Actor-Oriented Database Systems

Philip Bernstein
Microsoft

ICDE 2018
April 19, 2018



Preview

Most new services are written as stateful middle-tier applications

These apps do a lot of data management

But they are poorly served by data management technology
There are technical reasons for this

This is a research opportunity!



What’s a Middle Tier?

Clients
®




Stateful Object-Oriented Applications

Interactive services are built as a stateful, object-oriented middle tier
2 Multi-player games, 10T, social networking, mobile, telemetry
2 They comprise a large fraction of new app development

72 Naturally object-oriented, modeling real-world objects

Examples of objects

72 Gaming: players, games, grid positions, lobbies, player profiles,
leaderboards, in-game money, and weapon caches

? Social: chat rooms, messages, photos, and news items
7 loT: sensors, virtual sensors (flood, break-in), buildings, vehicles, locations



Scenario

Player logs into game console
Console connects to cloud service, creating Player object
Player object connects to a Game-Lobby object

Game-Lobby runs an algorithm to group players into a Game
? Returns a reference to the Game object to all players



Stateful Micro-Services

Many micro-services are stateful middle-tier apps

? Dataingestion — event streams, real-time analytics

72 Workflow — manage long-running jobs, e.g., ETL, resource allocation
2 Smart contracts — workflows on blockchains

Example — merge event streams from 100K servers
72 Index them, store them in batches, run standing queries

To scale out, they’re partitioned by keys or key-range
A Stream ID, workflow ID, contract ID

A partition is identified by a key = object



Application Properties

Objects are active for minutes to days, sometimes forever

App manages millions of objects, streams, images, and videos, and
huge knowledge graphs.

App does heavy computation: complex actions, render images,
standing queries, compute over graphes, ...

App does heavy communication: high-bandwidth message streams



System Properties

Service is highly available

Scale out to large number of servers

Compute servers must scale out independently of storage servers
... and independently of communication servers

Geo-distributed for worldwide low-latency access



Middle-tier Objects Comprise a Distributed DB

Many (but not all) objects are persistent
? Player is persistent, Lobby is not

Active objects are in-memory for fast response

Latest state is in main memory. Storage might be stale
? Sensor object persists state periodically



Actor Systems

Many of these apps are implemented using actor systems

72 Simplifies distributed programming

Actors are objects that ...

Communicate only via asynchronous message-passing

2 Messages are queued in the recipient's mailbox
2 No shared-memory state between actors Orleans

Process one message at a time

2 No multi-threaded execution inside an actor
10



Orleans Actor Programming Framework

Orleans is an open-source actor framework in C# 0 Orleans
2 https://dotnet.github.io/orleans/

Invented the Virtual Actor model
? Like virtual memory, actors are loaded and activated on demand

? Deactivated after an idle period
Supports scalability by load-balancing objects across servers

Supports fault-tolerance by automatically reactivating failed objects

11



Orleans Programming Model

Actor is fully-encapsulated and single-threaded

Each class has a key, whose values identify instances

72 Game, player, phone, device, scoreboard, input stream, workflow, etc.

Asynchronous RPC

? Key.Method(params) returnsa “task” (i.e., a promise)
2 Await Task - blocks the caller until the task completes
2 .NET has language support for this (Async-Await)

12



Calling an Actor’s Method

layerKey,.Move()
>

D

VY Orleans Runtime !

Lookup Player,’s location
If (Player, is active)
{invoke Player,.Move }
else {activate Player, on some server S; 1
invoke Player,’s constructor;

Storage

Placement
Strategy

invoke Player,.Move at S }

13



Fault Tolerance

Actor can save state at any
time, e.g., to storage

Runtime automates
fault-tolerance

Orleans magic:
A fault-tolerant DHT that
maps actor-1D to server-ID

public class Account

{

int balance;

Task Withdraw(int x);
{ if (balance »>= x)
{ balance = balance - x;
Save State;
return (1);
else return (90);

}




Good news / Bad news

Good news

? The virtual actor model automates scalability and fault tolerance

Bad news

2 App is responsible for managing its state

Let’s help them out!

15



Actor-Oriented Database System (AODB)

Indexes
Transactions
Queries
Streams
Views
Triggers
Replication

Geo-distribution

Frontend
Clients

I
1 %0
W
j @
v el
Y 2
v
I
Actor
Middle-Tier

Persistence

Transactions

Indexing

Geo-
distribution

AODB
Plug-ins

Cloud
Storage

16



Examples

Index — Get all players in Paris

Transaction — Player X buys a kryptonite shield

Query — Get all players in Paris who are playing Halo with > 8 other players
Stream — Watch player actions, looking for players who might be cheating
View — the number of active instances of each game

Trigger — notify a chess player when the other player made a move

17



AODB’s Distinguishing Features

Developer friendly - Compatible with actor framework’s programming model
Elastically scales out to hundreds of servers
Data is in-memory and on cloud storage

Works with any cloud storage system
? Files, BLOBs, KV store, document (JSON) store, SQL DBMS

18



Been There, Done that

Object-oriented database
Persistent programming language
Object-to-relational mapper
Application server

Main memory database

Graph database

19



Object-Oriented Database

¥

C++ objects are mapped to persistent storage Tllg Object

7 Gemstone, Vbase, ObjectStore, O,, Objectivity, i g Data
ONTOS, Versant, ... ik Standard:

2 ODMG standard

Target markets: CAD, telecom, scientific apps

Like AODB, it’s compatible with the OO
programming language

Unlike AODB, it’s targeted at workstation apps,
all shared state is in a custom storage system

20



Persistent Programming Language

Annotate some program variables as persistent
Variation: Persistence by reachability

Very similar to OODB's, but driven from a PL viewpoint
Typically, the app runs in one OS process

Negligible commercial market

Examples — PS Algol, Galileo, Argus

21



Object-to-Relational Mapper

Map OO classes to relational tables
Translate queries and updates on classes into SQL on tables

They’re popular, but only target SQL databases, no distributed transactions, ...

Examples — Hibernate, .NET Entity Framework

22



Application Server

Middle-tier objects communicate with DB’s
2 OLTP monitors (1970s & 80s) -> .NET transactions, J2EE (1990s)

Each class executes as an OS process (not actor-oriented)
72 multi-threaded
72 synchronous RPC

Static mapping of classes to servers
Offers distributed transactions over DBMS’s that support XA interface

Offers dynamic SQL or an object-to-relational mapper

23



Main Memory Database

Like AODB, state is in main memory

Unlike AODB. ..

Manages records, not objects

Not integrated with OO programming language

Doesn’t scale to large number of servers

24



Graph Database

Nodes are passive data, not active objects

Could be a storage target for actors

25



Why do it again?

Different combination of requirements ...
Scalable to large number of servers
Highly available

Uses cloud storage

Storage independence

Geo-distributed for worldwide low-latency access

26



Scalability Implies ...

Limited ability to co-locate functionality
Functionality must be parallelizable

Scale-out is more important than a fast path

27



High Availability Implies ...

Tolerates server failures
Fast recovery from failure
Add or remove servers without shutting down

Best effort to tolerate storage unavailability

28



Storage Independence Implies ...

Works with any cloud storage system

Works for persisted and non-persisted objects

Doesn’t require DB-feature-support by the storage system
Should benefit from DB-feature-support by the storage system

Copes with latency of cloud storage

29



It’s a Tall Order

Elastically scale out to hundreds of servers
Data is in-memory and on cloud storage
Works with any cloud storage system

Works for persisted & non-persisted objects
Limited ability to co-locate functionality
Tolerates server failures

Fast recovery from failure

Functionality is parallelizable

Scale-out is more important than a fast path
Add/remove servers without shutting down
Tolerates storage unavailability

Doesn’t need built-in storage system support
Benefits from a storage system’s built-in support

Copes with latency of cloud storage



Let’s Explore Features

Transactions
Geo-distribution
Indexing

Queries

31



Transactions

Programming model
2 App server model is fine

Performance challenges

e

N N

No shared log
Cloud storage latency

public interface IAccountActor

{

[TransactionOption.Required]
Task Withdraw(uint amount);

[TransactionOption.Required]
Task Deposit(uint amount);

[Transaction(TransactionOption.Required) ]
Task<uint> GetBalance();

Object migrate between servers
Many/most transactions are distributed

32



Transaction Implementation

Transaction
Manager

Transaction
Root Object

Object Object Object ,
TM coordinates 2PC

— 3 Objects are participants



Early Lock Release

Problem: object remains locked until it receives Commit

When object o receives Prepare, it releases T,’s lock

If T, reads/writes o, it takes a “commit dependency” on T,

2 TM commits transactions in dependency order

When T, terminates, it releases locks, allowing T, to read/write o. Etc.
Cascading abort is possible only due to server failure

When T, commits, [T,, T, ...] prepare in a batch (= group-commit).

34



Early Lock Release (cont'd)

Benefits

? Conflicting transactions execute in parallel with 2PC
? Enables group commit without a shared log

? Up to 20x throughput improvement

Single-object transaction must ask TM to validate its dependency

35



Solution: One TM per Object

Single-object transactions resolve dependencies locally

Other benefits
2 No central TM bottleneck or single point-of-failure
? Less configuration complexity

2 TM’s are naturally geo-distributed, with the objects

36



Geo-Distribution [OOPSLA 2017]

Extend single-instance invariant world-wide
? Requires a global mutual-exclusion protocol on actor activation

Multi-master replication
? Programming model — eventually linearizable

37



Versioned Actor

Application Code

Updates are specified as functions and
Update queued locally

Confirmed Updqfe
State

App sees a local state and global state

Update of each actor

&

<
i

Can read confirmed state
Tentative State 2 Optionally with local updates applied

Actual Can read global state with local
Gs'g:g' s?q‘;: updates applied (slow)

38




Versioned Actor

Application Code

Updates are applied asynchronously

Update to the global state

Conﬁrmed Updq'l'e
State

Upda’re

/

Global Actual
State State




Versioned Actor

Application Code

All changes to global state are pushed
to confirmed state

Confirmed

State Updates are removed from queue when

confirmed

Actual
State




Indexing

[CIDR 2017]

Each Orleans class has a
unique key

Support indexing of other
members

public class PlayerProperties

{
public int Rank { get; set; }

[Index]
public string Location { get; set; }

}

public interface IPlayer :
IndexableActor<PlayerProperties>

{

Task Move(Direction d);

Task<string> GetlLocation();

11




Indexing Examples

Ensure every player has a unique email address
Offer an ad hoc tournament to all Halo players who are on-line
ldentify all players with weapons stashes in a given location

Survey all players who logged in after 3PM today

42



Index Requirements

Can index persistent and non-persistent actors
Leverage actor storage that supports indexing
Works if storage does not support indexing
Can index active actors only

Both hashed and B-tree indexes must scale out

Plus unique indexes, transactional consistency, fault tolerance, ...

43



Queries over Actors

Extent — all actors of a class, all active actors, explicit collection, and index
Split execution between active and inactive actors

Joins and aggregates
72 Reward the player with the best score in the last 15 minutes of a Microsoft game

Materialized views — can use mid-tier caching technology
Streams — Dynamically reconfigure distributed operators

Triggers — for reactive applications

a4



Summary

Developers of mid-tier stateful applications need our help

Whatever database topic interests you, there’s an opportunity to help

45



Bibliography

Acknowledgments

P.A. Bernstein, M. Dashti, T. Kiefer, D. Maier:
Indexing in an Actor-Oriented Database.
CIDR 2017

P.A. Bernstein, et al.: Geo-distribution of
actor-based services. PACMPL 1 (OOPSLA

2017)

T. Eldeeb, P. Bernstein, “Transactions for
Distributed Actors in the Cloud”, MSR-TR

P.A. Bernstein, S Bykov, A. Geller, G. Kliot, J.
Thelin: Orleans: Distributed Virtual Actors
for Programmability and Scalability, MSR-TR

Sebastian
Burckhardt

Sergey Bykov
Natacha Crooks
Mohammad Dashti
Tamer Eldeeb

Jose Faleiro

Alan Geller

Tim Kiefer

Alok Kumbhare

Gabriel Kliot
David Maier

Christopher
Meiklejohn

Muntasir Rahman
Vivek Shah
Adrienne Szekeres
Jorgen Thelin
Alejandro Tomsic



=" Microsoft

© 2014 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarksin the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

47




