
ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION WITH ATTENTION
MODELING

Amit Das∗, Jinyu Li, Rui Zhao, Yifan Gong

Microsoft AI and Research, One Microsoft Way, Redmond, WA 98052
amitdas@illinois.edu, {jinyli, ruzhao, ygong}@microsoft.com

ABSTRACT

In this study, we propose advancing all-neural speech recognition by

directly incorporating attention modeling within the Connectionist

Temporal Classification (CTC) framework. In particular, we derive

new context vectors using time convolution features to model at-

tention as part of the CTC network. To further improve attention

modeling, we utilize content information extracted from a network

representing an implicit language model. Finally, we introduce vec-

tor based attention weights that are applied on context vectors across

both time and their individual components. We evaluate our system

on a 3400 hours Microsoft Cortana voice assistant task and demon-

strate that our proposed model consistently outperforms the baseline

model achieving about 20% relative reduction in word error rates.

Index Terms— end-to-end training, CTC, attention, acoustic

modeling, speech recognition

1. INTRODUCTION

In the last few years, an emerging trend in automatic speech recog-

nition (ASR) research is the study of end-to-end (E2E) systems [1–

10]. An E2E ASR system directly transduces an input sequence of

acoustic features x to an output sequence of probabilities of tokens

(phonemes, characters, words etc) y. This reconciles well with the

notion that ASR is inherently a sequence-to-sequence task mapping

input waveforms to output token sequences. Some widely used con-

temporary E2E approaches for sequence-to-sequence transduction

are: (a) Connectionist Temporal Classification (CTC) [11, 12], (b)

Recurrent Neural Network Encoder-Decoder (RNN-ED) [13–16],

and (c) RNN Transducer [17]. These approaches have been suc-

cessfully applied to large scale ASR [2–6, 9, 18, 19].

Among the three aforementioned E2E methods, CTC enjoys its

training simplicity and is one of the most popular methods used in

the speech community (e.g., [2,3,18,20–26]). To deal with the issue

that the length of the output labels is shorter than the length of the

input speech frames, CTC introduces a special blank label and al-

lows for repetition of labels to force the output and input sequences

to have the same length. CTC outputs are usually dominated by

blank symbols. The outputs corresponding to the non-blank sym-

bols usually occur with spikes in their posteriors. Thus, an easy

way to generate ASR outputs in a CTC network is to concatenate

the tokens corresponding to the posterior spikes and collapse them

into word outputs if needed. Known as greedy decoding, this is a

very attractive feature as there is no involvement of either a language

model (LM) or any complex decoding. In [21], a CTC network with

up to 27 thousand (27k) word outputs was explored. However, its

ASR accuracy is not very appealing, partially due to the high out-of-

vocabulary (OOV) rate as a result of using only around 3k hours of

training data. Later, in [18], it was shown that by using 100k words

∗Work performed during an internship at Microsoft.

as output targets and by training the model with 125k hours of data,

a word-based CTC system, a.k.a. acoustic-to-word CTC, could out-

perform a phoneme-based CTC system. However, accessibility to

more than 100k hours of data is rare. Usually, at most a few thou-

sand hours of data are easily accessible.

A character-based CTC, with significantly fewer targets, can nat-

urally solve the OOV issue as the word output sequence is gener-

ated by collapsing the character output sequence. Because there

is no constraint when generating the character output sequence, a

character-based CTC in theory can generate any word. However,

this is also a drawback of the character-based CTC because it can

generate any ill-formed word. As a result, a character-based CTC

without any LM and complex decoding usually results in very high

word error rates (WER). For example, Google reported around 50%

WER with a character-based CTC on voice search tasks even with

12.5k hours of training data [5].

The inferior performance of a CTC system stems from two mod-

eling issues. First, CTC relies only on the hidden feature vector at

the current time to make predictions. This is the hard alignment

problem. Second, CTC imposes the conditional independence con-

straint that output predictions are independent given the entire input

sequence which is not true for ASR. When using larger units such as

words as output units, these two issues can be circumvented to some

extent. However, when using smaller units such as characters, these

two issues become prominent.

In this study, we focus on reducing the WER of the character-

based CTC by addressing its modeling issues. This is very important

to us as we have shown that the OOV issue in a word-based CTC

can be solved by using a shared hidden layer hybrid CTC with both

words and characters as output units [26]. Therefore, a high accuracy

character-based CTC will benefit our hybrid CTC work in [26].

The basic idea for improving CTC is to blend some concepts

from RNN-ED into CTC modeling. In the past, several attempts

have been made to improve RNN-ED by using CTC as an auxil-

iary task in a multitask learning (MTL) framework, either at the top

layer [27, 28] or at the intermediate encoder layer [29]. Our mo-

tivation in this work is to address the hard alignment problem of

CTC, as outlined earlier, by modeling attention directly within the

CTC framework. This differs from previous approaches where at-

tention and CTC models were part of separate sub-networks in an

MTL framework. To this end, we propose the following key ideas in

this paper. (a) First, we derive context vectors using time convolution

features (Sec 3.1) and apply attention weights on these context vec-

tors (Sec 3.2). This makes it possible for CTC to be trained using soft

alignments instead of hard. (b) Second, to improve attention mod-

eling, we incorporate an implicit language model (Sec 3.3) during

CTC training. (c) Finally, we extend our attention modeling further

by introducing component attention (Sec 3.4) where context vectors

are weighted across both time and their individual components.

2. END-TO-END SPEECH RECOGNITION

An E2E ASR system models the posterior distribution p(y|x) by

transducing an input sequence of acoustic feature vectors to an out-

put sequence of vectors of posterior probabilities of tokens. More

specifically, for an input sequence of feature vectors x = (x1, · · · , xT)

of length T with xt ∈ R
m, an E2E ASR system transduces the in-

put sequence to an intermediate sequence of hidden feature vectors

h = (h1, · · · ,hL) of length L with hl ∈ R
n. The sequence h under-

goes another transduction resulting in an output sequence of vectors

of posterior probabilities p(y|x) where y = (y1, · · · , yU) of length U

with yu ∈ L
K , L being the label set, such that

∑K
k=1 p(yu(k)|x) = 1.

Here, K = |L| is the cardinality of the label set L. Usually U ≤ T in

E2E systems.

2.1. Connectionist Temporal Classification (CTC)

A CTC network uses an RNN and the CTC error criterion [11, 12]

which directly optimizes the prediction of a transcription sequence.

Since RNN operates at the frame level, the lengths of the input se-

quence x and the output sequence y must be the same, i.e., T = L =

U. To achieve this, CTC adds a blank symbol as an additional la-

bel to the label set L and allows repetition of labels or blank across

frames. Since the RNN generates a lattice of posteriors p(y|x), it

undergoes additional post-processing steps to produce another hu-

man readable sequence (a transcription). More specifically, each

path through the lattice p(y|x) is a sequence of labels at the frame

level and is known as the CTC path. Denoting any CTC path as π of

length T and the label of that path at time t as πt, we have the path

probability of π as,

p(π|x)
CI
=

T
∏

t=1

p(πt |x), (1)

where the equality is based on the conditional independence assump-

tion, i.e., (πt y π,t)|x. Due to this constraint, CTC does not model

inter-label dependencies. Therefore, during decoding it relies on ex-

ternal language models to achieve good ASR accuracy. More details

about CTC training are covered in [11, 12].

2.2. RNN Encoder-Decoder (RNN-ED)

An RNN-ED [13–16] uses two distinct networks - an RNN encoder

network that transforms x into h and an RNN decoder network that

transforms h into y. Using these, an RNN-ED models p(y|x) as,

p(y|x) =

U
∏

u=1

p(yu|y1:u−1, cu), (2)

where cu is the context vector at time u and is a function of x. There

are two key differences between CTC and RNN-ED. First, p(y|x)

in (2) is generated using a product of ordered conditionals. Thus,

RNN-ED is not impeded by the conditional independence constraint

of (1). Second, the lengths of the input and output sequences are

allowed to differ (i.e., T = L > U). The decoder output yu at time

u is dependent on cu which is a weighted sum of all its inputs, i.e.,

ht, t = 1, · · · ,T . On the contrary, CTC generates yt using only ht.

The decoder network of RNN-ED has three components: a

multinomial distribution generator (3), an RNN decoder (4), and an

attention network (5)-(10) as follows:

p(yu|y1:u−1, cu) = Generate(yu−1, su, cu), (3)

su = Recurrent(su−1, yu−1, cu), (4)

cu = Annotate(αu,h) =

T
∑

t=1

αu,tht, (5)

αu = Attend(su−1,αu−1,h). (6)

Here, ht, cu ∈ R
n and αu ∈ U

T , where U = [0, 1], such that
∑

t αu,t =

1. Also, for simplicity assume su ∈ R
n. Generate(.) is a feedforward

network with a softmax operation generating the ordered conditional

p(yu|y1:u−1, cu) . Recurrent(.) is an RNN decoder operating on the

output time axis indexed by u and has hidden state su. Annotate(.)

computes the context vector cu (also called the soft alignment) us-

ing the attention probability vector αu and the hidden sequence h.

Attend(.) computes the attention weight αu,t using a single layer

feedforward network as,

eu,t = Score(su−1,αu−1,ht), t = 1, · · · ,T (7)

αu,t =
exp(eu,t)

∑T
t′=1 exp(eu,t′)

, (8)

where eu,t ∈ R. Score(.) can either be content-based attention or

hybrid-based attention. The latter encodes both content (su−1) and

location (αu−1) information. Score(.) is computed using,

eu,t =















vT tanh (Usu−1 +Wht + b), (content)

vT tanh (Usu−1 +Wht + Vfu,t + b), (hybrid)
(9)

where, fu,t = F ∗αu−1. (10)

The operation ∗ denotes convolution. Attention parameters U,W,V,

F,b, v are learned while training RNN-ED.

3. CTC WITH ATTENTION

In this section, we outline various steps required to model attention

directly within CTC. An example of the proposed CTC attention net-

work is shown in Figure 1. Since our network is basically a CTC

network, the input and output sequences are of the same length (i.e.,

T = U). However, we will use the indices t and u to denote the

time step for input and output sequences respectively. This is only to

maintain notational consistency with the equations in RNN-ED. It is

understood that every input frame xt generates output yt = yu.

3.1. Time Convolution (TC) Features

Consider a rank-3 tensor W′ ∈ Rn1×n2×C . For simplicity, assume

n1 = n2 = n where n is the dimension of the hidden feature ht. Our

attention model considers a small subsequence of h rather than the

entire sequence. This subsequence, (hu−τ, · · · ,hu, · · · ,hu+τ), will be

referred to as the attention window. Its length is C and it is centered

around the current time u. Let τ represent the length of the window

on either side of u. Thus, C = 2τ + 1. Then cu can be computed

using,

cu =W′ ∗ h =

u+τ
∑

t=u−τ

W′
u−tht

∆
=

u+τ
∑

t=u−τ

gt = γ

u+τ
∑

t=u−τ

αu,tgt. (11)

Here, gt ∈ R
n represents the f iltered signal at time t. The last step

(11) holds when αu,t =
1
C

and γ = C. Since (11) is similar to (5)

in structure, cu represents a special case context vector with uniform

attention weights αu,t =
1
C

, t ∈ [u − τ, u + τ]. Also, cu is a result of

convolving features h with W′ in time. Thus, cu represents a time

convolution feature. This is illustrated in Figure 1 for the case of

τ = 1 (after ignoring the Attend block and letting αu,t =
1
C

).

3.2. Content Attention (CA) and Hybrid Attention (HA)

To incorporate non-uniform attention in (11), we need to compute

a non-uniform αu,t for each t ∈ [u − τ, u + τ] using the attention

network in (6). However, since there is no explicit decoder like (4)

Fig. 1: An example of a CTC Attention network with an attention window of size C = 3 (i.e., τ = 1).

in CTC, there is no decoder state su. Therefore, we use zu instead of

su. The term zu ∈ R
K is the logit to the softmax and is given by,

zu =Wsoftcu + bsoft,

yu = Softmax(zu), (12)

where Wsoft ∈ R
K×n
,bsoft ∈ R

K . Thus, (12) is similar to the Gen-

erate(.) function in (3) but lacks the dependency on yu−1 and su.

Consequently, the Attend(.) function in (6) becomes,

αu = Attend(zu−1,αu−1, g), (13)

where h in (6) is replaced with g = (gu−τ, · · · , gu+τ). Next, the scor-

ing function Score(.) in (7) is modified by replacing the raw signal ht

with the filtered signal gt. Thus, the new Score(.) function becomes,

eu,t = Score(zu−1,αu−1, gt), (14)

=















vT tanh(Uzu−1 +Wgt + b), (content)

vT tanh(Uzu−1 +Wgt + Vfu,t + b) (hybrid)
(15)

with fu,t a function of αu−1 through (10). The content and location

information are encoded in zu−1 and αu−1 respectively. The role of W

in (15) is to project gt for each t ∈ [u−τ, u+τ] to a common subspace.

Score normalization of (14) can be achieved using (8) to generate

non-uniform αu,t for t ∈ [u − τ, u + τ]. Now, αu can be plugged into

(11), along with g to generate the context vector cu. This completes

the attention network. We found that excluding the scale factor γ

in (11), even for non-uniform attention, was detrimental to the final

performance. Thus, we continue to use γ = C.

3.3. Implicit Language Model (LM)

The performance of the attention model can be improved further by

providing more reliable content information from the previous time

step. This is possible by introducing another recurrent network that

can utilize content from several time steps in the past. This network,

in essence, would learn an implicit LM. In particular, we feed zLM
u−1

(hidden state of the LM network) instead of zu−1 to the Attend(.)

function in (13). To build the LM network, we follow an architecture

similar to RNN-LM [30]. As illustrated in the LM block of Figure 1,

the input to the network is computed by stacking the previous output

zu−1 with the context vector cu−1 and feeding it to a recurrent function

H(.). This is represented as,

zLM
u−1 = H(xu−1, z

LM
u−2), xu−1 =

[

zu−1

cu−1

]

, (16)

αu = Attend(zLM
u−1,αu−1, g). (17)

We model H(.) using a long short-term memory (LSTM) unit [31]

with n memory cells and input and output dimensions set to K + n

(xu−1 ∈ R
K+n) and n (zLM

u−1
∈ Rn) respectively. One problem with zLM

u−1

is that it encodes the content of a pseudo LM, rather than a true LM,

since CTC outputs are interspersed with blank symbols by design.

Another problem is that zLM
u−1

is a real-valued vector instead of a one-

hot vector. Hence, this LM is an implicit LM rather than an explicit

or a true LM.

3.4. Component Attention (COMA)

In the previous sections, αu,t ∈ U is a scalar term weighting the con-

tribution of the vector gt ∈ R
n to generate the output yu through

(11) and (12) . This means all n components of the vector gt are

weighted by the same scalar αu,t. In this section, we consider weight-

ing each component of gt distinctively. Therefore, we need a vector

weight αu,t ∈ U
n instead of the scalar weight αu,t ∈ U for each

t ∈ [u − τ, u + τ]. The vector αu,t is generated by first computing an

n-dimensional score eu,t for each t. This is easily achieved using the

Score(.) function in (15) but without taking the inner product with

v. For example, in the case of hybrid, the scoring function becomes,

eu,t = tanh(Uzu−1 +Wgt + Vfu,t + b). (18)

Now, we have C column vectors [eu,u−τ, · · · , eu,u+τ] where each eu,t ∈

(−1, 1)n. Let eu,t, j ∈ (−1, 1) be the jth component of the vector eu,t .

To compute αu,t, j from eu,t, j , we normalize eu,t, j across t keeping j

fixed. Thus, αu,t, j is computed as,

αu,t, j =
exp(eu,t, j)

∑u+τ
t′=u−τ exp(eu,t′, j)

, j = 1, · · · , n. (19)

Here, αu,t, j can be interpreted as the amount of contribution from

gt(j) in computing cu(j). Now, from (19), we know vectors αu,t for

each t ∈ [u − τ, u + τ]. Under the COMA formulation, the context

Table 1: WERs of Vanilla CTC and CTC Attention models for τ =

4 (C = 9) trained with unidirectional 5-layer LSTM and 28-character

set. Relative WER improvements are in parentheses.

E2E Model WER (%)

Vanilla CTC [11] 29.60 (0.00)

CTC Attention

TC (Sec 3.1) 27.36 (07.56)

+CA (Sec 3.2) 25.41 (14.16)

+HA (Sec 3.2) 25.62 (13.45)

+LM (Sec 3.3) 24.74 (16.42)

+COMA (Sec 3.4) 24.05 (18.75)

vector cu can be computed using,

cu = Annotate(αu, g, γ) = γ

u+τ
∑

t=u−τ

αu,t ⊙ gt, (20)

where ⊙ is the Hadamard product.

Note that as extensions of CTC, both RNN-T [17, 19] and RNN

aligner [7] either change the objective function or the training pro-

cess to relax the frame independence assumption of CTC. The pro-

posed attention CTC is another solution by working on hidden layer

representation with more context information without changing the

CTC objective function and training process.

4. EXPERIMENTS

The proposed methods were evaluated using transcribed data col-

lected from Microsoft’s Cortana voice assistant system. The train-

ing set consists of about 3.3 million short utterances (∼ 3400 hours)

in US-English. The test set consists of about 5600 utterances (∼ 6

hours). All CTC models were trained on top of either uni-directional

or bi-directional 5-layer LSTMs. The uni-directional LSTM has

1024 memory cells while the bi-directional one has 512 memory

cells in each direction (therefore still 1024 output dimensions when

combining outputs from both directions). Then they are linearly pro-

jected to 512 dimensions. The base feature vector computed every

10 ms frame is a 80-dimensional vector containing log filterbank en-

ergies. Eight frames of base features were stacked together (hence,

m = 80 × 8 = 640) as the input to the uni-directional CTC, while

three frames were stacked together (m = 240) for the bi-directional

CTC. The skip size for both uni- and bi-directional CTC was three

frames as in [21]. The dimension n of vectors ht, gt, cu was set to

512. Character-based CTC was used in all our experiments. For de-

coding, we use the greedy decoding procedure (no complex decoder

or external LM). Thus, our system is a pure all-neural system.

4.1. Unidirectional CTC with 28-character set

In the first set of experiments, the vanilla CTC [11] and the proposed

CTC models were evaluated with a unidirectional 5-layer LSTM.

The output layer has 28 output nodes (hence, K = 28) correspond-

ing to a 28-character set (26 letters ‘a’-‘z’ + space + blank). τ was

empirically set to 4, which means the context window size (C) for

attention was 9. The results are tabulated in Table 1. The top row

summarizes the WER for vanilla CTC. All subsequent rows under

“CTC Attention” summarize the WER for the proposed CTC mod-

els when attention modeling capabilities were gradually added in a

stage-wise fashion. The best CTC Attention model is in the last row

and it outperforms the vanilla CTC model by 18.75% relative. There

is a slight increase in WER when adding HA on top of CA. In gen-

eral, for the other experiments, we find that adding HA is beneficial

although the gains are marginal compared to all the other enhance-

ments (CA, LM, COMA). Benefits of location based attention could

become more pronounced when attention spans over very large con-

texts [15].

Table 2: WERs of Vanilla CTC and CTC Attention models for τ =

4 (C = 9) trained with bidirectional 5-layer LSTM and 28-character

set. Relative WER improvements are in parentheses.

E2E Model WER (%)

Vanilla CTC [11] 26.36 (0.00)

CTC Attention

TC (Sec 3.1) 25.21 (04.36)

+CA (Sec 3.2) 22.73 (13.77)

+HA (Sec 3.2) 22.52 (14.57)

+LM (Sec 3.3) 21.69 (17.72)

+COMA (Sec 3.4) 20.81 (21.06)

Table 3: WERs of Vanilla CTC and CTC Attention models for τ =

4 (C = 9) trained with bidirectional 5-layer LSTM and 83-character

set. Relative WER improvements are in parentheses.

E2E Model WER (%)

Vanilla CTC [11] 23.29 (0.00)

CTC Attention

TC (Sec 3.1) 22.30 (04.25)

+CA (Sec 3.2) 21.34 (08.37)

+HA (Sec 3.2) 20.81 (10.65)

+LM (Sec 3.3) 19.98 (14.21)

+COMA (Sec 3.4) 18.49 (20.61)

4.2. Bidirectional CTC with 28-character set

In the next set of experiments, the baseline and proposed CTC mod-

els were evaluated with a bidirectional 5-layer LSTM with τ = 4

using the 28-character set. Otherwise, we followed the same train-

ing regime as in Section 4.1. The results are tabulated in Table 2.

Similar to the unidirectional case, the best CTC Attention model

outperforms vanilla CTC by about 21.06% relative. This shows that

even a strong baseline like bidirectional CTC does not undermine

the efficacy of the proposed CTC Attention models.

4.3. Bidirectional CTC with 83-character set

In the final set of experiments, in addition to the bidirectional LSTM,

we construct a new character set [23] by adding new characters on

top of the 28-character set. These additional characters include cap-

ital letters used in the word-initial position, double-letter units rep-

resenting repeated characters like ll, apostrophes followed by let-

ters such as ‘de, ‘r etc. Readers may refer [23] for more details.

Altogether such a large unit inventory has 83 characters, and we

refer to it as the 83-character set. The results for this experiment

are tabulated in Table 3. Again, CTC Attention models consistently

outperform vanilla CTC with the best relative improvement close to

20.61%. This shows that the proposed CTC attention network can

achieve similar improvements, no matter whether the vanilla CTC

is built with advanced modeling capabilities (from uni-directional to

bi-directional) or different sets of character units (28 vs. 83 units).

5. CONCLUSIONS

In this study, we proposed advancing CTC by directly incorporat-

ing attention modeling into the CTC framework. We accomplished

this by using time convolution features, non-uniform attention, im-

plicit language modeling, and component attention. Our experi-

ments demonstrated that CTC Attention consistently outperformed

vanilla CTC by around 20% relative improvement in WER, no mat-

ter whether the vanilla CTC is built with advanced modeling capabil-

ities or different sets of character units. As has been reported in [32],

the proposed method can also boost the end-to-end acoustic-to-word

CTC model to achieve much better WER than the traditional context-

dependent phoneme CTC model decoded with a very large-sized lan-

guage model.

6. REFERENCES

[1] D. Yu and J. Li, “Recent Progresses in Deep Learning Based

Acoustic Models,” IEEE/CAA J. of Autom. Sinica., vol. 4, no.

3, pp. 399–412, July 2017.

[2] H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beau-

fays, and J. Schalkwyk, “Learning Acoustic Frame Labeling

for Speech Recognition with Recurrent Neural Networks,” in

Proc. ICASSP. IEEE, 2015, pp. 4280–4284.

[3] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-

End Speech Recognition using Deep RNN Models and WFST-

based Decoding,” in Proc. ASRU. IEEE, 2015, pp. 167–174.

[4] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, Attend

and Spell,” CoRR, vol. abs/1508.01211, 2015.

[5] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, and

N. Jaitly, “A Comparison of Sequence-to-Sequence Models for

Speech Recognition,” in Proc. Interspeech, 2017, pp. 939–943.

[6] E. Battenberg, J. Chen, R. Child, A. Coates, Y. Gaur, Y. Li,

H. Liu, S. Satheesh, D. Seetapun, A. Sriram, et al., “Explor-

ing Neural Transducers for End-to-End Speech Recognition,”

arXiv preprint arXiv:1707.07413, 2017.

[7] Hasim Sak, Matt Shannon, Kanishka Rao, and Françoise Bea-

ufays, “Recurrent neural aligner: An encoder-decoder neural

network model for sequence to sequence mapping,” in Proc. of

Interspeech, 2017.

[8] Hossein Hadian, Hossein Sameti, Daniel Povey, and Sanjeev

Khudanpur, “Towards Discriminatively-trained HMM-based

End-to-end models for Automatic Speech Recognition,” in

submitted to ICASSP, 2018.

[9] Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prab-

havalkar, Patrick Nguyen, Zhifeng Chen, Anjuli Kannan, Ron J

Weiss, Kanishka Rao, Katya Gonina, et al., “State-of-the-

art speech recognition with sequence-to-sequence models,” in

submitted to ICASSP, 2018.

[10] Tara N Sainath, Chung-Cheng Chiu, Rohit Prabhavalkar, An-

juli Kannan, Yonghui Wu, Patrick Nguyen, and Zhifeng Chen,

“Improving the Performance of Online Neural Transducer

Models,” arXiv preprint arXiv:1712.01807, 2017.

[11] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,

“Connectionist Temporal Classification: Labelling Unseg-

mented Sequence Data with Recurrent Neural Networks,” in

Proc. Int. Conf. in Learning Representations, 2006, pp. 369–

376.

[12] A. Graves and N. Jaitley, “Towards End-to-End Speech Recog-

nition with Recurrent Neural Networks,” in Proc. of Machine

Learning Research, 2014, pp. 1764–1772.

[13] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio, “Learning Phrase

Representations using RNN Encoder-Decoder for Statistical

Machine Translation,” in Proc. Empirical Methods in Natu-

ral Language Processing, 2014.

[14] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Trans-

lation by Jointly Learning to Align and Translate,” in ICLR,

2015.

[15] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brake, and Y. Ben-

gio, “End-to-End Attention-Based Large Vocabulary Speech

Recognition,” CoRR, vol. abs/1508.04395, 2015.

[16] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-

gio, “Attention-Based Models for Speech Recognition,” in

Conf. on Neural Information Processing Systems, 2015.

[17] A. Graves, “Sequence Transduction with Recurrent Neural

Networks,” CoRR, vol. abs/1211.3711, 2012.

[18] H. Soltau, H. Liao, and H. Sak, “Neural Speech Recognizer:

Acoustic-to-word LSTM Model for Large Vocabulary Speech

Recognition,” arXiv preprint arXiv:1610.09975, 2016.

[19] Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar, “Exploring

architectures, data and units for streaming end-to-end speech

recognition with RNN-transducer,” in Proc. ASRU, 2017.

[20] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,

E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates,

and A. Y. Ng, “Deep Speech: Scaling up End-to-End Speech

Recognition,” CoRR, vol. abs/1412.5567, 2014.

[21] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and Ac-

curate Recurrent Neural Network Acoustic Models for Speech

Recognition,” in Proc. Interspeech, 2015.

[22] Naoyuki Kanda, Xugang Lu, and Hisashi Kawai, “Maximum

a posteriori Based Decoding for CTC Acoustic Models.,” in

Proc. Interspeech, 2016, pp. 1868–1872.

[23] G. Zweig, C. Yu, J. Droppo, and A. Stolcke, “Advances in

All-Neural Speech Recognition,” in Proc. ICASSP, 2017, pp.

4805–4809.

[24] H. Liu, Z. Zhu, X. Li, and S. Satheesh, “Gram-CTC: Auto-

matic Unit Selection and Target Decomposition for Sequence

Labelling,” arXiv preprint arXiv:1703.00096, 2017.

[25] K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, and

D. Nahamoo, “Direct Acoustics-to-Word Models for En-

glish Conversational Speech Recognition,” arXiv preprint

arXiv:1703.07754, 2017.

[26] J. Li, G. Ye, R. Zhao, J. Droppo, and Y. Gong, “Acoustic-to-

Word Model Without OOV,” in Proc. ASRU. IEEE, 2017.

[27] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-Attention Based

End-to-End Speech Recognition Using Multi-Task Learning,”

in Proc. ICASSP, 2017, pp. 4835–4839.

[28] T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Advances

in Joint CTC-Attention based End-to-End Speech Recognition

with a Deep CNN Encoder and RNN-LM,” arXiv preprint

arXiv:1706.02737, 2017.

[29] S. Toshniwal, H. Tang, L. Liu, and K. Livescu, “Multi-

task Learning with Low-Level Auxiliary Tasks for Encoder-

Decoder Based Speech Recognition,” in Proc. Interspeech,

2017, pp. 3532–3536.

[30] T. Mikolov, M. Karafiát, L. Burget, J. C̆ernocký, and S. Khu-

danpur, “Recurrent Neural Networks Based Language Model,”

in Proc. Interspeech, 2010, pp. 1045–1048.

[31] S. Hochreiter and J. Schmidhuber, “Long Short-Term Mem-

ory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[32] J. Li, G. Ye, A. Das, R. Zhao, and Y. Gong, “Advancing

Acoustic-to-Word CTC Model,” in Proc. ICASSP, 2018.

