
Actor-Oriented Database Systems

Philip Bernstein
Microsoft

ICDE 2018
April 19, 2018

Preview

 Most new services are written as stateful middle-tier applications

 These apps do a lot of data management

 But they are poorly served by data management technology

 There are technical reasons for this

 This is a research opportunity!

2

What’s a Middle Tier?

Frontends
Storage

Middle Tier

3

Clients

Stateful Object-Oriented Applications

 Interactive services are built as a stateful, object-oriented middle tier

 Multi-player games, IoT, social networking, mobile, telemetry

 They comprise a large fraction of new app development

 Naturally object-oriented, modeling real-world objects

 Examples of objects

 Gaming: players, games, grid positions, lobbies, player profiles,
leaderboards, in-game money, and weapon caches

 Social: chat rooms, messages, photos, and news items

 IoT: sensors, virtual sensors (flood, break-in), buildings, vehicles, locations

4

Scenario

 Player logs into game console

 Console connects to cloud service, creating Player object

 Player object connects to a Game-Lobby object

 Game-Lobby runs an algorithm to group players into a Game

 Returns a reference to the Game object to all players

5

Stateful Micro-Services

 Many micro-services are stateful middle-tier apps
 Data ingestion – event streams, real-time analytics

 Workflow – manage long-running jobs, e.g., ETL, resource allocation

 Smart contracts – workflows on blockchains

 Example – merge event streams from 100K servers
 Index them, store them in batches, run standing queries

 To scale out, they’re partitioned by keys or key-range
 Stream ID, workflow ID, contract ID

 A partition is identified by a key = object

6

Application Properties

 Objects are active for minutes to days, sometimes forever

 App manages millions of objects, streams, images, and videos, and
huge knowledge graphs.

 App does heavy computation: complex actions, render images,
standing queries, compute over graphs, …

 App does heavy communication: high-bandwidth message streams

7

System Properties

 Service is highly available

 Scale out to large number of servers

 Compute servers must scale out independently of storage servers

 . . . and independently of communication servers

 Geo-distributed for worldwide low-latency access

8

Middle-tier Objects Comprise a Distributed DB

 Many (but not all) objects are persistent

 Player is persistent, Lobby is not

 Active objects are in-memory for fast response

 Latest state is in main memory. Storage might be stale

 Sensor object persists state periodically

9

Actor Systems

 Many of these apps are implemented using actor systems

 Simplifies distributed programming

 Actors are objects that …

 Communicate only via asynchronous message-passing

 Messages are queued in the recipient's mailbox

 No shared-memory state between actors

 Process one message at a time

 No multi-threaded execution inside an actor
10

Orleans Actor Programming Framework

 Orleans is an open-source actor framework in C#
 https://dotnet.github.io/orleans/

 Invented the Virtual Actor model

 Like virtual memory, actors are loaded and activated on demand

 Deactivated after an idle period

 Supports scalability by load-balancing objects across servers

 Supports fault-tolerance by automatically reactivating failed objects

11

Orleans Programming Model

 Actor is fully-encapsulated and single-threaded

 Each class has a key, whose values identify instances

 Game, player, phone, device, scoreboard, input stream, workflow, etc.

 Asynchronous RPC

 Key.Method(params) returns a “task” (i.e., a promise)

 Await Task - blocks the caller until the task completes

 .NET has language support for this (Async-Await)

12

Calling an Actor’s Method

13

Client PlayerA Storage
PlayerKeyA.Move()

Orleans Runtime

Lookup PlayerA’s location
If (PlayerA is active)

{ invoke PlayerA.Move }
Placement

Strategy
else { activate PlayerA on some server S;

invoke PlayerA’s constructor;
invoke PlayerA.Move at S }

Fault Tolerance

 Actor can save state at any
time, e.g., to storage

 Runtime automates
fault-tolerance

 Orleans magic:
A fault-tolerant DHT that
maps actor-ID to server-ID

14

public class Account
{
int balance;

Task Withdraw(int x);
{ if (balance >= x)

{ balance = balance – x;
Save State;
return (1);

else return (0);
}

}

Good news / Bad news

 Good news

 The virtual actor model automates scalability and fault tolerance

 Bad news

 App is responsible for managing its state

 Let’s help them out!

15

Actor-Oriented Database System (AODB)

 Indexes

 Transactions

 Queries

 Streams

 Views

 Triggers

 Replication

 Geo-distribution

16

Frontend
Clients

Transactions

Persistence

Geo-
distribution

Indexing

Actor
Middle-Tier

AODB
Plug-ins

Cloud
Storage

Examples

 Index – Get all players in Paris

 Transaction – Player X buys a kryptonite shield

 Query – Get all players in Paris who are playing Halo with  8 other players

 Stream – Watch player actions, looking for players who might be cheating

 View – the number of active instances of each game

 Trigger – notify a chess player when the other player made a move

17

AODB’s Distinguishing Features

 Developer friendly - Compatible with actor framework’s programming model

 Elastically scales out to hundreds of servers

 Data is in-memory and on cloud storage

 Works with any cloud storage system

 Files, BLOBs, KV store, document (JSON) store, SQL DBMS

18

Been There, Done that

 Object-oriented database

 Persistent programming language

 Object-to-relational mapper

 Application server

 Main memory database

 Graph database

19

Object-Oriented Database

 C++ objects are mapped to persistent storage

 Gemstone, Vbase, ObjectStore, O2, Objectivity,
ONTOS, Versant, …

 ODMG standard

 Target markets: CAD, telecom, scientific apps

 Like AODB, it’s compatible with the OO
programming language

 Unlike AODB, it’s targeted at workstation apps,
all shared state is in a custom storage system

20

Persistent Programming Language

 Annotate some program variables as persistent

 Variation: Persistence by reachability

 Very similar to OODB’s, but driven from a PL viewpoint

 Typically, the app runs in one OS process

 Negligible commercial market

 Examples – PS Algol, Galileo, Argus

21

Object-to-Relational Mapper

 Map OO classes to relational tables

 Translate queries and updates on classes into SQL on tables

 They’re popular, but only target SQL databases, no distributed transactions, …

 Examples – Hibernate, .NET Entity Framework

22

Application Server

 Middle-tier objects communicate with DB’s

 OLTP monitors (1970s & 80s) -> .NET transactions, J2EE (1990s)

 Each class executes as an OS process (not actor-oriented)

 multi-threaded

 synchronous RPC

 Static mapping of classes to servers

 Offers distributed transactions over DBMS’s that support XA interface

 Offers dynamic SQL or an object-to-relational mapper

23

Main Memory Database

 Like AODB, state is in main memory

 Unlike AODB . . .

 Manages records, not objects

 Not integrated with OO programming language

 Doesn’t scale to large number of servers

24

Graph Database

 Nodes are passive data, not active objects

 Could be a storage target for actors

25

Why do it again?

 Different combination of requirements …

 Scalable to large number of servers

 Highly available

 Uses cloud storage

 Storage independence

 Geo-distributed for worldwide low-latency access

26

Scalability Implies …

 Limited ability to co-locate functionality

 Functionality must be parallelizable

 Scale-out is more important than a fast path

27

High Availability Implies …

 Tolerates server failures

 Fast recovery from failure

 Add or remove servers without shutting down

 Best effort to tolerate storage unavailability

28

Storage Independence Implies …

 Works with any cloud storage system

 Works for persisted and non-persisted objects

 Doesn’t require DB-feature-support by the storage system

 Should benefit from DB-feature-support by the storage system

 Copes with latency of cloud storage

29

It’s a Tall Order

 Elastically scale out to hundreds of servers

 Data is in-memory and on cloud storage

 Works with any cloud storage system

 Works for persisted & non-persisted objects

 Limited ability to co-locate functionality

 Tolerates server failures

 Fast recovery from failure

 Functionality is parallelizable

 Scale-out is more important than a fast path

 Add/remove servers without shutting down

 Tolerates storage unavailability

 Doesn’t need built-in storage system support

 Benefits from a storage system’s built-in support

 Copes with latency of cloud storage

30

Let’s Explore Features

 Transactions

 Geo-distribution

 Indexing

 Queries

31

Transactions

 Programming model

 App server model is fine

 Performance challenges

 No shared log

 Cloud storage latency

 Object migrate between servers

 Many/most transactions are distributed

32

public interface IAccountActor
{

[TransactionOption.Required]
Task Withdraw(uint amount);

[TransactionOption.Required]
Task Deposit(uint amount);

[Transaction(TransactionOption.Required)]
Task<uint> GetBalance();

}

Transaction Implementation

33

Transaction
Root Object

Object Object Object

Transaction
Manager

 TM coordinates 2PC

 Objects are participants

Early Lock Release

 Problem: object remains locked until it receives Commit

 When object o receives Prepare, it releases T1’s lock

 If T2 reads/writes o, it takes a “commit dependency” on T1

 TM commits transactions in dependency order

 When T2 terminates, it releases locks, allowing T3 to read/write o. Etc.

 Cascading abort is possible only due to server failure

 When T1 commits, [T2, T3, …] prepare in a batch (= group-commit).

34

Early Lock Release (cont’d)

 Benefits

 Conflicting transactions execute in parallel with 2PC

 Enables group commit without a shared log

 Up to 20x throughput improvement

 Single-object transaction must ask TM to validate its dependency

35

Solution: One TM per Object

 Single-object transactions resolve dependencies locally

 Other benefits

 No central TM bottleneck or single point-of-failure

 Less configuration complexity

 TM’s are naturally geo-distributed, with the objects

36

Geo-Distribution [OOPSLA 2017]

 Extend single-instance invariant world-wide

 Requires a global mutual-exclusion protocol on actor activation

 Multi-master replication

 Programming model – eventually linearizable

37

Versioned Actor

38

Confirmed

State

Tentative State

Update

Global

State

Actual

State

R
e

m
o

te
Lo

ca
l

Application Code

Update

Update

 Updates are specified as functions and
queued locally

 App sees a local state and global state
of each actor

 Can read confirmed state

 Optionally with local updates applied

 Can read global state with local
updates applied (slow)

Versioned Actor

39

Confirmed

State

Update

Global

State

Actual

State

R
e

m
o

te
Lo

ca
l

Application Code

Update

Update

 Updates are applied asynchronously
to the global state

Versioned Actor

40

Confirmed

State

Global

State

Actual

State

R
e

m
o

te
Lo

ca
l

Application Code
 All changes to global state are pushed

to confirmed state

 Updates are removed from queue when
confirmed

Indexing [CIDR 2017]

 Each Orleans class has a
unique key

 Support indexing of other
members

41

public class PlayerProperties
{

public int Rank { get; set; }

[Index]
public string Location { get; set; }

}

public interface IPlayer :
IndexableActor<PlayerProperties>

{
Task Move(Direction d);

Task<string> GetLocation();
}

Indexing Examples

 Ensure every player has a unique email address

 Offer an ad hoc tournament to all Halo players who are on-line

 Identify all players with weapons stashes in a given location

 Survey all players who logged in after 3PM today

42

Index Requirements

 Can index persistent and non-persistent actors

 Leverage actor storage that supports indexing

 Works if storage does not support indexing

 Can index active actors only

 Both hashed and B-tree indexes must scale out

 Plus unique indexes, transactional consistency, fault tolerance, …

43

Queries over Actors

 Extent – all actors of a class, all active actors, explicit collection, and index

 Split execution between active and inactive actors

 Joins and aggregates

 Reward the player with the best score in the last 15 minutes of a Microsoft game

 Materialized views – can use mid-tier caching technology

 Streams – Dynamically reconfigure distributed operators

 Triggers – for reactive applications

44

Summary

 Developers of mid-tier stateful applications need our help

 Whatever database topic interests you, there’s an opportunity to help

45

Bibliography Acknowledgments

 P.A. Bernstein, M. Dashti, T. Kiefer, D. Maier:
Indexing in an Actor-Oriented Database.
CIDR 2017

 P.A. Bernstein, et al.: Geo-distribution of
actor-based services. PACMPL 1 (OOPSLA
2017)

 T. Eldeeb, P. Bernstein, “Transactions for
Distributed Actors in the Cloud”, MSR-TR

 P.A. Bernstein, S Bykov, A. Geller, G. Kliot, J.
Thelin: Orleans: Distributed Virtual Actors
for Programmability and Scalability, MSR-TR

 Sebastian
Burckhardt

 Sergey Bykov

 Natacha Crooks

 Mohammad Dashti

 Tamer Eldeeb

 Jose Faleiro

 Alan Geller

 Tim Kiefer

 Alok Kumbhare

46

 Gabriel Kliot

 David Maier

 Christopher
Meiklejohn

 Muntasir Rahman

 Vivek Shah

 Adrienne Szekeres

 Jorgen Thelin

 Alejandro Tomsic

47

