=@ Microsoft

Roadmap Acknowledgments

Fil Alleva

* Task and history Jasha Droppo

 System overview and results Xuedong Huang
« Human versus machine Mike Seltzer
* Cognitive Toolkit (CNTK) ngfeng-wu
Wayne Xiong
e Summary and outlook Dong Yu
Geoff Zweig

Microsoft
Cognitive
Toolkit

Introduction:
Task and History

The Human Parity Experiment

 Conversational telephone speech has been a benchmark in the
research community for 20 years

 Focus here: strangers talking to each other via telephone, given a topic
« Known as the “"Switchboard” task in speech community

« Can we achieve human-level performance?

* Top-level tasks:
« Measure human performance
* Build the best possible recognition system
« Compare and analyze

Microsoft
Cognitive
Toolkit

30 Years of Speech Recognition Benchmarks

For many years, DARPA drove the field by defining publicbenchmark tasks

DARPA Speech Recognition Benchmark Tests
Read and planned speech:

100% :
Switchboard
Con i 1 RM
Read o
Speech o-.mnandarin
wsJ Switchbd 0 ATIS

w B > “~ cellular arabic
= Spontaneous : roagcas Tt g
< e P 20k Varied gpedchs” .
g \ Speech Microph%ne pe Trein switchboard WSJ
2 \ ATIS

0 i 1
©10% (—+ - ..
o \ 1k .\N""SV Conversational Telephone Speech (CTS):
)
; \

Switchboard (SWB)
R .
Madrsein it (strangers, on-topic)
Courtesy NIST 1999 DARPA
HUB-4 Report, Pallett et al. Call[Home (CH) :
1% & new updates from DARPA (friends & family, unconstrained)

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Microsoft
Cognitive
Toolkit

History of Human Error Estimates for SWB

Lippman (1997). 4%

» based on “personal communication” with NIST, no experimental data cited

LDC LREC paper (2010): 4.1-4.5%

» Measured on a different dataset (but similar to our NIST eval set, SWB portion)

Microsoft (2016): 5.9%

» Transcribers were blind to experiment
« 2-pass transcription, isolated utterances (no “transcriber adaptation”)

IBM (2017): 5.1%

« Using multiple independent transcriptions, picked best transcriber
* Vendor was involved in experiment and aware of NIST transcription conventions

Note: Human error will vary depending on
* Level of effort (e.g., multiple transcribers)
« Amount of context supplied (listening to short snippets vs. entire conversation)

Microsoft
Cognitive
Toolkit

Recent ASR Results on Switchboard

Grow | 2000SWOWER INotes |Reeene

Microsoft 16.1% DNN applied to LVCSR for the first time Seide et al, 2011
Microsoft 9.9% LSTM applied for the first time A.-R. Mohammed et al, IEEE ASRU
2015
IBM 6.6% Neural Networks and System Combination Saon et al., Interspeech 2016
Microsoft 5.8% First claim of "human parity" Xiong et al., arXiv 2016,
IEEE Trans. SALP 2017
IBM 5.5% Revised view of "human parity" Saon et al., Interspeech 2017
Capio 5.3% Han et al., Interspeech 2017
Microsoft 5.1% Current Microsoft research system Xiong et al., MSR-TR-2017-39,
ICASSP 2018

Microsoft
Cognitive o i
Toolkit m Microsoft

System Overview
and Results

System Overview

* Hybrid HMM/deep neural net architecture

» Multiple acoustic model types
« Different architectures (convolutional and recurrent)
» Different acoustic model unit clusterings

* Multiple language models
* All based on LSTM recurrent networks
e Different input encodings
» Forward and backward running

* Model combination at multiple levels

For details, see our upcoming paper in ICASSP-2018

Microsoft
Cognitive
Toolkit

Data used

* Acoustic training: 2000 hours of conversational telephone data

« Language model training:
« Conversational telephone transcripts
» Web data collected to be conversational in style
 Broadcast news transcripts

e Test on NIST 2000 SWB+CH evaluation set

* Note: data chosen to be compatible with past practice
* NOT using proprietary sources

Microsoft
Cognitive
Toolkit

Acoustic Modeling Framework: Hybrid HMM/DNN

" Transition Probabilities

HMM
CallHome | Switchboard
DNN 21.9% 13.4%

B ~— Observation 15t pass decoding

T ‘vu Probabilities
B ;

DNN Record performance in 2011 [Seide et al.]
htl)

l W, , .

Hybrid HMM/NN approach still standard

,_J_h But DNN model now obsolete (!)

e = {f]' é()bservatlon Poor spatial/temporal invariance

: >
.}“, ----6 —inn® 4 od S

Microsoft
Cognitive
Toolkit

Acoustic Modeling: Convolutional Nets

224 w224 x 3 224 x 224 x OGd

Adapted from image processing
Robust to temporal and
frequency shifts

112 % 128

.-.-'
D6 56 = 206
:?/ 28 x 2B 512 TxTwhl2

;[kL= 212 | 1% 1x4096 1% 1% 1000

@ convolution4 KellS

A max pooling

fully connected+Hel.l

| softmax

Microsoft
Cognitive
Toolkit

Acoustic Modeling: ResNet

Add a non-linear offset to linear transformation of features
Similar to fMPE in Povey et al., 2005
See also Ghahremani & Droppo, 2016

weight layer
JF()() l{relu

weight layer

X

CallHome | Switchboard identity
DNN 21.9% 13.4%

ResNet | 173% 11% F(x) +x

15t pass decoding

[He et al., 2015]

Microsoft
Cognitive
Toolkit

Acoustic Modeling: LACE CNN

r
CallHome | Switchboard
13.4%

*
‘r: * bn2
DNN 21.9%
17.3% 11.1%
10.4%

Softmax
? ;r Batch Normalization
Convalution Element-wise Matrix !j
ey I el Y Q. S
*) / * FrJ Plus nl ReSNet
i : o LACE | 169%
JumpBlock .’f JumpNet -’r - .
/ [| koo some homnl 1% pass decoding
! 7 !f Width/Height)
: F
RelU . . .
CNNs with batch normalization,
Resnet jumps, and attention masks

[Yu et al., 2016]

t :
!
JumpNet
hY
hY
* cl

JumpBlock .
\
\\
1 \
\ -
N Convolution
[Keep Same Channel/

t \
N\
AN Convolution
JumpBlock (Increase Channel +
Reduce Width/Height) Width/Height)
block input I
X

Cognitive
Toolkit

15

Acoustic Modeling: Bidirectional LSTMs

Call[Home | Switchboard

outputs T e v Yt e DNN | 21.9% 13.4%
ResNet | 17.3% 11.1%
LACE 16.9% 10.4%
Backward Layer @ e @ BLSTM | 17.3% 10.3%
, , Stable form of recurrent neural net
Forward Layer @ o @ > Robust to temporal shifts
[Hochreiter & Schmidhuber, 1997,
Graves & Schmidhuber, 2005; Sak et al., 2014]
Inputs o Ty T Titl v os

Microsoft
Cognitive
Toolkit

Acoustic Modeling: CNN-BLSTM

* Combination of convolutional and recurrent net model
[Sainath et al., 2015]

* Three convolutional layers

* Six BLSTM recurrent layers

Microsoft
Cognitive
Toolkit

Language Modeling: Multiple LSTM variants

» Decoder uses a word 4-gram model

* N-best hypotheses are rescored with multiple LSTM recurrent
network language models

« LSTMs differ by
* Direction: forward/backward running
« Encoding: word one-hot, word letter trigram, character one-hot

« Scope: utterance-level / session-level

Microsoft
Cognitive
Toolkit

Session-level Language Modeling

* Predict next word from full conversation history, not just one

utterance:
]

Speaker B —— Y ——

Speaker A

LSTM language model PerpIeX|ty

Utterance-level LSTM (standard) 44.6
+ session word history 37.0
+ speaker change history 35.5

+ speaker overlap history 35.0

Microsoft
Cognitive
Toolkit

Acoustic model combination

Step O: create 4 different versions of each acoustic model by
clustering phonetic model units (senones) differently

Step 1: combine different models for same senone set at the
frame level (posterior probability averaging)

Step 2: after LM rescoring, combine different senone systems at
the word level (confusion network combination)

Microsoft
Cognitive
Toolkit

Results

Word error rates (WER)
e Dhenie s v | o

BLSTM 12.1
2 BLSTM 6.3 12.1
Frame-level
3 BLSTM 6.3 12.0 combination
4 BLSTM 6.3 12.8
1 BLSTM + Resnet + LACE + CNN-BLSTM 5.4 10.2
2 BLSTM + Resnet + LACE + CNN-BLSTM 5.4 10.2
3 BLSTM + Resnet + LACE + CNN-BLSTM 5.6 10.2 Word-level
4 BLSTM + Resnet + LACE + CNN-BLSTM 5.5 10.3 combination
1+2+3+4 BLSTM + Resnet + LACE + CNN-BLSTM 5.2 9.8
+ Confusion network rescoring 5.1 9.8

Microsoft
Cognitive
Toolkit

Human vs. Machine

22

'

Microsoft Human Error Estimate (2015)

» Skype Translator has a weekly
transcription contract
 For quality control, training, etc.

- Initial transcription followed by a
second checking pass

« Two transcribers on each speech
excerpt

* One week, we added NIST 2000
CTS evaluation data to the
pipeline

» Speech was pre-segmented as in
NIST evaluation

Microsoft
Cognitive
Toolkit

5 Microsoft

23

'

Human Error Estimate: Results

 Applied NIST scoring protocol (same as ASR)
 Switchboard: 5.9% error rate

* CallHome: 11.3% error rate
* SWB in the 4.1% - 9.6% range expected based on NIST study

» CH is difficult for both people and machines

* Machine error about 2x higher
 High ASR error not just because of mismatched conditions

New questions:
* Are human and machine errors correlated?
* Do they make the same type of errors?
 Can humans tell the difference?

Microsoft
Cognitive
Toolkit

24

SWE Machine WER vs. Human WER (corr: 0.65157)

Correlation between human and machine errors?

CH Machine WER vs. Human WER (corr: I].BIMQB]*

16 40 r
. 0 O
14 | 35 ?
o
12 r 30 .
-
] - .-"'.--'
8] -""H. P_f_,-*".d

x 107 o - @ 25 -
L - L H.x”“
% I o o © = ° o ©

8 - c 20 0 0 .
] o -] P
= o - 0 c o .,.-f"'f s
= o) A o 0 ® = e O
T 4l 0g° o ° T 151 6.0

o ’_,,-*'f O
=0 - o % o % b
4t 00 101 o &.g’ o
- -
~ 9 GD © Df'ﬁﬁ S
2r 5 70 o° ©
o & 0%o
D 1 i 1 1 1 1 D 1 1 1 1 1 i
2 4 [B 10 12 5 10 15 20 25 30
Machine WER Machine WER

Microsoft
Cognitive
Toolkit

25

Humans and machines: different error types?

Top word substitution errors (= 21k words in each test set)

CH SWB
ASR Human ASR Human
45: (Y%hesitation) / %bcack | 12: a/ the 29: (%ehesitation)L %bcack | 12: (%hesitation) / hmm
12: was /1s 10: (%0hesitation) / a Q (%ohesitation) / oh) 10: (%hesitation) / oh
0: (%hesitation) / a 10: was / is 9: was /1S — 9: was /1s
8: (%hesitation) / oh 7: (Yohesitation) / hmm 8: and / in 8: (%hesitation) / a
8: a/the 7: bentsy / bensi 6: (%hesitation) / 1 5:1in/ and
7: and / in 7:1s / was 6: in/ and 4: (Yhesitation) / %bcack
7: 1t / that 6: could / can 5: (%ohesitation) / a 4: and / in
6: in/ and 6: well / oh S: (%hesitation) / yeah 4:1s / was

Overall similar patterns: short function words get confused (also: inserted/deleted)

One outlier: machine falsely recognizes backchannel “uh-huh” for filled pause “uh”
 These words are acoustically confusable, have opposite pragmatic functions in conversation
 Humans can disambiguate by prosody and context

Microsoft
Cognitive
Toolkit

Can humans tell the difference?

 Attendees at a major speech conference played “Spot the Bot”

* Showed them human and machine output side-by-side in
random order, along with reference transcript

* Turing-like experiment: tell which transcript is human/machine

 Result: 1t was hard to beat a random guess

* 53% accuracy (188/353 correct)
 Not statistically different from chance (p = 0.12, one-tailed)

Microsoft
Cognitive
Toolkit

CNTK

Cognitive
Toolkit

* Microsoft's open-source deep-learning toolkit S
e https://github.com/Microsoft/CNTK | #star | 14004 | ¥rork | 374

Intro - Microsoft Cognitive Toolkit (CNTK) @-cmgoﬂ

Microsoft
Cognitive
Toolkit

Intro - Microsoft Cognitive Toolkit (CNTK) Ve

Cognitive
Toolkit

* Microsoft's open-source deep-learning toolkit
. . mm Microso ft
e https://qgithub.com/Microsoft/CNTK [s swr | 14004 | | $rork | 374

* Designed for ease of use
« — think "what”, not "how"”

 Runs over 80% Microsoft internal DL workloads

* Interoperable:
* ONNX format
« WinML
 Keras backend
* 1st-class on Linux and Windows, docker support

Microsoft
Cognitive
Toolkit

CNTK — The Fastest Toolkit

Caffe: 1.0rc5(39f28e4)

http://dibench.comp.hkbu.edu.hk/ CNTK: 2.0 Betal0O(1ae666d)
Benchmarking by HKBU, Version 8 MXNet: 0.93(32dc3a2)
Single Tesla K80 GPU, CUDA: 8.0 CUDNN: v5.1 TensorFlow: 1.0{4ac9c09)
Torch: 7(74815e3)
Caffe CNTK MxNet TensorFlow Torch

FCNS (1024) 55.329ms 51.038ms 60.448ms 62.044ms 52.154ms
AlexNet (256) 36.815ms 27.215ms 28.994ms 103.960ms 37.462ms
ResNet (32) 143.987ms 81.470ms 84.545ms 181.404ms 90.935ms
LSTM (256) - 43.581ms 288.142ms - 1130.606ms
(v7 benchmark) (44.917ms) (284.898ms) {223.547ms) (906.958ms)

Microsoft
Cognitive
Toolkit

<A NVIDIA.

DRIVERS *» PRODUCTS » DEEP LEARNING AND Al » COMMUNITIES » SUPPORT SHOP

fNews " NVIDIA and Microsoft Accelerate Al
Together

Monday, November 14, 2016

GPU-Accelerated Microsoft Cognitive Toolkit Now Available in the
Cloud on Microsoft Azure and On-Premises with NVIDIA DGX-1

SC16 -- To help companies join the Al revolution, NVIDIA today announced a collaboration with Microsoft to
accelerate Al in the enterprise.

Mu lt]'NOde Tral ni ng W'lth NCCL 2-0 Using the first purpose-built enterprise Al framework optimized to run on in Microsoft

(RESNet-SO) Azure or on-premises, enterprises now have an Al platform that spans from their data center to Microsoft's

cloud.
8x P100 — "Every industry has awoken to the potential of Al,” said Jen-Hsun Huang, founder and chief executive

officer, NVIDIA. "We've worked with Microsoft to create a lightning-fast Al platform that is available from
on-premises with our DGX-1™ supercomputer to the Microsoft Azure cloud. With Microsoft's global reach,
every company around the world can now tap the power of Al to transform their business.”

8x V100

"We're working hard to empower every organization with Al, so that they can make smarter products and

16x V100

Microsoft

_ solve some of the world's most pressing problems,” said Harry Shum, executive vice president of the
Cognitxve Artificial Intelligence and Research Group at Microsoft. "By working closely with NVIDIA and harnessing the
Toolkit 32x V100 - power of GPU-accelerated systems, we've made Cognitive Toolkit and Microsoft Azure the fastest, most
0

versatile Al platform. Al is now within reach of any business.”

This jointly optimized platform runs the new Microsoft Cognitive Toolkit (formerly CNTK) on NVIDIA GPUs,
including the , which uses GPUs with
, and on Azure N-Series virtual machines, currently in preview. This combination
8 16 24 delivers unprecedented performance and ease of use when using data for deep learning.

64x V100

Hours
As a result, companies can harness Al to make better decisions, offer new products and services faster and

provide better customer experiences. This is causing every industry to implement Al. In just two years, the

GTC, M ay 20 1 7 number of companies NVIDIA collaborates with on deep learning has jumped 194x to over 19,000. Industries
such as healthcare, life sciences, energy, financial services, automotive and manufacturing are benefiting
from deeper insight on extreme amounts of data.

Deep-learning toolkits must address two questions:

* How to author neural networks? < user’s job

* How to execute them efficiently? (training/test) < tool’s job!!

Microsoft
Cognitive
Toolkit

Deep-learning toolkits must address two questions:

* How to author neural networks? < user’s job

Microsoft
Cognitive
Toolkit

'

Deep Learning Process

Microsoft
Cognitive
Toolkit

Script configures and executes through CNTK Python APIs...

reader

* minibatch source

e task-specific
deserializer

e automatic
randomization

e distributed
reading

network

e model function

e criterion function

e CPU/GPU
execution engine

e packing, padding

trainer

e SGD
(momentum,
Adam, ...)

e minibatching

Microsoft
Cognitive
aka.ms/CognitiveToolkit

Microsoft

As easy as 1-2-3

mm Microsoft

from cntk import *

Python script configures and executes...

reader
def create reader(path, is training):

network
def create _model function():

def create_criterion_function(model):

trainer (and evaluator)
def train(reader, model):

def evaluate(reader, model):

main function
model = create_model function()

reader = create_reader(..., is_training=True)
train(reader, model)

reader = create_reader(..., is_training=False)
evaluate(reader, model)

Microsoft

Cognitive
Toolkit

reader

¢ minibatch source

¢ task-specific
deserializer

* automatic
randomization

« distributed
reading

network trainer

* model function ¢ SGD
» criterion function (momentum,

* CPU/GPU Adam, ...)
execution engine * minibatching
* packing, padding

Microsoft

As easy as 1-2-3

mm Microsoft

from cntk import *

Python script configures and executes...

reader

def create reader(path, is training):

network
def create _model function():

reader

¢ minibatch source

¢ task-specific
deserializer

* automatic
randomization

« distributed
reading

network trainer

* model function ¢ SGD
» criterion function (momentum,

* CPU/GPU Adam, ...)
execution engine * minibatching
* packing, padding

def create_criterion_function(model):

trainer (and evaluator)
def train(reader, model):

def evaluate(reader, model):

python my_cntk_script.py

main function
model = create_model function()

reader = create_reader(..., is_training=True)
train(reader, model)

reader = create_reader(..., is_training=False)
evaluate(reader, model)

Microsoft

Cognitive
Toolkit

Microsoft

As easy as 1-2-3

mm Microsoft

from cntk import *

Python script configures and executes...

reader ,
def create reader(path, is training): reader network trainer
- - * minibatch source * model function * SGD
s task-specific » criterion function (momentum,
ﬁ deserializer CPU/GPU Adam, ...) ﬁ
* automatic execution engine ¢ minibatching
netwo r‘k randomization * packing, padding ‘
def create_model_function(): - distributed
- - reading
def create_criterion_function(model):

trainer (and evaluator) mpiexec --np 16 --hosts serverl,server2,server3,serverd \
def train(reader, model): python my_cntk_script.py

def evaluate(reader, model):

main function
model = create_model function()

reader = create_reader(..., is_training=True)
train(reader, model)

reader = create_reader(..., is_training=False)
evaluate(reader, model)

Microsoft
Cognitive
Toolkit

neural networks as graphs

Cognitive

Toolkit

aka.ms/CognitiveToolkit

mm Microsof ft

Microsoft
Cognitive
Toolkit

neural networks as graphs W

ognitive
Toolkit

mm Microsoft

example: 2-hidden layer feed-forward NN

hy = G(Wl X+ bl)
h2 = G(WZ h]_ + b2)
P = SOftmaX(Wout h, + bOUt)

with input x ¢ RM

Microsoft
Cognitive
Toolkit

neural networks as graphs W

Cognitive

example: 2-hidden layer feed-forward NN

h1 — G(Wl X+ bl)
h2 = G(WZ h]_ + b2)
P = softmax(Wou h2 + bour)

with input X € R and one-hot label y € R’
and cross-entropy training criterion

ce = |Og Plabel
ZcorpusCe = Max

Microsoft
Cognitive
Toolkit

neural networks as graphs W

ognitive
Toolkit

mm Microsoft

example: 2-hidden layer feed-forward NN

h1 = o(Wi X+ by) hl = sigmoid (x @ wl + bl)
hy = o(W, h; + by) ‘ h2 = sigmoid (h1 @ W2 + b2)
P = softmax(Woy ho + bout) P = softmax (h2 @ wout + bout)

with input X € R and one-hot label y € R’
and cross-entropy training criterion

ce = 10g Pjapel ce = cross_entropy (P, y)
Zcorpusce = Mmax

Microsoft
Cognitive
Toolkit

'

neural networks as graphs

Microsoft
Cognitive
Toolkit

hl
h2

ce

Microsoft
Cognitive
aka.ms/CognitiveToolkit

sigmoid (x @ wl + bl)
sigmoid (hl @ w2 + b2)
softmax (h2 @ wout + bout)
cross_entropy (P, y)

neural networks as graphs W

C cross_entropy)

A P A
(__ softmax)

hl = sigmoid (x @ wl + bl)
h2 = sigmoid (hl @ w2 + b2)
- P = softmax (h2 @ wout + bout)

ce = cross_entropy (P, Vy)

expression tree with
It primitive ops
| values (tensors)
P composite ops

Microsoft
Cognitive
Toolkit

'

neural networks as graphs W

Tee

C Cross_entropy
A

y P
(softmax)

N

_

=
N
>0 0

Microsoft
Cognitive
Toolkit

Toolkit

why graphs?

* automatic differentiation!!
* chain rule: 8.F / din = 8.F / dout - dout / din
* run graph backwards

- “back propagation”

graphs are the “assembly language” of DNN tools

authoring networks as functions

CNTK model: neural networks are functions
 pure functions
» with “special powers":
« can compute a gradient w.r.t. any of its nodes
« external deity can update model parameters

user specifies network as function objects:
« formula as a Python function (low level, e.g. LSTM)
 function composition of smaller sub-networks (layering)
* higher-order functions (equiv. of scan, fold, unfold)
* model parameters held by function objects

‘compiled” into the static execution graph under the hood
inspired by Functional Programming
becoming standard: Chainer, Keras, PyTorch, Sonnet, Gluon

Microsoft
Cognitive
Toolkit

'

authoring networks as functions

e

Cross_entropy

)

A

P

softmax

)

Microsoft
Cognitive
Toolkit

N

jy

> >

A

--- graph building ---

M =40 ; H= 512 ; J = 9000 # feat/hid/out dim
define learnable parameters

W1l = Parameter((M,H)); bl = Parameter(H)

W2 = Parameter((H,H)); b2 = Parameter(H)
Wout = Parameter((H,J)); bout = Parameter(3J)

build the graph

X = Input(M) ; y = Input(J) # feat/labels
hl = sigmoid(x @ W1 + bl)

h2 = sigmoid(hl @ W2 + b2)

P = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, y)

'

authoring networks as functions

ce

Cross_entropy

)

A

P

softmax

)

Microsoft
Cognitive
Toolkit

N

jy

> >

A

--- graph buil
=40 ; H = 512
- function ob
- here used a
Input(M) ;

Dense(H, ac

Dense(H, ac

= Dense(3J, ac

cross_entro

ding with function objects ---
; J = 9000 # feat/hid/out dim

jects own the learnable parameters

s blocks in graph building
y = Input(J) # feat/labels
tivation=sigmoid) (x)
tivation=sigmoid) (hl)
tivation=softmax) (h2)

py(P,)

authoring networks as functions

M=40 ; H=512 ; J = 9000 # feat/hid/out dim
compose model from function objects

Cross_entropy
D

softmax)

model = Sequential([Dense(H, activation=sigmoid),
Dense(H, activation=sigmoid),
Dense(J, activation=softmax)])
criterion function (invokes model function)
@Function
def criterion(x: Tensor[M], y: Tensor[J]):
P = model(x)
return cross_entropy(P, V)
function is passed to trainer

tr = Trainer(criterion, Learner(model.parameters), ..)

Microsoft
Cognitive
Toolkit

relationship to Functional Programming

» fully connected (FCN) map
 describes objects through probabilities of “class membership.”
e convolutional (CNN) windowed >> map FIR filter
 repeatedly applies a little FCN over images or other repetitive structures
 recurrent (RNN) scanl, foldl, unfold IR filter

 repeatedly applies a FCN over a sequence, using its own previous output

Microsoft
Cognitive
Toolkit

composition

« stacking layers:

model = Sequential([Dense(H, activation=sigmoid),
Dense(H, activation=sigmoid),
Dense(J3)])

* recurrence.

model = Sequential([Embedding(emb_dim),
Recurrence(GRU(hidden_dim)),
Dense(num_labels)])

e unfold:

model = UnfoldFrom(lambda history: s2smodel(history, input) >> hardmax,
until predicate=lambda w: w[...,sentence_end index],
length_increase=length_increase)

output = model (START_SYMBOL)

Microsoft
Cognitive
Toolkit

Layers API

aw ®

Python API for CNTK
Docs » Layers Library Reference View page source

basic blocks:
« LSTM(), GRU(), RNNUnit()
 Stabilizer(), identity

Layers Library Reference

Note: This documentation has not yet been completely updated with respect to the latest update
of the Layers library. It should be correct but misses several new options and layer types.

layers:
* Dense(), Embedding()

CNTK predefines a number of common “layers,” which makes it very easy to write simple networks
that consist of standard layers layered on top of each other. Layers are function objects that can be

. Convolution(), Deconvolution() i

* Ma XPOO l i n g () 2 . Ave ra ge POO 1 i n g () 2 Ma XU n POO l i ng ()) iﬂuﬁl:;;ﬂ"‘i::rﬁ:amf S For example, this is the network description for a simple 1-hidden layer model using the pense
GlobalMaxPooling(), GlobalAveragePooling() S layer:

* BatchNormalization(), LayerNormalization() Example models

+ Dropout(), Activation() . o

° L a be 1 () MaxPooling(), AveragePooling()

_ which can then, e.g., be used for training against a cross-entropy criterion:
composition:

* Sequential(), For(), operator >>, (function tuples)
* ResNetBlock(), SequentialClique()

sequences:
* Delay(), PastValueWindow()
* Recurrence(), RecurrenceFrom(), Fold(), UnfoldFrom()

models:
* AttentionModel()

Microsoft

Cognitive
Toolkit

A Python API for CNTK

Search docs

Extensibility

Getting Started
Working with Sequences

Tutorials

 Core interfaces can b
Implemented in user
code

» UserFunction

Examples

Manuals

Layers Library Reference
Python API Reference
Readers, Multi-GPU, Profiling...

B Extending CNTK
User defined functions

User defined learners

 UserLearner

User defined minibatch sources

* UserMinibatchSource

Microsoft
Cognitive
Toolkit

Docs » Extending CNTK

Extending CNTK

CNTK provides extension possibilities through
e custom operators in pure Python as so-called ‘user functions’
e custom learning algorithms (like SGD or Adam) as ‘user learners’
e custom minibatch sources as ‘user minibatch sources’

User defined functions

Implementing a custom operator in pure Python is simple matter of

° inheriting from userFunction
e implementing forward() and backward() , Whose signatures depe

inputs and outputs
¢ specifying the outputs’ shape, data type and dynamic axes in in

e providing a static deserialize() method to inflate previously sa\

In the simplest case, just only one input and output, forward() takes ar

tuple of a state and the result. The state can be used to pass data from
backward pass, but can be set to None if not needed.

Let’s consider the example of a sigmoid. This is just for demonstration |
computation better use sigmoid() .

As the derivative of sigmoid(x) is sigmoid(z) * (1 — sigmoid(x))
value as the state variable, which is then later fed into backward(). Not:
Python value (including tuple, strings, etc.):

deep-learning toolkits must address two questions:

* how to execute them efficiently? (training/test) < tool’s job!!

Microsoft
Cognitive
Toolkit

high performance with GPUs

* GPUs are massively parallel super-computers
« NVidia Titan X: 3583 parallel Pascal processor cores

* GPUs made NN research and experimentation
productive

* CNTK must turn DNNs into parallel programs
« two main priorities in GPU computing:
1. make sure all CUDA cores are always busy

2. read from GPU RAM as little as possible

[Jacob Devlin, NLPCC 2016 Tutorial]

Microsoft
Cognitive
Toolkit

Sam Sum sum St SMm sum sum s Swm s S E

Engine

minibatching

« minibatching := batch N samples, e.g. N=256; execute in lockstep

Microsoft
Cognitive
Toolkit

minibatching

« minibatching := batch N samples, e.g. N=256; execute in lockstep
 turns N matrix-vector products into

one matrix-matrix product - peak GPU performance 35% e e 7/ 35

. i ; : 30% |+ ==="C1060 y - 3.0

element-wise ops and reductions benefit, too 256 & e cans e

* has limits (convergence, dependencies, memory) 20% T oo T - 20

15% += i 15

10% fgl——*"’/' 1.0

e critical for GPU performance o ra—-ﬁ{—:/{ 05
« difficult to get right 2048 1024 512 256 128 64 32 16

Figure 1: Relative runtime for different minibatch sizes and
GPU/server model types, and corresponding frame accuracy

- CNTK makes batching fully transparent measured after seeing 12 hours of data.”

Microsoft
Cognitive
Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

hy = o(WixX +by)
h, = o(Wyhy +by)
P = softmax(Wouitho + bow)

ce =1L" logP

> ot = Max

Microsoft
Cognitive
Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

hi(t) = (W1 x(t) + D)
ha(t) = o(Wa2 ha(f) +by)
P(t) = softmax(Woy ha(t) + bout)
ce(t) = L'(t) log P(t)

2corpusce(t) = max

Microsoft
Cognitive
Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

hi() = (Wi x(t) + Rq hi(t-1) + by)
ho(t) = 6(Wa ha(t) + Ry ha(t-1) + by)
P(t) = softmax(Woy ha(t) + bout)
ce(t) = L'(t) log P(t)

Zcorpusce(t) = Mmax

Microsoft
Cognitive
Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

hi(t) = o(Wyx(t) + Ry hy(t-1) + by) hl = sigmoid(x @ wl + past_value(hl) @ R1 + bl)

ho(t) = o(W5 hy(t) + Ry hy(t-1) + by) h2 = sigmoid(hl @ w2 + past_value(h2) @ R2 + b2)
P(t) = softmax(Wou ho(t) + bout) P = softmax(h2 @ wout + bout)
ce(t) = L'(t) log P(t) ce = cross_entropy(P, L)

2corpusce(t) = max

Microsoft
Cognitive
Toolkit

symbolic loops over sequential data

hl sigmoid(x @ wl + past_value(hl) @ R1 + bl)
h2 sigmoid(hl @ w2 + past_value(h2) @ R2 + b2)
P = softmax(h2 @ wout + bout)

ce = cross_entropy(P, L)

Microsoft
Cognitive
Toolkit

symbolic loops over sequential data

hl = sigmoid(x @ wl + past_valueChl) @ R1 + bl)
e h2 = sigmoid(hl @ w2 + past_value(h2) @ R2 + b2)
C f?“ﬁmmwu) P = softmax(h2 @ wout + bout)
(softmax__) ce = cross_entropy(P, L)
bout o
Wout °
h,
(o)
b, (+)
W, (o)
h,
(o)
b, (+)
W, (o)
X y

Microsoft
Cognitive
Toolkit

sy POl loops over sequential data
C

Cross_entropy)
A y

' ‘ hl = sigmoid(x @ wl + past_valueChl) @ R1 + bl)
(_softmax__) h2 = sigmoid(hl @ w2 + past_value(h2) @ R2 + b2)
Do P = softmax(h2 @ wout + bout)
Wout ce = cross_entropy(P, L)
h,
©
b, (+)
W, (o)
h,
©
b, (+)
W, (o)
X y

Microsoft
Cognitive
Toolkit

Ssym olelle loops over sequential data

Cross entropy

tp t hl = sigmoid(x @ wl + past_value(hl) @ R1 + bl)
(_softmax__) h2 = sigmoid(hl @ w2 + past_value(h2) @ R2 + b2)
Dot P = softmax(h2 @ wout + bout)
Wout ce = cross_entropy(P, L)

* CNTK automatically unrolls cycles at execution time

* non-cycles (black) are still executed in parallel

* cf. TensorFlow: has to be manually coded

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

time steps computed in parallel

sequence 1

parallel sequences

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

time steps computed in parallel

sequence 1

sequence 2

parallel sequences

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

time steps computed in parallel

0 1
o sequence
c
)]
> sequence 2
(]
wn
[sequence 3
©
q")
o
A

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

time steps computed in parallel

sequence 1

sequence 2 sequence 3

i

/schedule into the same slot, it may come for free!

parallel sequences

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

time steps computed in parallel

O 1
Q sequence
C
)]
> sequence 2 sequence 3
A
[sequence 4
©
(40)
o
N

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

time steps computed in parallel

< 1

Q sequence

C

)]

> sequence 2 sequence 3

v

[sequence 4

©

(40)

Q sequence 5 sequence 6
v

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

time steps computed in parallel

@ 1

Q sequence

c

)]

> sequence 2 sequence 3

v

9 sequence 4 sequence 7

()

©

Q sequence 5 sequence 6
v

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

time steps computed in parallel

@ sequence 1

o

2 2 .
92)- sequence sequence 3 /4///////
2 sequence 4 sequence 7 //
Q—‘ sequence 5 sequence 6

Microsoft
Cognitive
Toolkit

batching variable-length sequences

* minibatches containing sequences of different lengths are automatically
packed and padded

time steps computed in parallel

§ sequence 1

c

)]

= sequence 2 sequence 3 //////
S . i /4//// -
9 sequence 4 sequence 7 /
()

S 72
Q—‘ sequence 5 sequence 6

* fully transparent batching
* recurrent =2 CNTK unrolls, handles sequence boundaries
* non-recurrent operations = parallel
* sequence reductions = mask

Microsoft
Cognitive
Toolkit

parallel training

data

how to reduce communication cost:

GPU 3

GPU 2

minibatch

communicate less each time

/

GPU 1

t..

c
)
-+
©
Q
C
-+
>
el
5 C ©
Q S
I 323
-2
- — wn
g © O o
s - b=
57 0 25
LS O € '
2 o =
Mh.._“..._u
80 ® 9
=2 O c ¥
— £ + ©
©
59 B 25
2 c O o
0 0 5 =
¢deb
g8 2 9 &
2L O >
.. 0% @ =
Aoc2 N ©
Q35 E ¢
AEE G Y
.T.H.dU.m
— o5 U =
O o
Q32 .
— LA
([J

7///

data-parallel training

how to reduce communication cost:
communicate less each time

¢ 1 - b|t SG D: [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: "1-Bit Stochastic Gradient Descent...Distributed Training of Speech DNNs", Interspeech 2014]

« quantize gradients to 1 bit per value
* trick: carry over quantization error to next minibatch

communicate less often

* d Utomat|c M B SIZI ng [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: "ON Parallelizability of Stochastic Gradient Descent...", ICASSP 2014]

¢ blOCk momentu m [K. Chen, Q Huo: “Scalable training of deep learning machines by incremental block training...," ICASSP 2016]
* very effective parallelization method
« combines model averaging with error-residual idea

Microsoft
Cognitive
Toolkit

data-parallel training

“alals
60.00 54.00
50 00
o VNV ""‘3.65
e B ff— P
40.00 27.27 l m 1bit-average
25.46 . .
30.00 1411 0y m 1bit-peak
813 13.75
o 413 : $ m BMUF-average
<U. W 3 69 §.92 10.77 b
-~ ~n 6?.. 798 oo Br"’UF-p‘eak

1000 - -7 5.38 i

V.V e e’ 1

2'83 i ‘ i |
0.00 | -) td 4.
& GPUs 8 GPUs 16 GPUs 32 GPUs 64 GPUs
LSTM SGD baseline 11.08
Parallel Algorithms 4-GPU 8-GPU 16-GPU 32-GPU 64-GPU
1bit 10.79 10.59 11.02
BWMUF 10.82 10.82 10.85 10.92 11.08
Table 2: WERs (%) of parallel training for LSTMs [Yonggiang Wang, IPG; internal communication]

Microsoft

Cognitive
Toolkit

runtimes in Human Parity project

» data parallel training with 1-bit SGD:
« up to 32 Maxwell GPUs per job (total farm had several hundred)
 key enabler for this project

* reduced training times from months to weeks

« BLSTM: 8 GPUs (one box); rough CE AMs: ~1 day; fully converged after ~5 days; discriminative training:
another ~5 days

* CNNs and LACE: 16 GPUs (4 boxes); single GPU would take 50 days per data pass/
* model size on the order of 50M parameters

* pe rf (one GPU): | Processing step | Hardware | DNN | ResNet-CNN | BLSTM | LACE
AM training GPU 0.012 0.60 0.022 0.23
AM evaluation GPU 0.0064 0.15 0.0081 | 0.081
AM evaluation CPU 0.052 11.7 n/a 8.47
Decoding GPU 1.04 1.19 1.40 1.38

Microsoft
Cognitive
Toolkit

Microsoft

Cognitive

CNTK's approach to the two key questions: Toolkit

aka.ms/CognitiveToolkit

mm Microsoft

- efficient network authoring
» networks as function objects, well-matching the nature of DNNs
 focus on what, not how
 familiar syntax and flexibility in Python

- efficient execution
« graph - parallel program through automatic minibatching
» symbolic loops with dynamic scheduling
 unique parallel training algorithms (1-bit SGD, Block Momentum)

Microsoft
Cognitive
Toolkit

Cognitive Toolkit:
deep learning like Microsoft product groups

* ease of use

* what, not how
* powerful library
* minibatching is automatic

* fast

- . L Microsoft
* optimized for NVidia GPUs & libraries "
* easy yet best-in-class multi-GPU/multi-server support Cogmtwe
* flexible 100IKIt
* Python and C++ API, powerful & composable aka.ms/CognitiveToolkit

* integrates with ONNX, WinML, Keras, R, C#, Java
* 1*-class on Linux and Windows

* train like MS product groups: internal=external version

mm Microsoft

Microsoft
Cognitive
Toolkit

Summary and Outlook

summary

« Reached a significant milestone in automatic speech recognition

 Human and ASR are similar in
* overall accuracy
e types of errors
« dependence on inherent speaker difficulty

 Achieved via
« Deep convolutional and recurrent networks
* Trained efficiently, in parallel on large matched speech corpus
« Combining complementary models using different architectures

« CNTK's efficiency & data-parallel operation was critical enabler

Microsoft
Cognitive
Toolkit

Outlook

 Speech recognition is not solved!

* Need to work on
« Robustness to acoustic environment (e.g., far-field mics, overlap)
» Speaker mismatch (e.g., accented speech)
« Style mismatch (e.g., planned vs. spontaneous, single vs. multiple spkrs)

« Computational challenges
* Inference too expensive for mobile devices
» Static graph limits what can be expressed - Dynamic networks

Microsoft
Cognitive
Toolkit

Thank You!

Questions?

anstolck@microsoft.com fseide@microsoft.com

