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Abstract—Modern deep neural networks (DNNs) training
typically relies on GPUs to train complex hundred-layer deep
networks. A significant problem facing both researchers and
industry practitioners is that, as the networks get deeper, the
available GPU main memory becomes a primary bottleneck,
limiting the size of networks it can train.

In this paper, we investigate widely used DNNs and find that
the major contributors to memory footprint are intermediate
layer outputs (feature maps). We then introduce a framework
for DNN-layer-specific optimizations (e.g., convolution, ReLU,
pool) that significantly reduce this source of main memory
pressure on GPUs. We find that a feature map typically has two
uses that are spread far apart temporally. Our key approach
is to store an encoded representation of feature maps for this
temporal gap and decode this data for use in the backward
pass; the full-fidelity feature maps are used in the forward pass
and relinquished immediately.

Based on this approach, we present Gist, our system that
employs two classes of layer-specific encoding schemes – lossless
and lossy – to exploit existing value redundancy in DNN train-
ing to significantly reduce the memory consumption of targeted
feature maps. For example, one insight is by taking advantage
of the computational nature of back propagation from pool
to ReLU layer, we can store the intermediate feature map
using just 1 bit instead of 32 bits per value. We deploy these
mechanisms in a state-of-the-art DNN framework (CNTK) and
observe that Gist reduces the memory footprint to upto 2×
across 5 state-of-the-art image classification DNNs, with an
average of 1.8× with only 4% performance overhead. We also
show that further software (e.g., CuDNN) and hardware (e.g.,
dynamic allocation) optimizations can result in even larger
footprint reduction (upto 4.1×).
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I. INTRODUCTION

The availability of large datasets and powerful computing
resources has enabled a new breed of deep neural networks
(DNNs) to solve hitherto hard problems such as image clas-
sification, translation, and speech processing [22], [24], [31],
[48]. These DNNs are trained by repeatedly iterating over
datasets. The DNN training process has large compute and
memory requirements and primarily relies on modern GPUs
as the compute platform. Unfortunately, as DNN models
are getting larger and deeper, the size of available GPU
main memory quickly becomes the primary bottleneck1, thus

?Work done during an internship at Microsoft Research, Redmond.
1For GPU main memory (GDDR5/GDDR5X), the first order concern is

bandwidth as many GPU applications are bandwidth-bound. It is hard to
get both high bandwidth and high-density DRAM-based memory at low
cost [33].

limiting the size of the DNNs that a GPU can support [39],
[40]. Modern DNNs are already facing this issue, prompting
researchers to develop memory-efficient implementations of
the networks [37].

Many researchers have recognized this shortcoming and
proposed approaches to reduce the memory footprint of
DNN training. However, prior approaches are not able to
simultaneously achieve all of the following three desirable
properties: (i) provide high memory footprint reduction, (ii)
low-performance overhead, and (iii) minimal effect on train-
ing accuracy. Most prior works propose efficient techniques
to reduce the memory footprint in DNN inference with an
emphasis on reducing the model size (also referred to as
weights) [18], [19], [20], [17]. However for DNN training,
weights are only a small fraction of total memory footprint.
In training, intermediate computed values (usually called
feature maps) need to be stored/stashed in the forward pass
so that they can be used later in the backward pass. These
feature maps are the primary contributor to the significant
increase in memory footprint in DNN training compared to
inference. This important factor renders prior efforts, that
target weights for memory footprint reduction, ineffective
for training. State-of-the-art memory footprint reduction
approaches for training transfer data structures back and
forth between CPU and GPU memory but pay a performance
cost in doing so [39]. Finally, approaches that explore lower
precision computations for DNN training, primarily in the
context of ASICs and FPGAs, either do not target feature
maps (and thus unable to achieve high memory footprint
reduction) or, when used aggressively, result in reduced
training accuracy [11], [15], [8].

The key insight of this work is in acknowledging that
a feature map typically has two uses in the computation
timeline and that these uses are spread far apart temporally.
Its first use is in the forward pass and second is much later
in the backward pass. Despite these uses being spread far
apart, the feature map is still stashed in single precision
format (32-bits) when they are unused between these ac-
cesses. We find that we can store the feature map data with
efficient encodings that result in a much smaller footprint
between the two temporal uses. Furthermore, we propose
that if we take layer types and interactions into account,
we can enable highly efficient layer-specific encodings –
these opportunities are missed if we limit ourselves to a
layer-agnostic view. Using these key insights, we design two



layer-specific lossless encodings and one lossy encoding that
are fast, efficient in reducing memory footprint, and have
minimal effect on training accuracy.

Our first lossless encoding, Binarize, specifically targets
ReLU layers followed by a pooling layer. Upon careful ex-
amination of ReLU’s backward pass calculation, we observe
that the ReLU output, that has to be stashed for the backward
pass, can be encoded using just 1-bit values, leading to
32× compression for the ReLU outputs. Our second lossless
encoding, Sparse Storage and Dense Compute (SSDC), that
specifically targets ReLU followed by convolution layer,
is based on the observation that ReLU outputs have high
sparsity. SSDC facilitates storage in memory-space efficient
sparse format but performs computation in dense format, re-
taining the performance benefits of highly optimized cuDNN
dense computation, while exploiting sparsity to achieve
high reduction in memory footprint. Finally, in the lossy
domain, our key insight of representing the stashed feature
maps in smaller format only between the two temporal uses
enables us to be very aggressive with precision reduction
without any loss in accuracy compared to baseline. This
lossy encoding, Delayed Precision Reduction (DPR), delays
precision reduction to the point where values are no longer
needed in the forward pass and achieves significant bit
savings (as small as 8 bits).

Utilizing all these encodings, we present Gist that specif-
ically targets feature maps to reduce the training memory
footprint. It performs a static analysis on the DNN execution
graph, identifies the applicable encodings, and creates a new
execution graph with relevant encode and decode functions
inserted. Gist also performs a static liveness analysis of
the affected feature maps and newly generated encoded
representations to assist the DNN framework’s memory
allocator, CNTK [43] in our case, to achieve an efficient
memory allocation strategy.
This paper makes the following contributions:
• Systematic Memory Breakdown Analysis. We perform
a systematic memory footprint analysis, revealing that
feature maps are the major memory consumers in the DNN
training process. We also make a new observation that the
feature maps have high data redundancy and can be stored
in much more efficient formats between their forward and
backward use.
• Layer-specific Lossless Encodings. We present two
layer-specific encodings – (1) Binarize that achieves 32×
compression for ReLU outputs for layer combination of
ReLU followed by Pool, and (2) Sparse Storage and Dense
Compute that exploits high sparsity exhibited in ReLU
outputs for ReLU followed by convolution layers.
• Aggressive Lossy Encoding. We present DPR, that ap-
plies precision reduction only for the backward use of
the feature maps – values in the forward pass are kept in
full precision – leading to aggressive bit savings without
affecting accuracy.

• Footprint Reduction on a Real System. We observe that
Gist reduces the memory footprint by 2× across 5 state-
of-the-art image classification DNNs, with an average of
1.8× with only 4% performance overhead. By reducing
memory footprint, Gist can fit larger minibatches in the
GPU memory, improving GPU utilization and speeding up
the training for very deep networks, e.g., a speedup of 22%
for Resnet-1202. We also show that further optimizations
to existing DNN libraries and memory allocation can result
in even larger memory footprint reductions (upto 4.1×).

II. BACKGROUND AND MOTIVATION

DNNs typically consist of an input and an output layer
with multiple hidden layers in between. Recently, convolu-
tion neural networks (CNNs), a class of DNNs, have been
shown to achieve significantly better accuracy compared
to previous state-of-the-art algorithms for image classifica-
tion [32], [45], [46], [22], [34]. CNNs have been growing
deeper with every iteration, starting with few convolution
layers in the beginning (AlexNet) to hundreds of convolution
layers in recent ones (Inception).

A. Training vs. Inference

DNNs have two distinct modes of operation: (i) training,
when a model is trained based on a set of inputs (training
set) and a corresponding set of expected outputs, and (ii)
inference, when an already trained network is used to
generate predictions for new inputs.

For this paper, we focus on two main differences between
training and inference. First, training consists of two phases:
forward and backward passes [41], [10]; inference only
involves a forward pass. The goal of the backward pass
in DNN training is to backpropagate error and find weight
error gradients that can be applied to the weights to steer
the parameters in the right direction. Training is performed
in batches of input samples, commonly known as a mini-
batch [3]. Training on minibatches as opposed to training on
an image-by-image basis has been shown to achieve better
accuracy and better hardware utilization [12], [21], [9].

Second, in inference, the major part of storage overhead
comes from weights. These weights are fixed after training,
and hence many different optimizations can be applied to
reduce their storage requirements [17], [2], [18], [5]. In
contrast, training has many distinct data structures, e.g.,
weights that change over the course of training, weight
gradients, feature maps (intermediate layer outputs) that
need to be stashed in the forward pass for use in the
backward pass, and backward gradient maps.

1) Why Memory Can Be a Problem in Training?: To
understand the memory requirements of GPU-based training,
we study the breakdown of memory footprint on five state-
of-the-art CNNs in CNTK. While using FPGAs [50] and
ASICs [28], [25] is also possible, most of these designs are
either proprietary or in relatively early development stages.
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Figure 1: Breakdown of memory footprint in DNN training
amongst different data structures

Hence, we conduct our study on a modern GPU (Maxwell
GTX Titan X in our case). However, our approaches are
applicable to optimized hardware as well (Section V-H).

Figure 1 shows the breakdown of total memory footprint
across different data structures. Feature maps are the inter-
mediate layer outputs that are passed on as an input to the
following layer. Gradient maps are the intermediate gradients
generated in the backward pass and passed as an input to the
previous layer. In CNNs, not every feature map has to be
saved for the backward pass. We thus distinguish stashed
feature maps (generated in the forward and used in both
forward and backward passes) from immediately consumed
feature maps (generated in the forward pass and consumed
immediately in the forward pass) and gradient maps (gen-
erated in the backward pass and consumed immediately).
Stashed feature maps are required in the backward pass and
thus stored for a long time in a minibatch processing. In con-
trast, immediately consumed feature maps and gradient maps
can be discarded as soon as they are used. Finally, workspace
is deep learning library’s (cuDNN in this case) intra-layer
storage to support layer computations [7]. cuDNN provides
a choice between memory-optimal and performance-optimal
implementations, translating to a tradeoff between algorithm
performance and workspace storage requirements. In this
work, we choose its memory-optimal implementation as an
optimized baseline.

We draw two major conclusions from this figure. First,
larger (deeper) DNNs consume a large amount of memory
even with relatively small minibatch sizes (64). VGG16 and
Inception can only fit in our GPU memory if the minibatch
size is 64 and start exceeding the 12 GB GPU memory limit
at higher minibatch size. Higher minibatch size is desirable
as it leads to better GPU utilization [12], [51]. Second,
training memory footprint tends to be dominated primarily
by stashed feature maps, followed by immediately consumed
data structures. For example, in VGG16, 83% of memory
is consumed by stashed feature maps and immediately
consumed data; this number grows to 97% for Inception.
This result stands in stark contrast to inference where feature
maps don’t need to be stashed and memory consumption is
dominated by weights. We conclude that the stashed feature
maps and immediately consumed data structures (in that
order of importance) are key for optimizing GPU memory
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consumption in CNN training.

B. Limitations of Prior Work

In this paper, we develop techniques to reduce the DNN
training memory footprint. Here, we briefly describe the
limitations of existing approaches.
Prefetch and Swap-out. One potential approach is to move
parts of the working set between CPU and GPU memory
using PCIe links and smart prefetching analysis [39]. How-
ever, this approach still suffers from significant overheads of
data transfer with respect to power/energy and their inability
to completely mask the performance cost of swapping data
in and out of GPU memory (upto 27% for Inception).
In addition, it uses a shared resource, PCIe links, which
sometimes can be of critical importance in distributed DNN
training [9].
Reducing Minibatch Size. While reducing minibatch size is
effective at reducing the memory footprint during training, it
adversely affects the runtime of the training process because
smaller minibatches lead to GPU underutilization [12]. This
performance hit can be recovered by using more GPUs,
where each GPU works on a smaller minibatch. But this
is also an inefficient solution as GPU machines are both
costly and power hungry, and might also result in sub-linear
scaling due to stragglers and transfer across workers [9].
Recompute. Instead of a saving the output of a large layer,
prior work has considered recomputing the output of a
layer’s forward pass again in the backward pass [4]. Unfor-
tunately, we observe that the largest layers are usually the
ones that also take the longest to recompute, that can cause
significant performance overhead. Yet, this technique is still
applicable for some specific layers (like batch normalization)
and can be used in conjunction with our work.

III. GIST: KEY IDEAS

In this work, we design techniques to reduce DNN train-
ing memory footprint by focusing on the primary contrib-
utors – feature maps. We find that a feature map typically
has two uses in the computation timeline and these uses
are spread far apart temporally, as shown in Figure 2. Its
first use is in the forward pass and the second use is much
later in the backward pass. In the baseline, the data is
stashed in single precision (FP32) even though these uses
are far apart. In our approach, we represent the data in
a much smaller encoded format in the temporal gap and
decode it just before it is needed again in the backward
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Figure 3: Breakdown of memory within stashed feature
maps. ReLU layer consumes a major portion of the footprint.

pass; the forward use still gets the data in FP32 format, but
the memory space is relinquished as soon as the forward
use is complete. This results in an efficient memory sharing
strategy (Section IV-C), reducing total memory footprint.

Target data structures Footprint Reduction Technique Type
ReLU-Pool feature map Binarize Lossless
ReLU-Conv feature map Sparse Storage and Dense Compute Lossless
Other feature map Delayed Precision Reduction Lossy
Immediately consumed Inplace computation Lossless

Table I: Summary of Gist techniques
Our second key insight is that taking layer types and

interactions into account opens up opportunities for design-
ing highly aggressive encoding schemes, which were earlier
hidden due to the layer agnostic nature of prior work. In this
section, we first identify such opportunities that let us design
two lossless and one lossy encodings specifically targeted
to reduce memory footprint of stashed feature maps. Next,
we observe that inplace computations can reduce the size of
immediately consumed data structures. Table I shows a brief
outline of our techniques and their target data structures.

A. Opportunities For Lossless Encodings

Among feature maps, we first target ReLU activation
functions which are heavily used in all major CNNs targeted
for vision-related tasks [22], [48], [13], [31]. In these CNNs,
the convolution layers are typically followed by ReLU acti-
vations. This group of a Conv-ReLU pair is either followed
by the same group or by a pool layer, resulting in many
ReLU-Conv and ReLU-Pool layer pairs. Consequently, we
observe that ReLU feature maps form a major fraction of
total memory footprint.

This is shown in Figure 3 which zooms in on the stashed
feature maps (in Figure 1) and analyze their breakdown
across different CNN layers, with an emphasis on three
different categories: (i) ReLU outputs followed by a Pool
layer (ReLU-Pool), (ii) ReLU/Pool outputs followed by a
conv layer (ReLU-Conv), and (iii) remaining stashed feature
maps (Others). We observe that significant portion of mem-
ory footprint is attributed to ReLU outputs (Pool outputs
have very low contribution). For example, VGG16 has 40%
and 49% of the stashed feature maps for ReLU-Pool and
ReLU-Conv respectively (89% total used for ReLU outputs).

We make two key observations for these ReLU outputs
that let us store the stashed feature map with much fewer

bits. First, when carefully examining the backward pass
computation of ReLU layer, we observe that ReLU outputs
for ReLU-Pool combination can be stored in just 1-bit.
Second, we observe that ReLU outputs typically have high
sparsity that can be exploited to encode the feature map
in much smaller sparse format. Next, we expand on these
opportunities.
ReLU-Pool. Typically, in a backward pass calculation, a
layer uses its stashed input feature map (X), stashed output
feature map (Y) and output gradient map (dY) to calculate
input gradient map (dX), as shown in Figure 4(a). However,
every layer does not require all this data for the backward
pass. Upon further investigation, we discover that although
feature maps are stashed with the same precision across layer
types, it is mostly for convenience, not out of computation
necessity. We show backward pass calculation for ReLU
in Figure 4(b). It only requires Y and dY to calculate
dX. Moreover, an element of dY is passed to dX, only
if the corresponding element in Y is positive, else dX is
set to 0. With this observation in mind, it is natural to
consider replacing Y with 1-bit values. Unfortunately, it is
not always possible, because the next layer might require
its stashed input feature map X (ReLU output in this case)
for the backward pass calculation. However, upon further
examination, we observe that in the case of ReLU-Pool, the
pool backward pass does not require the actual values of
ReLU output as shown in Figure 4(c) (described in more
details in Section IV-A), resulting in significant encoding
opportunities. This observation becomes the basis of our first
lossless encoding, called Binarize.
ReLU-Conv. Binarize is not applicable to ReLU-Conv pair,
because convolution requires its stashed input feature map
for the backward pass calculation (as shown in Figure 4(d)).
However, upon careful data analysis, we observe that ReLU
outputs have high sparsity (large number of zeroes) induced
by the ReLU calculations in the forward pass. For example,
for VGG16, we observe high sparsity, going even over
80%, for all the ReLU outputs, motivating us to apply
sparse compression and computation for these feature maps.
However, switching both compute and memory to sparse
domain results in significant performance degradation [49],
[23]. Building on this observation, we present Sparse Storage
and Dense Compute (SSDC) encoding that stores the data
in Compressed Sparse Row (CSR) encoding format while
keeping the computation in dense format.

B. Opportunities For Lossy Encodings

For lossy encoding, we investigate precision reduction as
it is amenable to GPU architecture compared to prior offline
approaches like quantization and Huffman encoding [18].
We make two observations that let us achieve aggressive bit
savings without any loss in accuracy.
Non-Uniform Precision Reduction. We observe that uni-
form precision reduction to even 16 bits (IEEE half precision
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format), where all the data structures are represented in
16 bits while the computation happens on 32 bits, leads
to severe accuracy losses. We observe that if instead, we
restrict the precision reduction to only gradient maps, then
the training accuracy is not affected. Note that, although this
type of selective precision reduction has been studied in a
recent work [11], it does not study the effect of reducing
precision in stashed feature maps.
Delayed Precision Reduction. But more importantly, we
find that the way the precision reduction is applied in
training should be significantly changed. Currently, the con-
ventional wisdom [11], [15], [8], [16] is to apply precision
reduction right after the value is generated by a particular
layer. This design choice leads to the situation when the error
generated by the precision reduction is injected directly into
the next layer and is then propagated (potentially increasing
in magnitude) to all future layers in the forward pass. In
our work, we observe that it is better to separate the two
uses of every output layer in the forward and backward
pass (as previously shown in Figure 2). The first immediate
use (by the next layer) significantly benefits from the more
precise (usually FP32) representation, avoiding any error
injection due to precision reduction in the forward pass.
While the second use, much later in the backward pass, can
tolerate lower precision. This separation, implemented in our
Delayed Precision Reduction encoding, push the bit lengths
to a very small value like 8 bits for multiple DNNs (unseen
in prior work).

C. Opportunities For Inplace Computation

Next, we shift our focus from stashed feature maps to
immediately consumed data structures. We observe that a
good portion of immediately consumed data can be removed
by performing inplace computation. As discussed in a pre-
vious work [4], this optimization is applicable for the layers
(specifically ReLU) that have a read-once and write-once
property between each element of input and output. In the
absence of inplace optimization, convolution output shows
up in the immediately consumed category. With inplace
computation, the memory space for convolution is reused by
ReLU, reducing immediately consumed memory footprint.

IV. DESIGN AND IMPLEMENTATION

Based on the observations in the previous section, we
present the design of our system Gist. Figure 5 shows
our system architecture. Typically, DNN frameworks like
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DNN execution

Gist encodings
Runtime 

execution
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Figure 5: Gist System Architecture - Schedule Builder finds
applicable Gist encodings and performs liveness analysis.

CNTK [43] and TensorFlow [1] represent DNNs as a series
of computational steps via a directed execution graph. Gist’s
Schedule Builder takes the original execution graph, identi-
fies the edges where new encodings/decodings are needed,
and creates a new execution graph with encode/decode
functions inserted.

In isolation, encoded representations only add to the
memory footprint. To solve this problem, we utilize the
CNTK memory allocator that uses the lifetimes of various
data structures to find an efficient static memory sharing
strategy. Schedule Builder performs liveness analysis, infers
the lifetime of affected stashed feature maps and encoded
representations, and presents them to the CNTK memory
allocator for optimization. Gist encodings reduce the lifetime
of FP32 stashed feature maps, opening up more opportuni-
ties for memory sharing, and thus reducing the total memory
footprint. In this section, we present the details of Gist
encodings and design of Gist’s Schedule Builder and its
interaction with CNTK memory allocator.

A. Encodings

We present a generic view of encodings in Figure 6,
illustrating the difference between baseline and Gist en-
codings in terms of new data structures and changes in
backward pass calculations (shown in blue color). For the
baseline, backward pass calculation is a function of inter-
mediate feature map (Y1 in the figure) along with other data
structures. Gist introduces two new data structures – E, the
Encoded intermediate feature map in the forward pass, and
D, the decoded intermediate feature map in the backward
pass. These new data structures change the backward pass
calculation, which are now dependent on D instead of Y1.
We now present the details of these encodings.
Lossless Encoding - Binarize. As discussed in Section III,
we observe that for ReLU-Pool layer combination, ReLU
output can be encoded much more efficiently, because (i)
the backward pass of ReLU only needs to know if the
stashed feature map is positive (1 bit), and (ii) the pool
layer backward pass can be optimized so that it does not
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need ReLU outputs.
CNNs typically use MaxPool layer to subsample the

input matrix. MaxPool’s forward pass slides a window of
a specific size over the input matrix X, finds the maximum
value in this window, and passes it on to the output Y. For the
backward pass, it passes on dY to that location of dX in the
window, from where the maximum value of X was chosen
in the forward pass. In baseline CNTK implementation, the
MaxPool layer stashes both input and output feature maps
for the backward pass to find the location of maximum
values. We instead, create a mapping from Y to X in the
forward pass that keeps track of these locations (Y ToXmap

in Figure 4 (b)). We use this mapping in the MaxPool
backward pass calculation, removing the dependence on its
input and output stashed feature maps.

With this optimization, Binarize encoding lets us achieve
a significant reduction in memory footprint for ReLU-Pool
layer combination. Binarize adds two encoded feature maps.
First, a 1-bit data structure that replaces the ReLU feature
map, storing information whether the stashed feature map
value was positive. Second, for Pool layer, Binarize stores
a Y to X mapping of the location of maximum values.
This data structure has as many elements as the Pool
output (typically, one-fourth or one-ninth of preceding ReLU
output), where each element is stored in 4 bits (the largest
sliding window in our application suite is 3× 3). Therefore,
these encoded data structures result in a compression of
close to 16× (32× for ReLU output and 8× for MaxPool
output) for ReLU-Pool stashed feature maps.

Tying back to Figure 6, both encode and decode func-
tions are implemented within ReLU and pool layers using
CUDA. Pool and ReLU backward pass have been updated
to perform computation on the encoded data structures
itself. We observe small performance improvements with
Binarize encoding, because Binarize encoding significantly
increases effective memory bandwidth for ReLU layers,
improving memory-bandwidth bound ReLU backward pass
computation.
Lossless Encoding - Sparse Storage and Dense Compute.
As discussed in Section II, other set of ReLU layers – ReLU-
Conv, exhibits high amount of sparsity induced by ReLU
calculations, making it suitable to store these feature maps
in sparse format. We also observe high sparsity for a few

Pool-Conv layer combinations if the preceding ReLU layer
has high sparsity. SSDC encoding is applicable to both layer
combinations.

However, switching to sparse computation on GPUs
shows performance improvements only when the sparsity
is very high (> 97.5%), which is typically not the case
in CNNs [49], [23]. To tackle this problem, we present
Sparse Storage and Dense Compute (SSDC) encoding, that
isolates computation and storage, facilitating storage of data
in sparse format and computation in dense (FP32) format.
SSDC stores the data in a sparse format for the majority of
its lifetime, and converts the data back into dense format
only before it is actually required for computation. This
achieves significant memory footprint reduction, while re-
taining the performance benefits of highly optimized cuDNN
library.

For choosing a suitable sparse format, we compare 3
commonly used formats - ELL, Hybrid and Compressed
Sparse Row (CSR). We observe that CSR achieves lowest
format-conversion latency among these options, achieving
the best compression-performance overhead tradeoff. This
format stores all the non-zero values, along with a meta array
that holds the column indices of the non-zero values in each
row. (There is an extra meta array which is very small in
size, and, thus omitted for the rest of the discussion). Most
DNN frameworks store data structures in an n-dimensional
matrix, which can always be collapsed into two dimensions.
We take these 2D matrices and convert them into a CSR
format.

We use Nvidia cuSPARSE library to perform the encod-
ings/decodings, listed in Figure 6. However, the original
implementation stores each index as a 4-byte value, resulting
in no improvement with compression if the sparsity is below
50%. This is due to cuSPARSE conservative assumption
that the number of elements in a row of the matrix can be
high, allotting 4 bytes for every column index. We perform
Narrow Value Optimization, where we reshape the 2D matrix
and restrict the number of columns to 256, requiring only
1 byte per column index [36]. This reduces the minimal
sparsity requirement for compression to be effective from
50% to 20%, resulting in both wider applicability and higher
compression ratios.
Lossy Encoding - Delayed Precision Reduction. Gist’s
third encoding uses precision reduction to exploit CNN
error tolerance to reduce the memory footprint of remaining
stashed feature maps. Similar to SSDC encoding, we isolate
the storage from the computation. The computation still
happens in FP32 format while the data is stored with
lower precision for most of its lifetime. Though backward
pass implementation can be modified to work directly on
precision-reduced values, we convert back to FP32 because
cuDNN is closed-source library. Nevertheless, we discuss
the impact of such optimization on compression ratio in
Section V-H.



Our usage of precision reduction differs significantly
from the previous research that applies it immediately after
computation finishes. We delay the precision reduction until
the feature map has been consumed in the forward pass, thus
naming it Delayed Precision Reduction (DPR). This lets us
achieve more aggressive precision reduction on GPUs. DPR
is applicable to any layer combination. We also apply it over
SSDC encoding, compressing the non-zero values array in
the CSR format. We do not touch the meta array in CSR
format and Binarize encoded data structures as these affect
control, and thus are not suitable for lossy encoding.

Figure 6 lists the encode and decode functions for DPR
encoding. We use three smaller representations of 16, 10 and
8 bits, packing 2, 3 and 4 values, respectively, into 4 bytes.
For packing 3 values into 4 bytes, 10 bits is the largest length
possible (9 bits leave 5 bits unused, 11 bits requires one extra
bit). For 16 bits, we use IEEE half precision floating point
format (1 sign, 5 exponent and 10 mantissa bits), referred
to as FP16. For 8-bits (FP8), we choose 1 bit for sign, 4
for exponent and 3 for mantissa, and for 10-bits (FP10),
we use 1 sign, 5 exponent and 4 mantissa bits. In FP10,
three 10-bit values are stored in a 4-byte space, rendering
2-bits useless. We ignore denormalized numbers as they have
a negligible effect on CNNs accuracy. We use round-to-
nearest rounding strategy for these conversions. The value
is clamped at maximum/minimum value if the FP32 value is
larger/smaller than the range of the smaller format. We write
CUDA implementations to perform these conversions. Since
conversions can happen in parallel, DPR results in minimal
performance overhead.

B. Schedule Builder

In Gist, the values in the forward pass are in FP32 format
(for both lossless and lossy encodings) while only the data
that is required for the backward pass is stored in an encoded
format. However, since the feature maps are still generated
in the original FP32 format in the forward pass before they
are encoded, without any further optimization, the encodings
will result in increased memory footprint. This gives rise to
the question that how does Gist leads to memory footprint
reduction.

This task is handled by Gist’s Schedule Builder that has
two responsibilities. First, identifying the applicable layer
encodings from the CNTK execution graph, performing a
static analysis to distinguish between forward and backward
use of a feature map, and inserting the encode and decode
functions in the execution graph, thus creating a new execu-
tion graph that is used at runtime. And, second, performing a
static liveness analysis for the affected stashed feature maps
and newly generated encoded/decoded representations, and
pass it on to the CNTK static memory allocator that finds
an efficient memory allocation strategy (Section IV-C).

Figure 2 illustrates the liveness analysis performed by
the Schedule Builder. The figure shows the two uses of a

feature map that are temporally far apart in the computation
timeline – one in the forward pass and one much later in the
backward pass. In the baseline, the lifetime of this feature
map is very long and it is stored in FP32 format for this
whole duration. Gist breaks this lifetime into three regions
– FP32 format that is live only for the immediate forward
use, encoded (much smaller) format that is live for the long
temporal gap between the two uses, and FP32 format for the
decoded value that is live only for the immediate backward
use. The figure also shows the points at which Schedule
Builder inserts encode and decode functions.

C. CNTK Memory Allocator

Schedule Builder passes this liveness analysis to the
CNTK static memory allocator that finds an efficient strat-
egy to allocate the memory. CNTK, similar to other deep
learning frameworks, performs static memory allocation.
The other alternative, dynamic allocation, results in a lower
footprint but at the expense of many expensive cudaMalloc
calls for each minibatch, resulting in performance overhead.
Nevertheless, we discuss the impact of dynamic memory
allocation on compression ratio in Section V-H.

The key idea employed in the CNTK memory allocator is
memory sharing. It takes lifetimes of different data structures
and their sizes as input, and finds an efficient memory
sharing strategy. The memory allocator creates groups of
data structures whose lifetimes do not overlap and thus can
share the same memory space. Therefore, the size of this
group is the largest size of the member within the group, as
opposed to the sum of size of the members of the group.
To come up with an efficient strategy, it first sorts the data
structures on the basis of size, and then forms these groups,
so that large data structures can share the same memory
space. At the end of this process, memory allocator has
multiple groups which are either dominated by feature maps
that are stored for the backward pass or by immediately
consumed feature maps or gradient maps. Gist encodings,
by reducing the lifetime of FP32 stashed feature map, create
higher opportunities for memory sharing, resulting in lower
memory footprint.
Example - Putting it all together. We present an example
in Figure 7 to illustrate the interactions between static
memory manager and Gist encodings. The example shows
lifetimes of five variables (X, A, B, C and D). In part
(a), we show the output of CNTK memory allocator for
the baseline. Memory allocator forms 2 groups, resulting
in a total size of 18 MB, 10 for stashed feature map (X)
and 8 for immediately consumed. In part (b), we apply
SSDC encoding, which breaks the lifetime of original X
into three separate timelines. In this case, CNTK memory
allocator again forms two groups, however, the total size
is reduced to 12, 2 for (encoded) stashed feature map and
10 for immediately consumed. As shown in the figure, Gist
encodings convert the original FP32 stashed feature maps
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Figure 7: Example illustrating the interaction between Gist
encodings and CNTK static memory allocator

into immediately consumed data, and the encoded (and much
smaller) data structure is now stashed for the backward
pass. This might increase the total immediately consumed
data (8 to 10 MB here), but reduces the stashed feature map
significantly (10 to 2 MB), resulting in overall reduction in
memory footprint (18 to 12 MB).

V. EVALUATION

A. Methodology

Infrastructure. We evaluate Gist memory reduction capa-
bilities on Microsoft CNTK deep learning framework. We
implement Gist encodings, inplace optimization, Schedule
Builder, and make necessary changes in CNTK static mem-
ory allocator. The evaluation is performed on an Nvidia
Maxwell GTX Titan X [26] card with 12 GB of GDDR5
memory using cuDNN v6.0 and CUDA 8.0.
Applications. We evaluate Gist on 6 state-of-the-art image
classification CNNs: AlexNet [32], NiN [34], Overfeat [44],
VGG16 [45], Inception [46] and Resnet [22], using Ima-
geNet training dataset [42]. These CNNs present a wide
range of layer shapes and sizes, while also capturing the
evolution of CNNs in past few years.
Baselines. Our first baseline, referred to as CNTK baseline,
is CNTK original static memory allocation strategy, without
any of our optimizations. In Section II, we show that stashed
feature maps and immediately consumed data structures are
the major contributors to the total memory footprint, hence
CNTK baseline consists of only these two data structures. It
does not include weights, weight gradients, and workspace
(also in line with previous work on DNN training [39], [40]).

We also use a second baseline to study the effect of
different encodings in isolation. This baseline, referred to
as investigation baseline, is modified CNTK baseline where
memory sharing is not allowed for stashed feature maps.
Other data structures are shared exactly the same way as
in the CNTK baseline. This baseline allows us to study
the impact of our encodings on different data structures in
isolation. For end-to-end memory reduction numbers, we
still use CNTK baseline.

For performance overhead evaluation, we use memory-
optimized cuDNN configuration as the focus of our work
is memory footprint reduction. Memory-optimized cuDNN
presents an optimized baseline for comparison. Note that
CNTK baseline and investigation baseline have the same
performance as they do not affect computation.
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Figure 8: Evaluation of memory footprint reduction - Gist
cuts down total memory footprint significantly

Comparison Metric. We use Memory Footprint Ratio
(MFR) to evaluate the efficacy of Gist on reducing the
memory footprint. MFR is described as follows.

MFR =
Memory Footprint of Baseline

Memory Footprint after encoding
(1)

B. Gist’s Memory Footprint Reduction

Gist is designed to tackle the increasing memory footprint
in DNN training. In this section, we evaluate Gist’s efficacy
from this aspect. In this experiment, we, first, apply all
lossless optimizations – Binarize, SSDC and inplace – and
measure the total memory footprint (stashed feature maps
and immediately consumed data structures). Then, we apply
Gist’s lossy encoding – DPR – on top of lossless optimiza-
tions and measure additional reduction in memory footprint.
For lossy encoding, we choose the smallest floating point
representation that does not affect the training accuracy
(detailed in Section V-D1). The findings of this experiment
are presented in Figure 8.

Figure 8 shows the Memory Footprint Ratio (MFR)
achieved by Lossless and Lossy optimizations when com-
pared to CNTK Baseline. We observe that the lossless opti-
mizations result in a MFR of more than 1.5× for AlexNet
and VGG16 (1.4× on average). DPR, on top of lossless,
further reduces the total memory footprint, achieving MFR
of upto 2× for AlexNet, with an average of 1.8×. This
experiment shows that Gist optimizations result in significant
memory footprint reductions, making it possible to fit a
network that can be larger in depth or wider with respect
to larger minibatch size.
Performance Overhead. Next, we measure the performance
overhead introduced by Gist encodings. We run the same
experiment again, measuring the execution time of process-
ing a minibatch, averaged over 5 minutes of training time
(hundreds of minibatches). The findings of this experiment
are presented in Figure 9. The figure shows the perfor-
mance degradation for Lossless and Lossy encodings, with
error bars capturing the performance variation. We observe
minimal performance degradation across CNNs, resulting
in an average 3% degradation for lossless and 4% for
lossy and lossless optimizations combined, with a maximum
overhead of 7% for VGG16 when both lossy and lossless
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Figure 9: Performance overhead of Gist encodings. Gist
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Figure 10: Impact of Gist lossless techniques (S - SSDC,
B - Binarize, I - Inplace) on memory footprint of different
data structures. Total MFR for each configuration is present
at the top of each bar

optimizations are applied. This shows that Gist achieves
significant MFR with minimal performance overhead.

C. Lossless Encodings

In this section, we evaluate the impact of lossless tech-
niques on memory footprint and performance.

1) Impact on Memory Footprint: In this experiment, we
apply Gist lossless encodings – Binarize and SSDC – in
isolation and evaluate how they affect the memory consumed
by stashed feature maps and immediately consumed data
structures. Then, we study the same effect when both en-
codings are applied together. Finally, we evaluate inplace
optimization, that targets the immediately consumed data
structures. The findings of this experiment are presented in
Figure 10.

We perform this study on the investigation baseline, where
stashed feature maps are not allowed in memory sharing,
allowing us to study the impact of encodings in isolation.
When an encoding is applied, the stashed feature map
is converted to an immediately consumed data structure
(possibly increasing its footprint), and this much smaller
encoded data structure is now stashed for the backward
pass, as discussed in Section IV-B. The figure shows this
effect by breaking down the total memory footprint into 4
regions: ReLU/Pool-Conv (suitable for SSDC), ReLU-Pool
(Binarize), other feature maps (untouched in this experiment
as they are suitable for DPR), and immediately consumed.

The first bar shows the breakdown across these categories
for the baseline. Then, we apply SSDC encoding, that
reduces ReLU/Pool-Conv footprint significantly and slightly
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Figure 11: Gist lossless encodings MFR on target categories

increases the immediately consumed memory footprint. For
example, for AlexNet, it results in the total MFR of 1.06×.
Similarly, the third bar is for Binarize encoding, targeting
ReLU-Pool category, resulting in MFR of 1.26×. Then, we
apply both these encodings together, shown in the fourth
bar, resulting in total of 1.35× MFR. Finally, we apply
inplace optimization that targets immediately consumed data
structure, further increasing the MFR to 1.56×. These tech-
niques result in different footprint reduction for CNNs, as
the proportion changes across different categories.

Note that Figure 10 only shows the total MFR, however
Gist encodings reduce memory consumption of different
categories to a different extent. We show this effect in
Figure 11, presenting MFR for different optimizations on
their target data structures. We observe that, as expected,
Binarize results in significant memory savings, reaching
close to 16× MFR (32× for ReLU output and at least 8×
for pool output). Reduction for SSDC varies significantly
across CNNs, providing upto 7× MFR for Overfeat. Finally,
inplace optimization results in upto 1.4× MFR for AlexNet.
Inplace optimization does not always reduce the total mem-
ory footprint, because the affected immediately consumed
data structure might not be a heavy hitter in the memory
groups formed by CNTK memory allocator (Section IV-C).

2) Impact on Performance: To evaluate the performance
overhead of lossless techniques, we run the previous exper-
iment and measure the performance overhead. We observe
that Binarize, instead of showing performance degradation,
results in small performance improvement. This is because
ReLU backward pass calculations are memory bandwidth
bound and Binarize encoding increases effective memory
bandwidth by representing the data in 1-bit format. We
observe that SSDC encoding results in small performance
overhead – upto 4% on average. The combination of two
lossless encodings result in slightly better performance than
just SSDC encoding alone, because of the better performing
Binarize encoding. And, finally, inplace optimization has no
effect on performance as it does not incur any encoding or
decoding overhead.

D. Lossy Encodings

In this section, we study the impact of lossy encodings
on accuracy, memory footprint, and performance.
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1) Impact on Accuracy: First, we study the effect of
applying precision reduction on the training accuracy. In this
experiment, we, first, train the network in FP32 precision
(shown as Baseline-FP32). Second, in line with previous
research [15], [8], [16], we represent all the data structures
throughout the network in FP16 format and then train the
network (shown as All-FP16). Finally, we train the network
using FP16, FP10 and FP8 DPR encodings (shown as
Gist-FP*). The computation is still performed with FP32
precision. The values are converted back to FP32 format
just before the computation.

The findings of this experiment are shown in Figure 12,
showing the training accuracy loss for different networks.
Training accuracy loss curve is a method of capturing
training accuracy over time. At the start, the network has
nearly 100% accuracy loss (almost 0% accuracy). Over time,
the accuracy improves and correspondingly the accuracy loss
reduces. For example, at 90th epoch, Overfeat achieves 22%
accuracy loss i.e. Overfeats accuracy is 78% (100% - 22%).
The figure compares the deviation between the accuracy of
CNTK baseline (FP32 blue circles) and Gist-FP16/10/8 DPR
encodings. Note that the y-axis is not the accuracy loss from
Gist encodings. Instead, it measures the networks achieved
accuracy as the training epoch increases. Therefore, for DPR
encoding to be as accurate as the FP32 baseline, the curves
should overlap.

There are two key observations from this figure. First,
representing all data structures in 16 bits leads to severe
accuracy losses. This is because the precision reduction is
applied immediately after each layer output is computed,
propagating the error in the forward pass and resulting in
severe accuracy losses. Second, applying precision reduction
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Figure 14: SSDC sensitivity to Sparsity (15 epochs,
VGG16)

only for the backward use of stashed feature maps, as done
in DPR, can result in aggressive bit savings (as low as 8
bits for AlexNet and Overfeat). For Inception, we observe
that when FP8 is applied, the network stops training, but
FP10 has enough precision to result in no accuracy losses.
VGG16 needs the highest precision, and does not train with
representation smaller than FP16, showing that the minimum
acceptable precision is network dependent.

2) Impact on Footprint Reduction: In this section, we
evaluate how much MFR these efficient representations
achieve. The experiment involves running DPR FP16 and
the next smallest representation (FP10/FP8) that has no
accuracy losses, and measuring the total memory footprint.
The findings of this experiment are presented in Figure 13,
showing the MFR against investigation baseline.

DPR encoding converts the stashed feature maps into
immediately consumed data and stashes the encoded feature
map for the backward pass. To see this effect, we break the
total memory consumption into stashed feature maps and
immediately consumed. When DPR encoding uses FP16,
the stashed feature maps are compressed 2×, with some
increase in immediately consumed footprint, resulting in the
total MFR of 1.18× for AlexNet as an example. FP8 further
cuts down the memory footprint, resulting in MFR of 4× for
stashed feature maps and a total of 1.48× MFR for AlexNet.
As shown previously, FP8 leads to bad accuracy for VGG16,
and thus we omit results for FP8 for VGG16.

3) Performance Overhead: Next, we evaluate the per-
formance overhead of DPR encoding. For this study, we
run the last experiment again and measure the execution
time of a minibatch processing, averaged over 5 minutes of
training. We observe that extremely parallel DPR encoding
implementation has minimal performance overhead, with an
average of 1%.
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Figure 15: Performance comparison of Gist against naive
swapping and vDNN

E. Sensitivity Study

Most of the Gist encodings result in fixed MFR, as
they are agnostic to data values. However, SSDC encoding
depends on the sparsity of data structure that changes during
the training. In this section, we perform a sensitivity study
for SSDC encoding on VGG16. The experiment involves
applying the SSDC encoding, training the network for 15
epochs, while recording the achieved compression ratio for
the applicable feature maps after every 1000th minibatch.
The findings of this experiment are presented in Figure 14.

This figure shows the MFR achieved for each applicable
layer (each block is a single layer) over time. We observe
significant MFR across all layers, varying across the layers,
and also across time within a single layer. The MFR is
typically much larger than 1, except only for a small duration
of first few minibatches (close to 200) of the first epoch
(one epoch for VGG16 has 20K minibatches). This happens
because at the start of the training, the network weights are
initialized randomly. It takes few minibatches for weights to
change and for sparsity to come into effect.

F. Comparison with Prior Work

Another way to reduce the memory footprint is to swap
the parts of working set between the CPU and GPU memory
using PCIe links. In this section, we compare Gist’s per-
formance with such approaches. vDNN, the most relevant
prior work to Gist, is built upon this approach and uses
a prefetching analysis to find a suitable overlap between
the data transfer and computation time [39]. We implement
vDNN in CNTK and present the comparison in Figure 15,
showing the performance overhead of naive swapping (no
prefetching), vDNN and Gist against CNTK baseline.

We observe that naive swapping results in a heavy per-
formance loss, averaging 30%, because there is no overlap
between kernel execution and data transfer. vDNN improves
this performance by performing prefetching analysis. How-
ever, vDNN still has high overhead as the data transfer
time cannot be completely hidden, resulting in an average
slowdown of 15%, with a maximum of 27% for Inception.
By keeping the data within GPU, Gist is not limited by the
PCIe bandwidth and observes an average slowdown of only
4% (upto 7%).
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Figure 16: Gist enables training deeper networks with
larger minibatch, achieving better performance. The largest
minibatch that fits in the GPU memory is present at the
bottom of the bar

G. Impact on Machine Learning Trend

A look at past ImageNet challenge winners show that
networks are getting deeper over time [42]. Thus, training
them incurs a higher memory footprint potentially exceeding
the limited size of GPU DRAM (16 GB for the most ex-
pensive card). This means that to train deeper networks, one
has to use smaller minibatch sizes that fit in GPU memory,
resulting in underutilized hardware and high training time.
Next, in the context of training deep networks with small
minibatch sizes, we show how Gist allows for faster training
by enabling the use of larger minibatch sizes.

We use Resnet [22], the winner of 2015 ImageNet chal-
lenge, for this study. Resnet presents a highly composable
structure, enabling us to vary the depth of the network and
project this trend of deeper networks. The original Resnet
paper evaluates the accuracy to the maximum depth of 1202
layers [22]. In line with the paper, we vary the number of
layers to 509, 851 and 1202. We present the findings of
this experiment in Figure 16, showing the speedup achieved
by the largest minibatch that fits with Gist compared to the
largest minibatch that fits with CNTK Baseline. We observe
that by enabling larger minibatches, Gist increases GPU uti-
lization and improves training time, e.g., a speedup of 22%
for Resnet-1202. In general, due to better utilization of GPU
resources with larger minibatch sizes, Gist’s performance
improvements positively correlate with the existing machine
learning trend of deeper modern networks.

H. Discussion – Memory Allocation

Deep learning frameworks typically perform static mem-
ory allocation on GPUs to avoid expensive cudaMalloc calls
while processing a minibatch. However, there are ongoing
efforts to accelerate training on FPGAs [50] and ASICs [28],
[25]. In such scenarios, dynamic memory allocation can
be a preferable choice if the memory allocation is itself
implemented in hardware and results in minimal perfor-
mance overhead. The question then arises, in the presence
of such optimized hardware, how much footprint reduction
does dynamic memory allocation achieve, and what is the
impact of the Gist encodings when memory is allocated
dynamically.
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Second, for DPR encodings, we decode the data back into
FP32 format, because cuDNN library requires data to be
in the FP32 format. This requires an extra memory block
(though only for immediate use) for the decoded FP32
representation. We believe that most of this decoding can
be pulled inside cuDNN implementation, which can either
execute directly on the encoded data, or decode only the data
that is required in near future, for example, the data required
for the near-future tile in a tiled matrix multiplication. Such
optimized software can remove the need for decoded data
structure, potentially resulting in higher MFR.

In this section, we discuss the impact of such optimized
hardware and software on MFR. For dynamic memory allo-
cation, we modify the liveness analysis module from CNTK
and simulate dynamic memory management, allocating a
region only when it is required and relinquishing it as soon
as it is dead. We find the peak memory consumed in this
scheme and compare it against static memory allocation.
Similarly, for optimized software, we modify the liveness
analysis module to remove the decoded FP32 values and
reallocate the memory. We present the findings in Figure 17.

The figure shows the achieved MFR for dynamic memory
allocation, Gist encodings in presence of dynamic allocation,
and optimized software with Gist encodings and dynamic
allocation, against CNTK baseline. There are three key
observations from this graph. First, dynamic memory allo-
cation results in good MFR, going over 1.5× for Overfeat,
with an average of 1.2× across all CNNs. Second, Gist
encodings are still applicable in the presence of dynamic
memory allocation. We observe that Gist lossless and lossy
encodings achieve MFR of 1.7× and 2.6× respectively.
Finally, optimized software can further cut down the memory
footprint, resulting in a MFR of upto 4.1× for AlexNet
against CNTK baseline, with an average of 2.9× across all
CNNs.

VI. RELATED WORK

Our paper presents a systematic analysis of breakdown
of total memory footprint across different data structures
in DNN training, showing that stashed feature maps and
immediately consumed data structures are the major contrib-
utors in modern DNN frameworks (as opposed to weights
in DNN inference). We present layer-specific lossless encod-

ings, targeting different categories of stashed feature maps,
which to our knowledge has not been proposed before. Gist
lossy encoding is specifically designed for DNN training
and stands in stark contrast with the prior body of similar
work on DNN inference. Our work presents a unique way of
applying precision reduction in which the data in the forward
pass is kept in full FP32 format, while only the data that is
stashed for the backward pass is represented with fewer bits,
resulting in more aggressive bit savings which is unseen in
the previous work.
Generic Approaches. vDNN transfers the data between
CPU and GPU memory using smart prefetching analy-
sis [39], fitting large networks in the GPU memory, but at the
expense of (1) performance cost (15% on average, and upto
27%), and (2) energy cost of using PCIe and GPU DRAM
bus constantly for the data transfer, and (3) using PCIe,
which is a shared critical resource in a distributed train-
ing [9], potentially causing performance issues in distributed
setting. CDMA, designed on top of vDNN, leverages spar-
sity to compress the data sent between CPU and GPU [40].
We found that CNTK memory allocator already implements
this memory sharing (our CNKT baseline already has these
optimizations). [4], [14] presents details of MxNet’s memory
sharing and inplace optimizations. It also proposes layer
re-computation to trade off large memory space with re-
computing fast DNN layers. This work is orthogonal and
can achieve additional speedup with Gist encodings.
Encodings. Lossy encodings have been studied rigorously in
the domain of DNN inference. These works apply network
pruning, quantization, Huffman encoding and precision re-
duction to reduce the model size (weights) [18], [30], [19],
[20], [27]. Many HW accelerators have been designed em-
ploying limited precision and leveraging sparsity to reduce
computational and memory requirements [17], [5], [6], [35],
[29], [38], [47], [2]. However, these techniques do not apply
directly for training as weights change frequently during the
training process, and weights are not a major contributor to
total memory footprint.

Most of the other works for DNN training have looked
into the reducing precision requirements for computation.
These works do not focus on reducing memory footprint
and, thus, do not optimize memory for stashed feature
maps. For example, BUCKWILD! breaks down memory
footprint into four categories (DMGC in the paper), but
ignore stashed feature maps, as it does not play significant
role in computational precision study [11]. Similarly, [15],
[8], [16] show that 16-bits dynamic fixed point computation
is enough for training small DNNs on CIFAR-10 and do
not focus on primary contributor to memory footprint. We
share an observation with this work that uniform precision
reduction results in severe accuracy losses. These works
keep a shadow copy of weights in full precision, which is
updated at the end of each minibatch and then quantized for
next minibatch, to keep accuracy in check.



VII. CONCLUSION

In this paper, we investigate approaches to reduce the
memory footprint of DNN training, enabling training of
deeper DNNs on GPUs. We present, Gist, that employs
two layer-specific lossless and one aggressive lossy encoding
schemes, targeting the primary contributor to total memory
footprint (feature maps). A common approach in our encod-
ings is to store an encoded representation of feature maps
and decode this data in the backward pass; the full-fidelity
feature maps are used in the forward pass and relinquished
immediately. Gist reduces the memory footprint by 2×
across 5 state-of-the-art image classification DNNs, with an
average of 1.8× with only 4% performance overhead and
no effect on training accuracy.
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Hernández-Lobato, Gu-Yeon Wei, and David Brooks. Min-
erva: Enabling low-power, highly-accurate deep neural net-
work accelerators. In International Symposium on Computer
Architecture (ISCA), 2016.

[39] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W.
Keckler. vDNN: Virtualized deep neural networks for scal-
able, memory-efficient neural network design. In Interna-
tional Symposium on Microarchitecture (MICRO), 2016.

[40] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool,
and Stephen W. Keckler. Compressing DMA engine: Lever-
aging activation sparsity for training deep neural networks.
In arxiv, 2017.

[41] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning representations by back-propagating er-
rors. 1988.

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and
Fei-Fei Li. Imagenet large scale visual recognition challenge.
In arxiv, 2014.

[43] Frank Seide and Amit Agarwal. CNTK: Microsoft’s open-
source deep-learning toolkit. In International Conference on
Knowledge Discovery and Data Mining (KDD), 2016.

[44] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Math-
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