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Algebraic effect handlers are a powerful abstraction mechanism that can express many complex control-flow

mechanisms. In this article we first define a basic operational semantics and type system for algebraic effect

handlers, and then build on that to formalize various optimizations and extensions. In particular, we show how

to optimize tail-resumptive operations using skip frames, formalize a semantics and type rules for first-class

resource handlers that can express polymorphic references, and formalize a design for finalizers and initializers

to handle external resources with linearity constraints. We introduce the concept of deep finalization which

ensures finalization is robust across operation handlers even if operations themselves do not resume.
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1. INTRODUCTION
Algebraic effects [36] and their extension with handlers [37, 38], are a novel way to describe many

control-flow mechanisms in programming languages. In general any free monad can be expressed

as an effect handler and they have been used to describe complex control structures such as iterators,

async-await, concurrency, parsers, state, exceptions, etc. (without needing to extend the compiler

or language) [10, 14, 16, 26, 48].

Recently, there are various implementations of algebraic effects, either embedded in other

languages like Haskell [16, 48], Scala [5], or C [27], or built into a language, like Eff [2], Links [14],

Frank [32], Koka [28], and Multi-core OCaml [10, 46]. Even though the theoretical foundations

for algebraic effects and handlers are well-understood, for any practical implementation of effect

handlers there are many open questions, like the potential efficiency of handlers, or their interaction

with linear resources. In this paper we try to address some of these questions by giving an end-to-end

description and formalization of effect handlers and various novel extensions.

In Section 4 we define the operational semantics of basic algebraic effects and handlers based

on [28]. We build on these semantics as the foundation for various optimizations and extensions

that are required when using effects in practice:

• Section 5 describes skip frames and formalizes an important optimization that avoids captur-

ing and restoring the stack for tail-resumptive operations, and essentially turns them into

dynamic method calls. Since almost all operations in practice are tail-resumptive, this is a

very important optimization for any practical implementation. We prove that the extended

formal semantics with the tail-resumptive optimization is sound with respect to the original

semantics.

• Section 6 extends the semantics with effect injection allowing to skip innermost handlers. Bier-

nacki et al. [3] show that this is an essential operation for writing composable higher-order

functions that use effect handlers. Their formulation used a separate 0-free predicate, but we
reformulate this using straightforward evaluation contexts, and we prove that these concepts

are equivalent.

• Our main contribution is in Section 7 where we extend the semantics further with handlers

that are can be addressed as first-class values, called resources. This adds a lot more expres-

siveness but surprisingly only needs minimal changes to the original semantics. As such,

resources are a powerful abstraction but can still be understood and reasoned about as regular
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effect handlers. We show through various examples how resources can be used to model files,

polymorphic references, and event streams in CorrL [4].

• When using external resources, like files, we need a robust way to run finalization code.

However, we cannot specialize this for just exception effects but need a general mechanism

that works for any effect definition: any operation might not resume, or resume more than

once. Both those cases cause problems when working with an external resource that has

a linearity constraint. Section 8 extends the semantics further with general finalizers and
initializers that work across any effect and can safely encapsulate linear resources. We also

introduce the novel concept of deep finalization (Section 8.2) to write robust operation clauses.

Except for initializers
1
, all of the above contributions have been fully implemented [25]. We first

give a mini-overview of algebraic effects in Section 2, and formalize the syntax and type system in

Section 3. After that we describe the basic semantics and discuss the various extensions. There is

no separate related work section as we try to discuss related work in each section inline.

2. BASIC ALGEBRAIC EFFECTS
We are demonstrate all our examples in the context of the Koka programming language as this is

one of the few implementations with a full type inference system that tracks effects of each function.

The type of a function has the form τ→ ϵ τ ′ signifying a function that takes an argument of type

τ , returns a result of type τ ′ and may have a side effect ϵ . We can leave out the effect and write

τ→ τ ′ as a shorthand for the total function without any side effect: τ→ ⟨⟩ τ ′. A key observation

on Moggi’s early work on monads [34] was that values and computations should be assigned a

different type. Koka applies that principle where effect types only occur on function types; and any

other type, like int, truly designates an evaluated value that cannot have any effect.

Koka has many features found in languages like ML and Haskell, such as type inference, algebraic

data types and pattern matching, higher-order functions, impredicative polymorphism, open data

types, etc. The pioneering feature of Koka is the use of row types with scoped labels to track effects

in the type system. This gives Koka a very strong semantic foundation combining the purity of

Haskell with the call-by-value semantics of ML.

There are various ways to understand algebraic effects and handlers. As described originally [36,

38], the signature of the effect operations forms a free algebra which gives rise to a free monad.

Free monads provide a natural way to give semantics to effects, where handlers describe a fold over

the algebra of operations [45]. Using a more operational perspective, we can also view algebraic

effects as resumable exceptions. We therefore start our overview by modeling exceptional control

flow.

2.1. Exceptions as Algebraic Effects
The exception effect exc can be defined in Koka as:

effect exc {

raise( s : string ) : a

}

This defines a new effect type excwith a single primitive operation, raisewith type string → exc a

for any a (Koka uses single letters for polymorphic type variables). The raise operation can be used

just like any other function:

1
Initializers are already supported by the runtime but have no builtin syntax yet.
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fun safediv( x, y ) {

if (y==0) then raise("divide by zero") else x / y

}

Type inference will infer the type (int,int) → exc int propagating the exception effect. Up

to this point we have introduced the new effect type and the operation interface, but we have

not yet defined what these operations mean. The semantics of an operation is given through an

algebraic effect handler which allows us to discharge the effect type. The standard way to discharge

exceptions is by catching them, and we can write this using effect handlers as:

fun catch(action,h) {

handle(action) {

raise(s) → h(s)

}

}

The handle construct for an effect takes an action to evaluate and a set of operation clauses. The

inferred type of catch is:

catch : ( action: () → ⟨exc|e⟩ a, h : string → e a) → e a

The type is polymorphic in the result type a and its final effects e, where the action argument has

an effect ⟨exc|e⟩: this syntax denotes effect row extension, and states that action can have an exc

effect and possibly more effects e. As we can see, the handle construct discharged the exc effect

and the final result effect is just e. For example,

fun zerodiv(x,y) {

catch( { safediv(x,y) }, fun(s){ 0 } )

}

has type (int,int) → ⟨ ⟩ int and is a total function. Note that the Koka braced syntax { safediv(x,y) }

denotes an anonymous function that takes no arguments, i.e. it is equivalent to fun(){ safediv(x,y) }.

Besides clauses for each operation, each handler can have a return clause too: this is applied to

the final result of the handled action. In the previous example, we just passed the result unchanged,

but in general we may want to apply some transformation. For example, transforming exceptional

computations into maybe values:

fun to-maybe(action) {

handle(action) {

return x → Just(x)

raise(s) → Nothing

}}

with the inferred type (() → ⟨exc|e⟩ a) → e maybe⟨a⟩. Note that Koka uses angled brackets for

both effect row types, but also for type application as in the result type maybe⟨a⟩.

The handle construct is actually syntactic sugar over the more primitive handler construct:

handle(action) { ... } ≡ (handler{ ... })(action)

A handler just takes a set of operation clauses for an effect, and returns a function that discharges

the effect over a given action. This allows us to express to-maybe more concisely as a (function)

value:

val to-maybe = handler {

return x → Just(x)

raise(s) → Nothing

}
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with the same type as before.

Just like monadic programming, algebraic effects allows us to conveniently program with excep-

tions without having to explicitly plumb maybe values around. When using monads though we have

to provide a Monad instance with a bind and return, and we need to create a separate discharge

function. In contrast, with algebraic effects we only define the operation interface and the discharge

is implicit in the handler definition.

2.2. State: Resuming Operations
The exception effect is somewhat special as it never resumes: any operations following the raise

are never executed. Usually, operations will resume with a specific result instead of cutting the

computation short. For example, we can have an input effect:

effect input {

getstr() : string

}

where the operation getstr returns some input. We can use this as:

fun hello() {

val name = getstr()

println("Hello " + name)

}

An obvious implementation of getstr gets the input from the user, but we can just as well create a

handler that takes a set of strings to provide as input, or always returns the same string:

val always-there = handler {

return x → x

getstr() → resume("there")

}

Every operation clause in a handler brings an identifier resume in scope which takes as an argument

the result of the operation and resumes the program at the invocation of the operation – if the

resume occurs at the tail position (as in our example) it is much like a regular function call. Executing

always-there(hello) will output:

> always-there(hello)

Hello there

As another example, we can define a stateful effect:

effect state⟨s⟩ {

get() : s

put( x : s ) : ()

}

The state effect is polymorphic over the values s it stores. For example, in

fun counter() {

val i = get()

if (i ≤ 0) then () else {

println("hi")

put(i - 1);

counter()

}

}
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Expressions e ::= e(e) application

| val x = e; e binding

| handlelh(e) handler

| v value

Values v ::= x | C variables, constants

| λx . e lambda expressions

| opl operation of effect l

Clauses h ::= return x → e return clause

| op(x) → e; h operation clause

Static effect label l ::= l (for now equal to effect constants)

Fig. 1. Syntax of expressions

the type becomes () → ⟨state⟨int⟩,console,div|e⟩ () with the state instantiated to int. To

define the state effect we could use the built-in state effect of Koka, but a cleaner way is to use

parameterized handlers. Such handlers take a parameter that is updated at every resume. Here is a

possible definition for handling state:

val state = handler(s) {

return x → (x,s)

get() → resume(s,s)

put(s’) → resume((),s’)

}

We see that the handler binds a parameter s (of the polymorphic type s), the current state. The return

clause returns the final result tupled with the final state. The resume function in a parameterized
handler takes now multiple arguments: the first argument is the result of the operation, while the

last argument is the new handler parameter used when handling the resumption. The get operation

leaves the current state unchanged, while the put operation resumes with the passed-in state

argument as the new handler parameter. The function returned by the handler construct now takes

the initial state as an extra argument:

state : (init: s, action: () → ⟨state⟨s⟩|e⟩ a) → e (a,s)

and we can use it as:

> state(2,counter)

hi

hi

This concludes the overview but we covered many essential aspects algebraic effects. We refer to

other work for more in-depth explanations and examples [2, 14, 16, 29, 48].

3. SYNTAX AND TYPES

3.1. Type Rules
In this section we give a formal definition of our polymorphic row-based effect system for the core

calculus of Koka. The material in this section (and large parts of the next section on semantics) has
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Types τ k ::= αk
type variable

| ck ⟨τ k1
1
, . . .,τ knn ⟩ kind of c is (k1, . . ., kn) → k

Kinds k ::= ∗ | e values, effects

| k effect constants

| (k1, . . ., kn) → k type constructor

Type scheme σ ::= ∀αk . σ | τ ∗

Type constants (), bool :: ∗ unit, booleans

(_→ _ _) :: (∗, e, ∗) → ∗ functions

⟨⟩ :: e empty effect

⟨_ | _⟩ :: (k, e) → e effect extension

exn, . . . :: k various effect constants

Value types τ � τ ∗ kinds are ∗ by default

Total functions τ1→ τ2 � τ1→ ⟨⟩ τ2

Effect labels l � ck

Effect type ι � l⟨τ1, . . .,τn⟩

Effect rows ϵ � τ e

Effect row variables µ � αe

Closed effect rows ⟨ι1, . . ., ιn⟩ � ⟨ι1, . . ., ιn | ⟨⟩ ⟩
Effect row extension ⟨ι1, . . ., ιn | ϵ⟩ � ⟨ι1 | . . . ⟨ιn | ϵ⟩ . . . ⟩

Fig. 2. Syntax of types and kinds

ϵ � ϵ [eq-refl]

ϵ1 � ϵ2

⟨ι | ϵ1⟩ � ⟨ι | ϵ2⟩
[eq-head]

ϵ1 � ϵ2 ϵ2 � ϵ3

ϵ1 � ϵ3
[eq-trans]

ι1 . ι2

⟨ι1 | ⟨ι2 | ϵ⟩ ⟩ � ⟨ι2 | ⟨ι1 | ϵ⟩ ⟩
[eq-commute]

l , l′

l⟨τ1, . . .,τn⟩ . l′⟨τ ′
1
, . . .,τ ′n⟩

[uneq-label]

Fig. 3. Row equivalence

been presented before in a similar form [28] but we include it again here to make this article self

sufficient. The well informed reader may skip through these sections.

Figure 2 defines the syntax of types and expressions. The expression grammar is straightforward

but we are careful to distinguish values v from expressions e that can have effects. Values consist

of variables x, constants C, operations op, and lambda’s. Expressions include handler expressions

handlelh(e) where h is a set of operation clauses and l identifies the effect that is handled in the

expression ϵ . The handler construct of the previous section can be seen as syntactic sugar, where:

handlerlh ≡ λf . handle
l

h(f ())
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Γ(x) = σ

Γ ⊢ x : σ | ϵ
[Var]

Γ, x : τ1 ⊢ e : τ2 | ϵ
′

Γ ⊢ λx . e : τ1→ ϵ ′ τ2 | ϵ
[Lam]

Γ ⊢ e : τ | ⟨⟩ α ̸∈ ftv(Γ)

Γ ⊢ e : ∀α . τ | ϵ [Gen]

Γ ⊢ e1 : σ | ϵ Γ, x : σ ⊢ e2 : τ | ϵ

Γ ⊢ val x = e1; e2 : τ | ϵ
[Let]

Γ ⊢ e1 : τ2→ ϵ τ | ϵ Γ ⊢ e2 : τ2 | ϵ

Γ ⊢ e1(e2) : τ | ϵ
[App]

Γ ⊢ e : ∀α . τ | ϵ
Γ ⊢ e : τ [α 7→ τ ] | ϵ

[Inst]

Γ ⊢ e : τ | ⟨ι | ϵ⟩ S(l) = {op
1
, . . ., opn}

Γ, x : τ ⊢ er : τr | ϵ Γ ⊢ opi : τi → ⟨ι⟩ τ
′
i | ⟨⟩

Γ, resume : τ ′i → ϵ τr , xi : τi ⊢ ei : τr | ϵ

Γ ⊢ handlel{ op
1
(x1) → e1; . . .; opn(xn) → en; return x → er }(e) : τr | ϵ

[Handle]

Fig. 4. Type rules.

For simplicity we assume that all operations take just one argument. We also use membership

notation op(x) → e ∈ h to denote that h contains a particular operation clause. Sometimes we

shorten this to op ∈ h.
Well-formed types are guaranteed through kinds k which we denote using a superscript, as in

τ k . We have the usual kinds for value types ∗ and type constructors→, but because we use a row

based effect system, we also have kinds for effect rows ϵ , and effect constants l. When the kind of

a type is immediately apparent or not relevant, we usually leave it out. For clarity, we use α for

regular type variables, and µ for effect type variables.

Effect types are defined as a row of effect label types ι. Such row is either empty ⟨⟩, a polymorphic

effect variable µ, or an extension of an effect ϵ with a label ι, written as ⟨ι | ϵ⟩. Effect labels must

start with an effect constant l and are never polymorphic. By construction, effect types are either a

closed effect of the form ⟨ι1, . . ., ιn⟩, or an open effect of the form ⟨ι1, . . ., ιn | µ⟩.
We cannot use direct equality on types since we would like to regard effect rows equivalent

up to the order of their effect constants. Figure 3 defines an equivalence relation ( � ) between
effect rows. This relation is essentially the same as for the scoped labels record system [23] with

the difference that we ignore the type arguments when comparing labels. This is apparent in the

Uneq-Label rule. This is essential to guarantee a deterministic and terminating unification algorithm

which is essential for type inference.

In contrast to other record calculi [13, 31, 39, 44], our approach does not require extra constraints,

like lacks or absence constraints, on the types which simplifies the type system significantly. The

system also allows duplicate labels, where an effect ⟨exc, exc⟩ is legal and different from ⟨exc⟩. This
proves to be an essential feature to give a proper type to effect injection (Section 6), and also to

emulate generative types where we need types of the form ⟨heap⟨s1,α⟩, heap⟨s2, β⟩|ϵ⟩ (Section 6.2).

3.2. Type Inference
The type rules for our calculus are given in Figure 4. A type environment Γ maps variables to types

and can be extended using a comma: if Γ′ equals Γ, x : σ , then Γ′(x) = σ and Γ′(y) = Γ(y) for
any x , y. A type rule Γ ⊢ e : τ | ϵ states that under environment Γ, the expression e has type
τ with possible effects ϵ .

The type rules are quite standard. The rule var derives the type of a variable x with an arbitrary

effect ϵ . We may have expected to derive only the total effect ⟨⟩ since the evaluation of a variable has
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no effect at all. However, there is no rule that lets one upgrade the final effect and instead we need

to pick the final effect right away. Another way to look at this is that since the variable evaluation

has no effect, we are free to assume any arbitrary effect. We use the Var rule too for operations op
and constants c where we assume the types of those are part of the initial environment.

The lam rule is similar in that it assumes any effect ϵ for the result since the evaluation of a

lambda is a value. At this rule, we also see how the effect derived for the body of a lambda ϵ ′ shifts
to the derived function type τ1 → ϵ ′ τ2. Rule app is standard and derives an effect ϵ requiring that

its premises derive the same effect as the function effect.

Rules inst and gen instantiate and generalize types. The generalization rule has an interesting

twist as it requires the derived effect to be total. When combining our calculus with polymorphic

mutable reference cells, this is required to ensure a sound semantics. This is the semantic equivalent

to the syntactic value restriction in ML. In our core calculus we cannot define polymorphic reference

cells directly so the restriction is not necessary persé but it seems good taste to leave it in as it is

required for the full Koka language.

Finally, the handle rule types effect handlers. We assume that effect declarations populate an

initial environment Γ0 with the types of declared operations, and also a signature environment S
that maps declared effect labels to the set of operations that belong to it. We also assume that all

operations have unique names, such that given the operation names, we can uniquely determine to

which effect l they belong.

The rule handle requires that all operations in the signature S(l) are part of the handler, and
we reject handlers that do not handle all operations that are part of the effect l. The return clause

is typed with x : τ where τ is the result type of the handled action. All clauses must have the

same result type τr and effect ϵ . For each operation clause opi(xi) → ei we first look up the type

of opi in the environment as τi → ⟨l⟩ τ ′i , and bind xi to the argument type of the operations, and

bind resume to the function τ ′i → τr where the argument type of resume is the result type of the

operation. The derived type of the handler is a function that discharges the effect type l.
As described in earlier work [24], type inference is straightforward based on Hindley-Milner [15,

33], and is sound and complete with respect to the declarative type rules.

3.3. Simplifying Types
The rule app is a little surprising since it requires both the effects of the function and the arguments

to match. This only works because we set things up to always be able to infer the effects of functions

that are ‘open’ – i.e. have a polymorphic µ in their tail. For example, consider the identity function:

id = λx . x

If we assign the valid type ∀α . α → ⟨⟩ α to the id function, we get into trouble quickly. For

example, the application id(raise(”hi”)) would not type check since the effect of id is total while

the effect of the argument contains exc. Of course, the type inference algorithm always infers a

most general type for id, namely ∀α µ . α → µ α which has no such problems.

In practice though we wish to simplify the types more and leave out ‘obvious’ polymorphism. In

Koka we adopted two extra type rules to achieve this. The first rule opens closed effects of function

types:

Γ ⊢ e : τ1→ ⟨l1, . . ., ln⟩ τ2 | ϵ

Γ ⊢ e : τ1→ ⟨l1, . . ., ln | ϵ ′⟩ τ2 | ϵ
[open]
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Evaluation Contexts:

E ::= □ | E(e) | v(E) | val x = E; e | handlelh(E)

Hl
::= □ | Hl(e) | v(Hl) | val x = Hl

; e
| handlel

′

h (H
l) if l , l′

Reduction Rules:

(δ ) C(v) −→ δ (C, v) if δ (c, v) is defined
(β) (λx . e)(v) −→ e[x 7→ v]
(let) val x = v; e −→ e[x 7→ v]

(return) handlelh(v) −→ e[x 7→ v]
with

(return x → e) ∈ h

(handle) handlelh(H
l[opl(v)]) −→ e[x 7→ v, resume 7→ r)]

with

(op(x) → e) ∈ h
r = λy. handlelh(H

l[y])

Fig. 5. Reduction rules and evaluation contexts

With this rule, we can type the application id(raise(”hi”)) even with the simpler type assigned to

id as we can open the effect type of id using the open rule to match the effect of raise(”hi”). We

combine this with a closing rule (which is just an instance of inst/gen):

Γ ⊢ e : ∀µα . τ1→ ⟨l1, . . ., ln | µ⟩ τ2 | ϵ
µ ̸∈ ftv(τ1,τ2, l1, . . ., ln)

Γ ⊢ e : ∀α . τ1→ ⟨l1, . . ., ln⟩ τ2 | ϵ [close]

During inference, the rule close is applied (when possible) before assigning a type to a let-bound

variable. In general, such technique would lead to incompleteness where some programs that were

well-typed before, may now be rejected since close assigns a less general type. However, due to

open this is not the case: at every occurrence of such let-bound variable the rule open can always

be applied (possibly surrounded by inst/gen) to lead to the original most general type – i.e. even

though the types are simplified, the set of typeable programs is unchanged.

4. SEMANTICS
In this section we define a precise operational semantics. Even though algebraic effects are originally

conceived with a semantics in category theory, we will give a more regular operational semantics

that corresponds closely to various implementations in practice.

The operational semantics is given in Figure 5 and consists of just five evaluation rules. We use

two evaluation contexts: the E context is the usual one for a call-by-value lambda calculus. The

Hl
context is used for handlers. In particular, it evaluates down through any handlers that do not
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handle the effect l. This is used to express concisely that the innermost handler handles a particular
operation.

The first three reduction rules, (δ ), (β), and (let) are the standard rules of call-by-value evaluation.
The final two rules evaluate handlers. Rule (return) applies the return clause of a handler when the

argument is fully evaluated. Note that this evaluation rule subsumes both lambda- and let-bindings

and we can define both as a reduction to a handler without any operations:

(λx . e1)(e2) ≡ handle⟨⟩{return x → e1}(e2)

and

val x = e1; e2 ≡ handle⟨⟩{return x → e2}(e1)

This equivalence is used in the Frank language [32] to define everything, including functions and

applications, as handlers.

The next rule, (handle), is where all the action is. Here we see how algebraic effect handlers

are closely related to delimited continuations as the evaluation rules captures a delimited ‘stack’

Hl[opl(v)] under the handler h. Using a Hl
context ensures by construction that only the innermost

handler for an effect l will handle the operation opl(v). Evaluation continues with the expression ϵ
but besides binding the parameter x to v, also the resume variable is bound to the continuation:

λy. handlelh(H
l[y]). Applying resume results in continuing evaluation at Hl

with the supplied

argument as the result. Moreover, the continued evaluation occurs again under the handler h.
Resuming under the same handler is important as it ensures that our semantics correspond to the

original categorical interpretation of algebraic effect handlers as a fold over the effect algebra [38].

If the continuation is not resumed under the same handler, it behaves more like a case statement

doing only one level of the fold. Such handlers are sometimes called shallow handlers [16, 32]. In
that case resume would only restore the stack without the handler: resume 7→ λy. Hl[y].
For simplicity, we ignore parameterized handlers for now but we come back to it in Section 8

when formalizing initializers. The reduction rule is straightforward though – a handler with a

single parameter p is reduced as:

handlelh(p = vp)(Hl[opl(v)])
−→ { op(v) → e ∈ h }

e[x 7→ v, p 7→ vp, resume 7→ λy q. handlelh(p = q)(Hl[y])]

where it is apparent how resume now resumes under a handler with an updated parameter p.
Using the reduction rules of Figure 5 we can define the overall evaluation function (7−→), where

E[e] 7−→ E[e′] iff e −→ e′. We also define the function 7−→∗ as the reflexive and transitive closure

of 7−→.

4.1. Dot Notation
We can view the evaluation contexts E and Hl

, as evaluation stacks, where handlelh are special
frames on the stack. To make this notion of an evaluation context as a stack more apparent, we

often use dot notation where we use the following shorthands:

Hl · e � Hl[e]
E · e � E[e]
e1 · e2 � e1(e2)
This makes most proofs and reduction rule easier to read and follow.
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4.2. Return as an Operation
Instead of having a separate rule for "return x" clauses, we can treat them as syntactic sugar for an

implicit return(x) operation, where we consider:

handlel
{h; return x → er }(e)

as a shorthand for:

handlel
{h; return(x) → er }(return(e))

where resume ̸∈ fv(er ) (and return ̸∈ op(h)). By treating return clauses as operations, we capture

all substitution under a single rule, and don’t require extra rules for parameterized handlers for

example (where a return clause can access the local parameter as well).

We can imagine adding the simpler (value) rule to the reductions:

(value) handlelh(v) −→ v
but that it is not strictly necessary. Since we assume that every handler has a "return x“ clause (which
is by default ”return x → x"), all handlers always eventually end with the return(v) operation and

the plain value case never occurs.

We can show that the new syntactic transformation leads to equivalent reductions as with the

original rule.

Proof. Starting from the premise of the original (return) rule, we have:

handlel
{h; return x → er }(v)

{ { syntax }

handlel
{h; return(x) → er }(return(v))

−→

er [x 7→ v, resume 7→ r]
= { resume ̸∈ fv(er ) }

er [x 7→ v]

which is equivalent to the original rule. □

4.3. Comparison with Delimited Continuations
Shan [41] has shown that various variants of delimited continuations can be defined in terms of

each other. Following Kammar et al. [16], we can define a variant of Danvy and Filinski’s [8] shift

and reset operators, called shift
0
and reset0, as

reset0(X[shift0
(λk. e)]) −→ e[k 7→ λx . reset0(X[x])]

where we write X for a context that does not contain a reset0. Therefore, the shift0
captures the

continuation up to the nearest enclosing reset0. Just like handlers, the captured continuation is

itself also wrapped in a reset0. Unlike handlers though, the handling is done by the shift
0
directly

instead of being done by the delimiter reset0. From the reduction rule, we can easily see that we

can implement delimited continuations using algebraic effect handlers, where shift
0
is an operation

in the delim effect and X ≡ Hdelim
:

reset0(e) � handledelim{ shift
0
(f ) → f (resume) }(e)

11



Using this definition, we can show it is equivalent to the original reduction rule for delimited

continuations, where we write h for the handler shift
0
(f ) → f (resume):

reset0(X[shift0
(λk. e)])

�

handledelimh · Hdelim · shiftdelim
0
(λk. e)

−→

(f (resume))[f 7→ λk. e, resume 7→ λx . handledelimh · Hdelim · x]
−→

(λk. e)(λx . handledelimh · Hdelim · x)
−→

e[k 7→ λx . handledelimh · Hdelim · x]
�

e[k 7→ λx . reset0(X[x])]

Even though we can define this equivalence in our untyped calculus, we cannot give a general type

to the shift
0
operation in our system. To generally type shift and reset operations a more expressive

type system with answer types is required [1, 7]. Kammar et al. [16] also show that it is possible to

go the other direction and implement handlers using delimited continuations.

4.4. Properties
It is shown in [28] using techniques from [47] that well-typed programs cannot go wrong:

Theorem 1. (Semantic soundness)
If · ⊢ e : τ | ϵ then either e ⇑ or e 7→⟩ v where · ⊢ v : τ | ϵ .

where we use the notation e ⇑ for a never-ending reduction. Another nice property that holds is:

Lemma 1. (Effects are meaningful)
If Γ ⊢ Hl[opl(v)] : τ | ϵ , then l ∈ ϵ .

This is a powerful lemma as it states that effect types cannot be discarded (except through handlers).

This lemma also implies effect types are meaningful, e.g. if a function does not have an exc effect, it
will never throw an exception.

5. OPTIMIZING TAIL RESUMPTIONS
From the reduction rules, we can already see some possible optimizations that can be used to

compiler handlers efficiently. For example, if a handler never resumes, we can treat it similarly

to how exceptions are handled and do not need to capture the execution context (there are some

caveats here and we come back to this is Section 8 on finalization).

An important other optimization applies to tail resumptions, i.e. a resume that occurs in the tail

position of an operation clause. In that case one implementation strategy could be to look up the

innermost handler but not unwind the stack, and instead directly execute the operation branch

in place. As its last action will be to resume, we now do not need to restore the stack but instead

directly return the result in place.

Since almost all operations are tail-resumptive in practice, this is a huge opportunity for an

efficient implementation, effectively turning most operations into dynamically scoped method calls.

The main cost is then looking up the operations in the dynamic handler stack. Currently, one of the

most efficient implementations in C can do 150 million of such operations per second on a Core i7

@ 2.6GHz [27]. One can imagine removing even the search cost by having a static ‘virtual method

12



Extended Syntax:

Expressions e ::= . . .

| skipl(e) skip frame

Extended Evaluation Contexts:

E ::= . . .

| skipl(e)

Hl
::= . . .

| handlel
′

h (H
l′[skipl

′

(Hl)])

Extended Reduction Rules:

(handlet) handlelh · H
l · opl(v) −→ handlelh · H

l · skipl · resume(e)[x 7→ v]
with (op(x) → resume(e)) ∈ h

resume ∈/ fv(e)

(resumet) handlelh · H
l · skipl · resume(v) −→ handlelh · H

l · v

Fig. 6. Skip frames.

table’ per effect that is updated by its handlers at runtime such that tail-resumptive operations

truly become comparable to virtual method calls.

5.1. Skip Frames
However, implementing tail-resumptive operations in this way requires special skip frames to

ensure that any operations called inside an operation clause are handled by the correct handler. In

particular, since we leave the stack in place, we need to remember to ignore the part of the handler

stack up to, and including, the handler that handles the operation. This is formalized in Figure 6

where we use the dot notation introduced in Section 4.1.

We extend the syntax with skipl(e) frames that inactivates any handler up to, and including,

the innermost handlelh frame. This is captured in the extra clause for the Hl
contexts with the

grammar rule handlel
′

h · H
l′ · skipl

′

· Hl
. Since there is no other way to handle through a skip frame,

this ensures that no operations can be handled by any frames in the skip range.

There are two new reduction rules that capture the optimization. The (handlet) rule can now

apply to tail-resumptive operations where the branch is of the form op(x) → resume(e) where
resume ̸∈ fv(e). When this is the case, the reduction rule leaves the stack as is, and only pushes a

skipl frame and directly evaluates the branch in place. Once the branch is evaluated, the (resumet)
rule takes care of popping the skipl frame again when it encounters the (unbound) resume call.

5.2. Soundness of Skip Frames
Wewould like to show that the optimization is sound: i.e. if we evaluate with the optimized (handlet)
rule we get the same results as if we would have used the plain (handle) rule.

13



To show this formally we use a subscript t to distinguish our new optimized reduction rules −→t
form the original reduction rules −→, and similarly for the expression and evaluation contexts. We

also define an ignore function denoted by a small overline, on expressions, e, and contexts Et and

H
l
t . This function removes any handlelh · H

l
t · skip

l
sub expressions, effectively turning any of our

extended expressions into an original one, and taking Et to E, and Hl
t to H

l
. Using this function, we

can define soundness as:

Theorem 2. (Soundness of Skip Frames)
If Et · et −→t Et · e′t then Et · e −→ Et · e′.

Useful properties of the ignore function are v = v, and Et · handlelh · H
l
t · skip

l
equals Et .

Proof. (Of Theorem 2) We show this by case analysis on reduction rules. The first five rules are

equivalent to the original rules. For (handlet) we have:

Et · handlelh · H
l
t · op(v)

=

Et · handlelh · H
l
t · op(v)

=

Et · handlelh · H
l
t · op(v)

−→

Et · e[x 7→ v, resume 7→ λy. handlel
h
· H

l
t · op(y)]

= { resume ∈/ fv(e) }

Et · e[x 7→ v]
= { op ∈ h }

Et · handlelh · H
l
t · skip

l · e[x 7→ v]
=

Et · handlelh · H
l
t · skip

l · e[x 7→ v]

In the (resumet) rule, we know by construction that in the original reduction rules, resume would

have been bound as a regular resume 7→ λy.handlelh · H
l
t · y:

Et · handlelh · H
l
t · skip

l · resume(v)
=

Et · handlelh · H
l
t · skip

l · resume(v)
=

Et · resume(v)
=

Et · (λy.handlelh · H
l
t · y)(v)

−→

Et · handlelh · H
l
t · v

□

14



Extended Syntax:

Expressions e ::= . . .

| injectl(e) effect injection

Extended Type Rules:

S(l) = {op, . . .} Γ ⊢ op : τ1→ ⟨ι⟩ τ2 Γ ⊢ e : τ | ϵ

Γ ⊢ injectl(e) : τ | ⟨ι |ϵ⟩
[inject]

Extended Evaluation Contexts:

E ::= . . . | injectl(E)

Hl
::= . . .

| injectl
′

(Hl) if l , l′

| handlelh(H
l[injectl(Hl)])

Extended Reduction Rules:

(inject) injectl(v) → v

Fig. 7. Extension with injection

6. INJECTION
As observed by Biernacki et al. [3], to make algebraic effect handlers truly composable we need an

inject function to inject effect types into the current effect row. For example, function f takes an

action as an argument:

fun f( action : () → ⟨exn|e⟩ a) : e maybe⟨a⟩ { // inferrred

try {

setup()

Just(action())

}

fun(exn) {

Nothing

}

}

Suppose f only wants to handle exceptions raised by its own code (e.g. setup) but not any exceptions

raised by action. As it is defined, f now handles any exception raised by action too. The solution

is to use inject the exception effect into the effect of action:

fun f( action : () → e a ) : e maybe⟨a⟩ { // inferred

try {

setup()
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Just( inject⟨exn⟩{action()} )

}

fun(exn) {

Nothing

}

}

Any exceptions raised by action will now propagate outside of f – i.e. inject has a runtime effect

too as it needs to skip the exception handler in f when an exception is raised in action.

Figure 7 shows the extended syntax, evaluation contexts, and runtime reduction rules for inject.
An inject expression injectl(e) injects the effect l into the effect of the expression e as shown in the

type rules. Here we introduced an extra relation Γ ⊢ l : ι that derives a full type from just an

effect constant l as effects can generally have other parameters.

The reduction rule for injection does nothing: injectl(v) −→ v; Indeed, the essence of inject is in
the extended handler contextH. There are two new rules. The first one injectl

′

(Hl)with l , l′ states
that inject frames can be ignored if the effect labels differ. The second rule, handlel · Hl · injectl · Hl

,

now allows a handler for l to pass over another handler for l as long as that handler is matched to

an injectl .
The use of handler Hl

contexts allows us to concisely capture this notion without having to

introduce explicit nesting levels. Biernacki et al. [3] formalize handler contexts using nesting levels

where a handler can handle an operation if the context is “0-free”. These approaches are equivalent

and we can show that any handler context is 0-free by construction:

Theorem 3. (Handler contexts are 0-free)
For any Hl

, we have 0-free(l,Hl).

We use the derivation rules of n-freeness in shown by Biernacki et al. [3] in Figure 2. To prove our

theorem, we need the following lemma:

Lemma 2. (Free extension)
If n-free(l, E1) and m-free(l, E2), then (n +m)-free(l, E1[E2]).

This can be proved by straightforward induction over the length of the n-free(l, E1) derivation and

the structure of the evaluation contexts.

Proof. (Of Theorem 3) The proof proceeds by induction over the structure of Hl
. Most cases are

immediate – the interesting cases are the handle and inject rules:

• handlel · Hl
1
· injectl · Hl

2
: by hypothesis, Hl

1
and Hl

2
are 0-free (1). injectl · Hl

2
is 1-free, and

therefore by (1) and Lemma 2, Hl
1
· injectl · Hl

2
is also 1-free. It follows by the handle rule

that the full expression is 0-free.

• injectl
′

· Hl
, and handlel

′

h · H
l
with l , l′ (1): by hypothesis, Hl

is 0-free, and with (1) it

follows by the injection rule that the full expression is 0-free. □

As a consequence, the results of Biernacki et al. [3], and in particular the step-indexed relational

interpretation of the calculus, carry over to our formalization without further changes.

6.1. Injection and Return
Biernacki et al. [3] remark that with injection we do not a special rule for return and can translate:

handlel
{h; return x → er }(e)
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as a shorthand for:

handlel
{h}(val x = e; injectl(er ))

(although this would require the (value) rule in this case). However, this technique does not work

for parameterized handlers where the return expression er can reference the handler parameter.

For this reason, we prefer our original interpretation in Section 4.2 of return clauses as regular

operations.

6.2. Generative Effect Types
Using inject also allows us to program with first-class effect handlers. As a running example, we

are going to model a heap with polymorphic references:

effect heap⟨s,a⟩ {

fun get() : a

fun set( x : a ) : ()

}

The s parameter is a phantom type [30] that is used to emulate generative types [40]. The handler

that creates fresh references uses a parameterized handler for the local state, but also provides an

explicit type signature for the action:

fun new-ref( init : a, action : forall⟨s⟩ () → ⟨heap⟨s,a⟩|e⟩ b ) : e b {

handle(action) (st = init) {

get() → resume(st,st)

set(x) → resume((),x)

}

}

The action gets a polymorphic rank-2 type which ensures that we can only pass actions that are

fully polymorphic in the s type, i.e. that are parametric with respect to the heap. Note that the use

of a higher-rank type here is different for the use in the Haskell ST monad [22]: there the rank-2

parameter is used to ensure a reference cannot escape the heap scope but that is already done here

through the effect system itself. In our case, we use it purely to work with multiple references at

the same time.

We can now use inject to use a particular heap handler. For example, the get2 function selects

the values of the innermost two heap handlers:

fun get2() : ⟨heap⟨s1,a⟩, heap⟨s2,b⟩ | e⟩ (a,b) {

( get(), inject⟨heap⟩{get()} )

}

Note that due to the Uneq-Label rule in Figure 3 each heap effect is ordered in the final effect row.

The inject construct now allows us to select a particular handler that is reflected in the effect type.

For example:

fun test() : ⟨ ⟩ int {

new-ref( 42, {

new-ref( False, {

val (x,y) = get2()

(if (x) then 1 else 0) + y

})

})

}
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6.2.1. Use and Using keywords. Writing such nested higher-order functions can be a bit cum-

bersome and Koka provides the using and use keywords to make this more convenient. These

constructs are just syntactic sugar, where:

using f (e1,. . .,en); body { f (e1,. . .,en, fun(){ body })

use x = f (e1,. . .,en); body { f (e1,. . .,en, fun( x ){ body })

With this new syntactic sugar we can write our example more concisely as:

fun test() : ⟨ ⟩ int {

using new-ref( 42 )

using new-ref( False )

val (x,y) = get2()

(if (x) then 1 else 0) + y

}

In this example, the type of x is inferred to be bool because of the way the handlers in new-ref are

ordered. If we would swap their order, the example would no longer type check! Since the type

inference cannot swap the order of the heap effect types automatically (due to Uneq-Label), we

need to do this manually:

fun bypass( action : () → ⟨heap⟨s2,b⟩, heap⟨s1,a⟩, heap⟨s2,b⟩ | e⟩ c) : ⟨heap⟨s1,a⟩, heap⟨s2,b⟩ | e⟩ c {

handle(action) {

get() → resume( inject⟨heap⟩{get()} )

set(x) → resume( inject⟨heap⟩{set(x)} )

}

}

fun test-swapped() : ⟨ ⟩ int {

using new-ref( False )

using new-ref( 42 )

using bypass

val (x,y) = get2()

(if (x) then 1 else 0) + y

}

Here the bypass function explicitly handles first heap⟨s2,b⟩ effect by forwarding to the handler

further down using inject to skip over the heap⟨s1,a⟩ handler. The bypass handler is inserted after

the swapped new-ref handlers to make the rest of the program well-typed.

Using inject, we are now able to explicitly refer to a particular handler and can even express

first-class polymorphic references. However, there are clearly various drawbacks because each

reference is expressed as a fresh heap effect in the effect row.

(1) Since every reference is expressed in the effect type, this may lead to very large types that

are difficult to understand. (This also precludes a dynamic number of references; however

this is not a real limitation as a dynamic number of references are of a particular type and we

can model that using a handler that uses a list of references of that type as its local state.)

(2) To use a particular reference, we need to insert just the right amount of inject expressions

to select it.

(3) To use abstractions we need to manually commute heap effects through the effect row.

In the following section, we are going to address these issues by using explicit values to refer to

particular handlers instead of expressing it in the type only.
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7. RESOURCES
In this section we are addressing the shortcomings of first-class handlers using inject expressions
alone. The main idea is to enable referencing a particular handler through a regular value, called a

resource. Building on our previous heap example, we like to give the following type to the heap

operations:

get : (r : ref⟨a⟩ ) → ⟨heap,exn⟩ a

set : (r : ref⟨a⟩, x : a ) → ⟨heap,exn⟩ ()

All operations are now under a single ‘umbrella’ effect heapwhile the particular handler is identified

through a resource of type ref⟨a⟩. The main drawback of this approach is that we lose some safety

guarantees: because the particular handler is no longer reflected in the effect type, it is not statically

guaranteed that the resource handler is in scope and an operation might fail dynamically at runtime

with an exception. This is the reason for the additional exn effect. We feel though this is a reasonable

tradeoff, similar to allowing partial functions like head. Note that even though we use the same

name, our semantics of a resource is quite different from the resources that were originally present

in the Eff language [2] – we discuss this further in Section 7.5.

In Koka, we can define resource effects as:

effect heap { /* empty */ }

effect resource ref⟨a⟩ in heap {

fun get() : a

fun set(x : a) : ()

}

This declares an empty effect heap for the umbrella effect; in general this effect can also declare its

own operations. For example, for file resources, the umbrella filesystem effect might provide the

primitive operations necessary for handling files. The effect resource declaration declares a new

resource ref⟨a⟩ under the heap effect with the given operations. The handler for the heap effect is

trivial:

val heap = handler⟨heap⟩{ }

We can create a fresh resource by creating a handler for it:

fun new-ref( init : a, action : (ref⟨a⟩ → ⟨heap|e⟩ b) ) : ⟨heap|e⟩ b {

handle resource (action) (st = init) {

get() → resume(st,st)

set(x) → resume((),x)

}

}

We use again a parameterized handler to model the state of the reference. Because Koka infers that

we handle a resource effect, the action parameter has an inferred type that takes a fresh resource

ref⟨a⟩ as its first argument.

Using resources, we no longer need to use intricate inject expressions but can simply use the

resources as an extra argument to the operations (where we use the use keyword as described in

Section 6.2.1):

fun test() : exn int {

using heap

use x = new-ref(42)

use y = new-ref(False)
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(if (y.get()) then 1 else 0) + x.get()

}

This is a big improvement compared to the approach based on inject. As remarked before though,

the price is the appearance of the exn effect that signifies that we can no longer statically guarantee

that a handler for a specific resource is in scope. Here is an example of a program that would fail at

runtime with an exception:

fun wrong() : ⟨heap,exn⟩ ref⟨int⟩ {

use x = new-ref(42)

x // escapes the scope of ‘new-ref‘

}

fun ouch() : exn int {

using heap

val y = wrong()

y.get()

}

7.1. Overriding Resource Handlers
The new-ref function now creates a handler for a fresh resource, but it is also possible to override an

existing handler for a resource. For example, we could track the contents of a particular reference:

fun track( r : ref⟨int⟩, action : () → ⟨heap,io|e⟩ a) : ⟨heap,io|e⟩ a {

println("initial content: " + r.get().show )

handle resource r (action) {

get() → resume( r.get() ) // pass-through

set(x) → {

println("new content: " + x.show )

resume( r.set() ) // pass-through

}

}

}

By passing an extra argument r to the handle resource expression, we are handling that specific

resource instead of creating a fresh one. Any operation on r in the action will now be handled by

this handler. In the definition of each branch, we can ourselves use operations on r that are handled

by the original handler. This gives us a very powerful extension mechanism to override behavior

locally in a structured and typed way.

7.2. Injecting Resources
Now that we can override handlers for resources, it is natural to ask if it would be useful to

also ‘inject’ a resource effect and being able to skip over the innermost resource handler. This

functionality seems a bit far fetched but turns out to be very useful in practice.

Bračevac et al. [4] describe a reactive framework based on algebraic effect handlers. This work

originally represented each event stream as a separate effect type but proved to be too cumbersome

in practice. The extension of Koka with first-class resources was originally done to overcome these

limitations. Now, each event stream can be represented using a resource instead. Essentially, the

CorrL framework defines:

// empty umbrella effect

effect corrl { }
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effect resource stream⟨a⟩ in corrl {

fun push( x : a ) : ()

...

}

An important function in the CorrL framework is alignment. The align2 takes two streams and

aligns them: it waits until each stream performs a push and then actually performs both pushes

and continues evaluation of each stream in an interleaved way. One way to implement this is to

use local state and bypass each stream handler to wait until both have pushed:

fun align(s1 : stream⟨a⟩, s2 : stream⟨b⟩, action : () → ⟨corrl,pure|e⟩ () ) : ⟨corrl,pure|e⟩ ()

{

var st1 := Nothing

var st2 := Nothing

val h1 = handler resource s1 {

push(x) → match(st2) {

Nothing → st1 := Just((x,resume)) // and do not resume

Just((y,resumey)) → {

s2.push(y)

s1.push(x)

interleaved { resume(()) } { resumey(()) }

}

}

}

val h2 = handler resource s2 {

push(y) → match(st1) {

Nothing → st2 := Just((y,resume))

Just((x,resumex)) → {

s2.push(y)

// subtle: skip the outer ‘h1‘ handler!

s1.inject-resource{ s1.push(x) }

interleaved { resumex(()) } { resume(()) }

}

}

}

h1{ h2( inject-st(action) ) }

}

Here we use two local references to store whether either resource stream has been pushed to. Once

both have been pushed to, we propagate the push to the original resource handler, and continue

both streams in an interleaved way.

But there is twist: in the inner h2 handler, when we want to push the value for s1 we need

to skip over the h1 handler as we want to push to the original handler for s1! Therefore, we use

inject-resource to ‘inject’ a resource effect. This is automatically provided by Koka for each

resource effect – here it has type:
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Extended Syntax:

Expressions e ::= . . .

| new handlech(v) resource handler

Runtime effects l ::= l effect constants

| x variables

Extended Reduction Rules:

(new) new handlech(v) −→ handlelh(v(l)) with fresh effect constant l of type c⟨τ1, . . .,τn⟩

Extended Type Rules:

Γ ⊢ x : c⟨τ⟩ | ⟨⟩ Γ ⊢ e : τ | ϵ S(c) = {op
1
, . . ., opn}

Γ, xr : τ ⊢ er : τr | ⟨ι |ϵ⟩ Γ ⊢ opi : (c⟨τ⟩, τi) → ⟨ι, exn⟩ τ ′i | ⟨⟩
Γ, resume : τ ′i → ϵ τr , xi : τi ⊢ ei : τr | ⟨ι |ϵ⟩

Γ ⊢ handlex{ op
1
(x1) → e1; . . .; opn(xn) → en; return xr → er }(e) : τr | ⟨ι |ϵ⟩

[Handle-Var]

Γ ⊢ x : c⟨τ⟩ | ⟨⟩ S(c) = {op, . . .}
Γ ⊢ op : (c⟨τ⟩, τ1) → ⟨ι, exn⟩ τ2 Γ ⊢ e : τ | ⟨ι |ϵ⟩

Γ ⊢ injectx(e) : τ | ⟨ι |ϵ⟩
[Inject-Var]

Γ, x : c⟨τ⟩ ⊢ handlex(e(x)) : τ | ϵ fresh x, τ

Γ ⊢ new handlec(e) : τ | ϵ
[Handle-New]

Fig. 8. Extension with first-class resources

inject-resource : stream⟨a⟩ → (() → ⟨corrl|e⟩ a) : ⟨corrl|e⟩ a

Since resource effects are under an umbrella effect, the inject of the resource is not reflected in

the effect type; however, it has a runtime effect in that it will skip the inner-most handler for

the resource just like injection for a regular effect. Writing the align function without resource

injection is possible but more involved as one has to define an outer handler that joins both pushes

and performs a push to the original handlers outside of the bypass handlers.

7.3. Formalizing Resources
It turns out that enabling first-class resources requires just minimal extensions to our original

semantics as shown in Figure 8. We first add a new syntactic expression new handlec(v) is the
equivalent of handle resource in Koka and creates a fresh resource of type c⟨τ⟩ and handles it. For

simplicity we only allow value expressions v as the argument (usually a lambda expression). The

second extension is to allow variables x as runtime labels l. This extension now allows us to handle

specific resources using handlexh(e) (versus handle
l
h(e)) and to inject resources using injectx(e).

The operational semantics get one new transition rule (new) for new handlech(v). This creates
a fresh effect label l to identify the handler/resource uniquely at runtime and simply transitions
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to a handlelh(v(l)) expression where the argument v gets passed the new resource l as a runtime

argument (of type c⟨τ1, . . .,τn⟩).
All the other reduction rules are unchanged! The rules just depend on runtime labels l and keep

working even if the labels are sometimes dynamically generated through the (new) rule. However,
not all proofs work as before. In particular, the proof of Lemma 1.b is no longer valid: the reduction

can get stuck for dynamic labels if they escape the scope of their handler. This is the reason for

adding the exn effect to the type of their operations. In the operational semantics we may add a

further rule that reduces unhandled resource operations to raising an exception.

Since the basic reduction rules are unchanged, this means we can understand and reason about

resources just like regular effect handlers – there is no intrinsic extra complexity.

7.4. Type Rules
There are quite a few new type rules in Figure 8 for the resources since we need to add new rules

for each syntactic construct that can now take a variable instead of just a constant effect label.

The Handle-Var rule describes a resource handler and is quite similar to the Handle rule for effect

constants. The main difference is that the operations now take an extra first argument that is the

resource of type c⟨τ⟩ and the effect of the operations include the exn effect. Moreover, in contrast

to Hanlde, a resource handler does not discharge any effect and just passes the umbrella effect

through.

The Handle-New rule just binds a new resource variable and refers to the Handle-Var rule to do

the actual type check. Finally, the Inject-Var rule derives the umbrella effect ι by looking at the

types of the operations of the resource effect. In contrast to Inject no actual effect type is injected

though.

7.5. Resources in Eff
The Eff language originally [2] also had resources inspired by a co-algebraic interpretation of

effects, although they are currently removed from the language (but may come back). However, the

semantics of such resources was not specified in terms of ordinary handlers: instead they were

handled by default handlers in the outer scope of the program and operation clauses could not issue

operations themselves.

Recent work by Kiselyov and Sivaramakrishnan [19] embedded Eff directly in the OCaml language

and they describe a more generalized notion of effect resources that is more similar to our semantics.

They use a universal New effect as an umbrella effect for all resources to create fresh instances. They

do not describe overriding resource handlers or resource injection but we believe it is possible to

extend their work to allow for this. Of course, in that work there are no effect types as such, and

the embedding is specified in terms of delimited continuations so it is hard to compare directly

against our type system and semantics. In both approaches though we can understand resources in

terms of regular effect handlers which is a nice property.

7.6. Linear Resources
As another example, we look at modeling external resources with linearity constraints, like files.

The umbrella effect is the filesystem with various low-level functions to handle files:

abstract effect filesystem {

fun fopen( path : string ) : fhandle

fun fread( h : fhandle ) : string

fun fclose( h : fhandle ) : ()

}
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val filesystem : (action:() → ⟨filesystem|e⟩ a) → ⟨io|e⟩ =

handler {

fopen(path) → resume( std/os/fopen(path) )

fread(h) → resume( std/os/fread(h) )

fclose(h) → resume( std/os/fclose(h) )

}

The umbrella effect is declared abstract to make the internal operations private to the module. A

nice property of the filesystem handler is that it makes the interface explicit: the action parameter

has the filesystem effect while the handler gets the broad io effect. This makes reasoning about

potential side effects much more precise.

The resources in the filesystem are files with just a single read operation:

effect resource file in filesystem {

fun read() : string

}

fun file( path : string, action : file → ⟨filesystem|e⟩ a) : ⟨filesystem|e⟩ a {

val h = fopen(path)

val x = handle(action) {

read() → resume( fread(h) )

}

fclose(h)

x

}

The file handler opens a specific file, and provides a read operations that reads from the opened

file handle. After the action is done, the file handle is closed the final result x is returned. For

example:

fun file-length( path : string ) : io int {

using filesystem

use f = file(path)

f.read().count

}

Clearly, the file handler is not ideal is it does not close open file handles if an exception occurs

inside the action. It would not suffice though to install an exception handler – any operation called

in action might be handled by a handler that simply does not call resume! Moreover, what should

happen if an operation is resumed more than once and the as a result, the file handle might be

closed more than once?

Dealing with linear resources is a gnarly problem for general effect handlers and we tackle it in

the next section.

8. FINALIZATION
As we saw in the previous section, we need a general mechanism to finalize (and initialize) linear

resources that is not specific to exceptions since any handler might decide not to resume, or resume

more than once. In particular, in Koka we can rewrite the file handler of the previous section as:

fun file( path : string, action : file → ⟨filesystem|e⟩ a) : ⟨filesystem|e⟩ a {

handle(action) (h) {
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initially → fopen(path)

finally → fclose(h)

read() → resume( fread(h) )

}

}

Here we have two new special branch constructs: initially and finally that can be part of any

handler. The initially branch is run before the action is called and initializes the parameterized

state (h in the example). The finally branch is always executed when ‘the scope is exited’ and is

used to close any external resources.

To bemore precise, finally branches should be executed when either the action returns normally,

or if any operation in action does not resume. The second situation is a bit tricky as it cannot be

detected statically if a handler will resume or not. For example, when modeling asynchrony or

concurrency [9–11, 26] the handler usually stores the resume function in a scheduler queue and

calls those later according to some particular schedule. Another example is in Section 7.2 in the

align function that stores the resumptions before invoking them later. At that point, a compiler

cannot statically determine if such resumption will ever be called or not.

We therefore propose that handlers that really do not resume, call instead a new finalize function

that ensures that all finally branches under it are executed before returning. This approach also

has the advantage that the original semantics of algebraic effect handlers stays the same. As an

example, the proper implementation of a handler that turns exception effects into a maybe type is

now:

val to-maybe = handler {

return x → Just(x)

raise(msg) → finalize(Nothing)

}

The argument to the finalize function is returned as its final result after running all finally

branches and is there to mimic the resume function (and just like resume, finalize is an implicitly

bound first-class function). Moreover, just like resume, a tail-resumptive finalizer can be implemented

more efficiently. Note that we could still choose to not use finalize and immediately return with

Nothing – but in that case no finalizers are run (as per the original semantics of algebraic effect

handlers).

8.1. Formalizing Finally
Figure 9 extends the original semantics with finalizers. For now, we just extend with finally and

discuss initially clauses later on. The syntax is extended to allow for finally → e clauses besides
the return clauses. If unspecified, finally → () is used by default.

The new (handlef ) rule now binds an extra finalize identifier that, instead of resuming, runs

all finalizers in the context. It does that by actually calling resume but with a special cancell(v)
expression (which can be regarded as a special builtin exception). The evaluation rule (cancel) for
the “cancel” expression simply propagates the cancel value up through evaluation contexts F –

these are just like regular evaluation contexts but don’t include handle frames.

There is a formalization wrinkle here since finalize calls the resume function r with a cancell(e)
expression where we want to substitute the cancell(e) expression as is without yet evaluating it.
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Extended Syntax:

Expressions e ::= . . .

| cancell(e) cancel “exception”

Clauses h ::= finally→ e; return x → e finally and return clauses

| op(x) → e operation clause

Finalization Contexts:

F::= □ | F(e) | v(F) | val x = F; e | injectl(F)

Extended Reduction Rules:

(handlef ) handlelh · H
l · opl(v) −→ e[x 7→ v, resume 7→ r, finalize 7→ f )]

where

(op(x) → e) ∈ h
r = λλy. handlelh · H

l · y
f = λλy. r[cancell(y)]

(cancel) F · cancell(e) −→ cancell(e)

(unwind) handlel
′

h · cancel
l(e) −→ ef ; if l = l′ then e else cancell(e)

where

(finally→ ef ) ∈ h

(canceli) injectl
′

· cancell(e) −→ if l = l′ then cancell(cancell(e)) else cancell(e)

Fig. 9. Extension with (shallow) finalization. (This is refined in the next section)

We therefore define the resume function with an internal lambda function (λλ) and apply it using

square brackets as r[cancell(e)] outside our regular reduction rules
2
.

The (unwind) rule handles the situation where a cancell(v) value meets a handler frame by

unwinding through all the handlers and executing their finalizers in sequence until the original

handler l that issued the finalize is found.
For "return x" clauses we need to extend our previous syntactic sugar as defined in Section 4.2,

and redefine:

handlel
{h; return x → er }(e)

as syntactic sugar for an implicit return operation that finalizes:

handlel
{h; return(x) → finalize(er )}(return(e))

This ensures that after evaluating the return expression er , we will also run our own “finally” clause.

In the next section we discuss further optimizations of this rule.

2
For convenience we also use a λλ as a regular λ if they are applied only to values but it would be more correct to bind the

resume to λx . r[x] and finalize to λx . f [x] instead of just r and f respectively.
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Extended Syntax:

Expressions e ::= . . .

| protectv(e) protect frame

Extended Contexts:

E::= . . . | protectf (E)

Hl
::= . . . | protectf (H

l)

Extended Reduction Rules:

(handled) handlelh · H
l · opl(v) −→ protectf · e[x 7→ v, resume 7→ r, finalize 7→ f ]

where

(op(x) → e) ∈ h
r = λλy. handlelh · H

l · y
f = λλy. if |r | = 0 then r[cancell(y)] else y

(protect) protectf · cancel
l(e) −→ f [cancell(e)]

(unprotect) protectf · v −→ v

(unwind) handlel
′

h · cancel
l(e) −→ ef ; if l = l′ then e else cancell(e)

where

(finally→ ef ) ∈ h

Fig. 10. Update of Figure 9 with deep finalization. The (unwind ) rule is repeated for completeness.

The expression |r | returns the number of calls to function r .

There are some subtle corner cases when running finalizers. In particular, the expression ef in
(unwind) should not be able call any operations in the handler that called finalize: that would cause
an infinite loop as the same handler would be pushed over and over again! This is prevented in the

(unwind) rule by not running the finally expression under the handler that defines it.

Another situation that might occur is that another operation is called in a finally clause during

unwinding, that itself calls finalize. This situation is a bit like throwing an exception inside an

exception handler itself. In that case, a new unwinding will take place but since it finalizes itself, all

finally handlers will still be run in sequence (it might cut a finalization short though if the new

handler is under the original one).

8.2. Deep Finalization
Unfortunately, the finalization as formalized in our previous section is not yet quite good enough.

In essence, we want to ensure finally clauses get run reliably whenever an operation does not

resume and calls finalize instead. This may still fail though if a finalizing operation is called from

within an operation clause itself! Illustrating this is a bit complex, as we need at least 3 nested

handlers to show this. For example, assume we write a handler for asynchrony where we store

resumptions in a queue [10, 29], somewhat like:
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fun async( action ) {

handle(action) (queue = []) {

await(f) → {

... // part A

// queue this resumption

val newqueue = queue.insert(resume,finalize)

... // part B

newqueue.schedule() // resume some other strand with an updated queue

}

finally → {

// finalize any resumption still in the queue

queue.foreach fun((resume,finalize)) {

finalize()

}

}

}

}

Now, suppose we use a file handler under the async handler, running under the to-maybe handler

from the start of Section 8:

using to-maybe

using async

use f = file("path")

...

await(...)

If no exceptions happen, everything runs just fine and the finally clause in the async handler ensures

that any outstanding strands are finalized if needed.

Unfortunately, if the B part in the async handler raises an exception, the handler for to-maybe

will call finalize but since we are in an operation clause, the handle frame for file will not be on

the stack and the finally clause is not executed! However, even if we would somehow execute the

finally clause and finalize all outstanding strands, this still goes wrong if an exception happens in

part A: in that case the await resumption is not stored in the queue and the finally clause will still

not call finalize on it (which in turn means that the finally clause of the file handler is never

invoked).

8.3. Protecting Operation Clauses
To ensure that finally clauses are reliably executed under finalization we need to protect operation
clauses. When finalization happens inside the clause of an operation and the operation did not

resume (or finalize) yet, then we should implicitly invoke finalize for that operation clause. We call

this deep finalization.
In the previous example, that means that even if an exception is raised in part A, finalize is called

automatically for that operation which ensures all finally clauses are executed, including the one

for the current handler (which also causes all outstanding strands in the queue to be finalized).

Moreover, we need to also ensure that a finalize call only resumes and finalizes once, and has no

effect if called again (or after a resume). For example, if an exception occurs in part B, the operation

clause automatically calls finalize but the finalize was also already inserted into the queue: when

the finally clause runs this again causes a call to the finalize function for that strand (which has

no effect this time around).
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This is all formalized in Figure 10. We introduce a new protectf (e) stack frame that protects

the expression e by running the finalizer f if needed. When we look at the new reduction rule for

handlers, (handled), the new finalization function f is defined as:

f = λλy. if |r | = 0 then r[cancell(y)] else y

where the operation |r | returns the number of times the resume function r has been called. This

operation is very easy to implement in practice (using a mutable field that counts invocations) but

cumbersome to fully formalize as it requires that the function r is shared (which we also signify

with the double lambda λλ). This can be done by threading a separate environment through the

reduction rules that keeps track of shared beta reductions. This is similar to formalizations for the

lazy evaluation [21] or optimal lambda reduction [20, 42]. For simplicity though we will treat the |r |
function here as an oracle without formalizing it fully. The finalization function f now only resumes

with the cancell(y) expression if the resume function was never invoked before, and otherwise it

behaves like the identity function immediately returning its result (e.g. much like a thunk in lazy

languages).

The evaluation of an operation clause is now under a protectf frame. The rules (protect) and
(unprotect) define its behavior where the rule (unprotect) removes the protect frame when the

operation clause returns with a result v (and thus protect frames behave like an identity function).

However, if the evaluation of the operation clause leads to finalization, the rule (protect) ensures that
the finalize function f for that operation is invoked. If the operation already resumed or finalized

before, the run once check in the definition of the finalize function ensures that this happens at

most once.

Note that the finalization function f is invoked with a cancell(e) expression as the argument: if f
resumes with a cancellation itself (through (protect)), the two will be nested as cancell(cancell

′

(e)),
i.e. first finalize up to l and then continue finalizing up to l′. This is also important if handlers for

the same effect are nested within each other and we need to finalize each one in order.

Since protectf frames only have an effect if the operation clause never resumes or finalizes, we

can optimize an implementation by squeezing out protect frames once a resume or finalize happens.

In particular, for any operation where resume and finalize refer to same r as protectf , we have:

protectf · F · resume(e)= F · resume(e)
protectf · F · finalize(e)= F · finalize(e)

This also means that if an operation is tail resumptive and has the form resume(e) or finalize(e),
there is no need to push a protectf frame in the first place.

8.4. Return as an Operation
As shown in Section 4.2 and 8.1, we define return clauses as syntactic sugar for a return operation:

handlel
{h; return(x) → finalize(er )}(return(e))

For an implementation this might seem to induce too much overhead by calling finalize on every

return. In practice though we can optimize the implementation quite a bit. For example, the finalize
on the return operation does not really need to resume but just run the finally clause (if it exists)
since Hl = □. Generally, we can use the following direct rule for returning with deep finalization:
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(returnd) handlelh(v) −→ val y = protectg(e[x 7→ v]); ef ; y
where

(return x → e) ∈ h
(finally→ ef ) ∈ h
g = λλy. (ef ; y)

Proof. We can prove this rule correct as follows; Starting from the translated return clause, we

have:

handlelh · return
l(v)

−→

protectf · finalize(er )[x 7→ v, resume 7→ r, finalize 7→ f ]
−→

protectf · f (er [x 7→ v, resume 7→ r, finalize 7→ f ])
= { resume,finalize ̸∈ fv(er ) }

protectf · f (er [x 7→ v])

There are now three cases to consider: evaluation to a value, to a cancellation, or divergence. In

case 1 the expression evaluates to a value w, er [x 7→ v] −→∗ w:

protectf · f (er [x 7→ v])
−→∗ { hypothesis }

protectf · f (w)
−→ { |r | = 0, Hl = □}

protectf · handle
l
h · cancel

l(w)
−→

protectf (ef ; w)
= { now |r | > 0 }

ef ; w
←−

val y = w; ef ; y
←−

val y = protectg(w); ef ; y
∗←− { hypothesis }

val y = protectg(er [x 7→ v]); ef ; y

In case 2 the expression evaluates to cancellation: er [x 7→ v] −→∗ cancell
′

(ec):

protectf · f (er [x 7→ v])
−→∗ { hypothesis }

protectf · f (cancel
l′(ec))

−→

protectf · cancel
l′(ec)

−→

f [cancell
′

(ec)]
= { |r | = 0 and Hl = □}

handlelh(cancel
l(cancell

′

(ec)))
−→
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ef ; cancell
′

(ec)
←− (cancel)

val y = (ef ; cancell
′

(ec)); ef ; y
=

val y = (λλy. ef ; y)[cancell
′

(ec)]; ef ; y
←−

val y = protectg(cancel
l′(ec)); ef ; y

∗←− { hypothesis }
val y = protectf (er [x 7→ v]); ef ; y

Case 3 for divergence is similar. □

8.5. Deep Finalization and Skip Frames
Deep finalization and skip frames also work well together. For any tail resumptive operation, we

know the last action taken is the resume (or finalize) which entails that |r | is always 0. From this

we can derive that we can leave the (handlet) rule (Figure 6) unchanged and only need to add an

extra reduction rule for when a cancel frame meets a skip frame:

(resumec) skipl
′

· cancell(e) −→ cancell
′

(cancell(e))
Since we know we never resumed, a normal protect frame would cause finalization. With a skip

frame we are already under the right execution context and we can simply propagate the existing

cancellation by wrapping it which is very efficient.

8.6. Formalizing Initially
Initialization is the dual of finalization: whereas finalizers are concerned with operations that

do not resume, the initializer is concerned with operations that resume more than once. Initially

clauses can be present only on parametrized handlers where the give the initial value for the

handler parameter, like the file handle in the our earlier example. The idea is now to arrange that

a initially clause is re-executed whenever an operation under the handler is resumed more than

once. Operations that resume more than once are rare but do occur in examples like probabilistic

programming or backtracking [18].

Figure 11 formalizes the initially clauses. Since initially clauses can only be present on parame-

terized handlers, we also extend the syntax here with parameterized handlers together with two

new evaluation rules for parameterized handlers that first evaluate the initial value of the handler

parameter before evaluation the action.

There is new reduction context R for rewinding through the stack – it is equivalent to a regular

evaluation context except it has no cases for parameterized handlers. We have a special identifier

rewind(e) that rewinds an evaluation context and re-executes any initially clauses in sequence. The

rule (rewind) uses the R context to find the outermost parameterized handler and re-initializes the

handler parameter with the initially expression. The (unrewind) rule terminates the unwinding

continuing on from there.

The new reduction rule for handlers, (handlei), now applies the rewind expression whenever it

resumes more than once. As described in the previous section, we assume we have an operation |r |
that returns the number of times the resumption function r has been called.

8.7. Dynamic-wind
The Scheme language always supported delimited continuations and they have also struggled with

initialization- and finalization for continuations that resumed more than once. The unwind-protect
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Extended Syntax:

Expressions e ::= . . .

handlelh(p = e)(e) Parameterized handler

Clauses h ::= initially→ e; finally→ e; return x → e
| op(x) → e operation clause

Extended Evaluation Contexts and Rewind Contexts:

E ::= . . .

| handlelh(p = E)(e) | handlelh(p = v)(E)

R::= □ | R(e) | v(R) | val x = R; e | injectl(R) | handlelh(R)

Extended Reduction Rules:

(handlei) handlelh · H
l · opl(v) −→ protectf · e[x 7→ v, z 7→ vz, resume 7→ rw, finalize 7→ f ]

with

(op(x) → e) ∈ h
r = λλy. handlelh · H

l · y
f = λλy. if |r | = 0 then r[cancell(y)] else y
rw = λλy. if |r | = 0 then r[y] else rewind · r[y]

(rewind) rewind · R · handlelh(p = vp) · e −→ R · handlelh(p = ei)(rewind · e)
with

(initially→ ei) ∈ h
(unrewind) rewind · R · v −→ R · v

Fig. 11. Extension with initialization

in Scheme is like a finally clause, while dynamic-wind is like initially/finally with a pre- and

postlude [6, 12, 17, 35]. Sitaram [43] describes how the standard dynamic-wind is not good enough

in general: “While this may seem like a natural extension of the first-order unwind-protect to a
higher-order control scenario, it does not tackle the pragmatic need that unwind-protect addresses,
namely, the need to ensure that a kind of ‘clean-up’ happens only for those jumps that significantly
exit the block, and not for those that are aminor excursion. The crux is identifying which of these
two categories a jump falls into.”. Interestingly, this is exactly what is addressed by algebraic effects

where “significant exit”s are operations that do not resume, while “minor excursions” are regular

operations that resume with a result.

8.8. Safety of Finalization
The semantics for deep finalization and initialization address many requirements for robust handling

of external resources (even in the presence of multiple resumptions). Moreover, it is defined as a

dynamic untyped semantics and does not depend on static properties like linearity constraints.

Nevertheless there are some aspects that we would like to improve upon:
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(1) As defined, there is no guarantee that all finally clauses are executed – this only happens if

operation clauses that do not resume use finalize correctly. This is not a bad property persé

as it is exactly what gives the expressive power to define abstractions like asynchronous

execution. Nevertheless, in practice one would like to prevent accidentally forgetting about a

finalize call. Actual implementations might opt for special syntax or static checks to invert

this situation. For example by wrapping every operation clause by default with an implicit

finalize to guarantee proper finalization if resume (or finalize) was not called explicitly; i.e.

the programmer must declare explicitly the intention to not doing finalization in an operation

clause instead of the other way around.

(2) The definition of resume and finalize behave differently on the first invocation than later on.

This is unsatisfying from a semantic perspective (although still deterministic). As shown in

previous sections, the property is important in practice but we would like to see if is possible

to capture this behavior in a more declarative way.

We would like to show that wrapping every operation clause with a finalize leads to robust

evaluation of every finally clause. First define results w as:

w ::= v | cancell(e)

Then we can state the following theorem:

Theorem 4. (Deep finalization is robust)
For any evaluation that does not get stuck or diverges (i.e. it evaluates to a w), and where every oper-
ation clause is of the form finalize(e), then, if E · handlelh · e 7−→

∗ w we have E · handlelh · e 7−→
∗

E′ · ef 7−→∗ w, where (finally → ef ) ∈ h.

A formal proof of this property is work in progress, but we have done an initial proof sketch using

induction over the number of handlers in an expression.

9. CONCLUSION
We presented a formal semantics for various optimizations and extensions to algebraic effects that

are all important for any practical implementations. We hope to experiment more with first-class

algebraic resources and plan to investigate more optimized implementations based on virtual

method tables for each effect.

Finally, an attractive property of algebraic effect handlers is that they have a solid semantic

foundation in category theory – but the extended rules for deep finalization and initialization in

this article are “just” operational reductions that we defined in a particular way. We hope that it

is possible to find again the foundational categorical structures to capture the semantics of these

reduction rules and that can lead to a more foundational framework for reasoning about linear

resources.
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