · pbvi,v)(1− yi)

⌋
δv(i−1)

fvi =
⌊
1− (1− xi−1)(1− yi)

⌋
δ

Algorithm 7 depicts this subroutine. The complexity of ini-
tializing g′(v, . . .) is O(k/δ2). The complexity of Lines 4-18
is O(d · k2 · 1

δ ·
(
d−2
δ

)2
) = O(k2d3/δ3). The complexity

of Lines 19-21 is O(k/δ2). Therefore, the complexity of
Algorithm 7 is O(k2d3/δ3).
Complexity of the general DP-Boost: In the general
DP-Boost, we first determine the rounding parameter δ. The

20

Algorithm 7: NonseedWithChildren(v)
1 Initialize g′(v, κ, c, f)← −∞ for all 0 ≤ κ ≤ k and

rounded c and f
2 for b← 0 to 1 do
3 Initialize h(b, i, κ, xi, zi)← 0, ∀i, κ, xi, zi
4 forall rounded cv1

, cv2
, z2 do // boundary case

5 x2 ←
⌊
1− (1− cv1

· pbv1,v)(1− cv2
· pbv2,v)

⌋
δv(2)

6 if d = 2 then y2 ← z2 · pbu,v else y2 ← z2

7 fv1
←
⌊
1− (1− cv2

· pbv2,v)(1− y2)
⌋
δ
,

fv2
←
⌊
1− (1− cv1

· pbv1,v)(1− y2)
⌋
δ

8 forall κv1
+ κv2

+ b ≤ k do
9 κ← κv1

+ κv2
+ b

10 h(b, 2, κ, x2, z2)←
max

{
h(b, 2, κ, x2, z2), g′(v1, κv1

, cv1
, fv1

) +
g′(v2, κv2 , cv2 , fv2)

}
11 for i = 3 to d do // helper function for 2 < i ≤ d
12 forall rounded xi−1, cvi , zi ∈ [0, 1] do
13 xi ←

⌊
1− (1− xi−1)(1− cvi · pbvi,v)

⌋
δv(i)

14 if i = d then yi ← zi · pbu,v else yi ← zi

15 zi−1 ←
⌊
1− (1− cvi · pbvi,v)(1− yi)

⌋
δv(i−1)

16 fvi ←
⌊
1− (1− xi−1)(1− yi)

⌋
δ

17 forall κ and 0 ≤ κvi ≤ κ do
18 h(b, i, κ, xi, zi)←

max
{
h(b, i, κ, xi, zi), h(b, i− 1, κ−

κvi , xi−1, zi−1) + g′(vi, κvi , cvi , fvi)
}

19 forall b ≤ κ ≤ k and rounded c, f do // g′(v, . . .)
20 boostv ← {1− (1− c)(1− f · pbu,v)− ap∅(v), 0}
21 g′(v, κ, c, f)←

max
{
g′(v, κ, c, f), h(b, d, κ, c, f) + boostv

}

time complexity is O(kn2), as in Section VI-B. With the
rounding parameter, we compute the values of g′(·) bottom-up.
The most expensive subroutine is the NonseedWithChildren
subroutine, which runs in O(k2d3/δ3). Therefore, the total
complexity of the general DP-Boost is O(k2/δ3 ·

∑
v d

3
v),

where dv is the number of children of node v. In the
worst case, we have O(1/δ) = O(n2/ε) and O(

∑
v dv

3) =
O(n3). Therefore, the complexity for the general DP-Boost
is O(k2n9/ε3). For the special case where the number of
children for every node is bounded by a constant (e.g., two),
we have O(

∑
v d

3
v) = O(n) and the complexity of the general

DP-Boost is O(k2n7/ε3). To conclude, we have the following
theorem.

Theorem 4. Assuming the optimal boost of influence is at
least one, the general DP-Boost is a fully-polynomial time
approximation scheme, it returns a (1− ε)-approximate solu-
tion in O(k2n9/ε3). For bidirected trees where the number of
children of nodes is upper bounded by a constant, the general
DP-Boost runs in O(k2n7/ε3).

We have analyzed the complexity of the general DP-Boost.

To prove Theorem 4, we only need to prove the following
lemma about the approximation ratio.

Lemma 11. Let B∗ be the optimal solution of the k-boosting
problem, and assume ∆S(B∗) ≥ 1. Let B̃ be the solution
returned by the general DP-Boost, we have

∆S(B̃) ≥ (1− ε)∆S(B∗). (20)

Proving Lemma 11 relies on the following lemma, which
can be proved by induction. Lemma 12 is also a direct
corollary of Lemma 4 in [16].

Lemma 12. For any a1, . . . , an and b1, . . . , bn, where 0 ≤
ai ≤ 1, 0 ≤ bi ≤ 1, we have

∏n
i=1 ai−

∏n
i=1 bi ≤

∑n
i=1(ai−

bi).

Now, we prove Lemma 11.

Proof. Let B∗ be the optimal solution for the k-boosting
problem. Suppose we boost nodes in B∗, for every node v,
let κ∗v = |B ∩ Tv| be the number of nodes boosted in Tv , let
c∗v be the probability that node v is activated in Tv , and let f∗v
be the probability that node v’s parent is activated in G\Tv .
For the root node r, let f∗r = 0. For every node v, denote its
parent by u, we have

g(v, κ∗v, c
∗
v, f
∗
v) =

(∑
vi

g(vi, κ
∗
vi , c

∗
vi , f

∗
vi)
)

+ 1−(1−f∗v · pB
∗

u,v)(1−c∗v)−ap∅(v), (21)

∆S(B∗) =
∑
v∈V

(
1−(1−f∗v · pB

∗

u,v)(1−c∗v)−ap∅(v)
)
. (22)

Define p∗(x y) as the probability that node x can influence
node y when we boost nodes in B∗. If x = y, define p∗(x
y) = 1.

Now, we assign rounded values c̃v and f̃v for all
node v. The assignment guarantees that for every inter-
nal node v, (κ∗vi , c̃vi , f̃vi ,∀i) is a consistent subproblem of
g′(v, κ∗v, c̃v, f̃v).

We first assign values c̃v for every node v in G. For every
node v, we will show that our assignment of c̃v satisfies

c∗v − c̃v ≤ 2δ ·
∑
x∈Tv

p∗(x v). (23)

We assign values of c̃ from leaf nodes to the root node. For
every leaf node v, let c̃v =

⌊
c∗v
⌋
δ
, then Inequality (23) holds.

For an internal seed node v, let c̃v = 1, then Inequality (23)
holds because c∗v = 1. For an internal non-seed node v with
d children, we compute c̃v as follows. First, let x̃0 = 0 and
compute and x̃i =

⌊
1− (1− x̃i−1)(1− c̃vi · pB

∗

vi,v)
⌋
δv(i)

for

1 ≤ i ≤ d. Then, let c̃v =
⌊
x̃d
⌋
δ
. Inequality (23) can be

verified as follows. Define x∗0 = 0 and x∗i = 1 −
∏i
j=1(1 −

c∗vj · p
B∗

vj ,v) for 1 ≤ i ≤ d. We have x∗0 = x̃0. Moreover, for
1 ≤ i ≤ d, we have

x∗i − x̃i ≤ (x∗i−1 − x̃i−1) + (c∗vi − c̃vi) · p
B∗

vi,v + δv(i)

≤
i∑

j=1

(c∗vj − c̃vj) · p
B∗

vj ,v +

i∑
j=1

δv(j).

21

The first inequality holds from Lemma 12, and the second
inequality holds by induction. Then, the difference between
c∗v and c̃v can be bounded as follows.

c∗v − c̃v = x∗d −
⌊
x̃d
⌋
δ
≤

d∑
i=1

(c∗vi − c̃vi) · p
B∗

vi,v +

d∑
i=2

δv(i) + δ

≤ 2δ ·
∑
vi

·
(∑
x∈Tvi

p∗(x vi) · pB
∗

vi,v

)
+ 2δ

≤ 2δ ·
∑
x∈Tv

p∗(x v)

Now, we assign values f̃v for every node v from root to
leaf. For every non-root node v, denote its parent by u, we
will show that our assignment satisfies

f∗v − f̃v ≤ 2δ ·
∑

x∈G\Tv

p∗(x u). (24)

For the root node r, we have f∗r = 0, and we let f̃r = 0.
Suppose v is an internal seed node, for every child vi, let
f̃vi = 1 and Inequality (24) holds for vi because f∗vi =
1. Now, suppose v is an internal non-seed node with d
children, and denote the parent of v by u. We compute
f̃vi for child vi as follows. First, let ỹd = f̃v · pB

∗

u,v and

ỹi =
⌊
1− (1− c̃vi+1 · pB

∗

vi+1,v)(1− ỹi+1)
⌋
δv(i)

for 1 ≤ i < d.

Then, let f̃vi =
⌊
1− (1− x̃i−1)(1− ỹi)

⌋
δ

for 1 ≤ i ≤ d.
Inequality (24) can be verified as follows. Define y∗d = f̃v ·pB

∗

u,v

and y∗i = 1 − (1 − c̃vi+1
· pB∗vi+1,v)(1 − y

∗
i+1) for 1 ≤ i < d.

For i = d, we have y∗i − ỹi = (f∗v − f̃v) · pB
∗

u,v . For 1 ≤ i < d,
the difference between y∗i and ỹi can be bounded as follows.

y∗i − ỹi ≤ (c∗vi+1
− c̃vi+1

) · pB
∗

vi+1,v + (y∗i+1 − ỹi+1) + δv(i)

≤ (f∗v − f̃v) · pB
∗

u,v +

d∑
j=i+1

(c∗vj − c̃vj) · p
B∗

vj ,v +

d∑
j=i

δv(i).

The first inequality holds from Lemma 12, and the second
inequality holds by induction. Then, for 1 ≤ i ≤ d, the
difference between f∗vi and f̃vi can be bounded as follows.

f∗vi − f̃vi ≤
(

1− (1− x∗i−1)(1− y∗i)
)
− f̃vi

≤ (x∗i−1 − x̃i−1) + (y∗i − ỹi) + δ

≤ (f∗v − f̃v) · pB
∗

u,v +
∑
j 6=i

(c∗vj − c̃vj) · p
B∗

vj ,v +
∑
j 6=i

δv(i) + δ

≤ 2δ ·
∑

x∈G\Tv

p∗(x v) + 2δ ·
∑
j 6=i

∑
x∈Tvj

p∗(x v) + 2δ

≤ 2δ ·
∑

x∈G\Tvi

p∗(x v)

For every internal node v, from how we assign the values
of c̃v and f̃v , we can conclude that (κ∗vi , c̃vi , f̃vi ,∀i) is a
consistent subproblem of g′(v, κ∗v, c̃v, f̃v).

Let B̃ be the set of nodes returned by the general DP-Boost,
we have

∆S(B̃) ≥
∑
v∈V

max
{

1− (1− f̃v · pB
∗

u,v)(1− c̃v)− ap∅(v), 0
}
,

where we use u to denote the parent of v. Moreover, we have

∆S(B∗)−∆S(B̃) ≤
∑
v∈V

(
(f∗v − f̃v) · pB

∗

u,v + (c∗v − c̃v)
)

≤ 2δ ·
∑
v∈V

(∑
x∈G\Tv

p∗(x v) +
∑
x∈Tv

p∗(x v)
)

≤ 2δ ·
∑
v∈V

∑
x∈V

p(k)(x v).

Finally, recall that the rounding parameter δ is δ =
ε·max(LB,1)

2
∑
v∈V

∑
x∈V p

(k)(x v)
, where LB is a lower bound of

∆S(B∗), we can conclude that ∆S(B̃) ≥ (1−ε)·∆S(B∗).

Refinements. In the implementation of the general DP-Boost,
we also apply the refinements that we have discussed in Sec-
tion VI-B. Recall that in NonseedWithChildren(v) that com-
putes g′(v, . . .) for a non-seed internal node v with multiple
children, we have to compute a helper function h(b, i, κ, x, z).
In our implementation of NonseedWithChildren(v), we also
compute lower and upper bounds for the values of x and z for
h(b, i, κ, x, z). The lower bound is computed assuming that we
do not boost any node. The upper bound is computed assuming
that all nodes are boosted.

	Introduction
	Background and related work
	Model and Problem Definition
	Model and Problem Definition
	Challenges of the Boosting Problem

	Boosting on General Graphs: Building Blocks
	State-of-the-art influence maximization techniques
	Potentially Reverse Reachable Graphs
	Sandwich Approximation Strategy

	Boosting On General Graphs: Algorithm Design
	Generating random PRR-graphs
	PRR-Boost Algorithm
	The PRR-Boost-LB Algorithm
	Discussion: The Budget Allocation Problem

	Boosting on Bidirected Trees
	Computing the boosted influence spread
	A Rounded Dynamic Programming

	Experiments on General Graphs
	Influential seeds
	Random seeds
	Budget allocation between seeding and boosting

	Experiments on Bidirected Trees
	Conclusion
	Appendix A: Proofs
	Appendix B: DP-Boost for General Bidirected Trees

