


Microsoft

Cognitive

Toolkit

• Task and history

• System overview and results

• Human versus machine

• Cognitive Toolkit (CNTK)

• Summary and outlook

Roadmap



Introduction:
Task and History



Microsoft

Cognitive

Toolkit

The Human Parity Experiment

• Conversational telephone speech has been a benchmark in the 
research community for 20 years
• Focus here: strangers talking to each other via telephone, given a topic
• Known as the “Switchboard” task in speech community

• Can we achieve human-level performance?

• Top-level tasks:
• Measure human performance
• Build the best possible recognition system
• Compare and analyze

4



Microsoft

Cognitive

Toolkit

CallHome (CH)
(friends & family, unconstrained)

Switchboard (SWB)
(strangers, on-topic)

30 Years of Speech Recognition Benchmarks

RM

ATIS

WSJ

For many years, DARPA drove the field by defining public benchmark tasks

5

Conversational Telephone Speech (CTS):

Read and planned speech:



Microsoft

Cognitive

Toolkit

History of Human Error Estimates for SWB

• Lippman (1997):  4%
• based on “personal communication” with NIST, no experimental data cited

• LDC LREC paper (2010):  4.1-4.5%
• Measured on a different dataset (but similar to our NIST eval set, SWB portion)

• Microsoft (2016): 5.9%
• Transcribers were blind to experiment
• 2-pass transcription, isolated utterances (no “transcriber adaptation”)

• IBM (2017): 5.1%
• Using multiple independent transcriptions, picked best transcriber
• Vendor was involved in experiment and aware of NIST transcription conventions

Note: Human error will vary depending on
• Level of effort (e.g., multiple transcribers)
• Amount of context supplied (listening to short snippets vs. entire conversation)

6



Microsoft

Cognitive

Toolkit

Recent ASR Results on Switchboard

Group 2000 SWB WER Notes Reference

Microsoft 16.1% DNN applied to LVCSR for the first time Seide et al, 2011

Microsoft 9.9% LSTM applied for the first time A.-R. Mohammed et al, IEEE ASRU 
2015

IBM 6.6% Neural Networks and System Combination Saon et al., Interspeech 2016

Microsoft 5.8% First claim of "human parity" Xiong et al., arXiv 2016,
IEEE Trans.  SALP 2017

IBM 5.5% Revised view of "human parity" Saon et al., Interspeech 2017

Capio 5.3% Han et al., Interspeech 2017

Microsoft 5.1% Current Microsoft research system Xiong et al., MSR-TR-2017-39, 
ICASSP 2018

7



System Overview
and Results



Microsoft

Cognitive

Toolkit

System Overview

• Hybrid HMM/deep neural net architecture

• Multiple acoustic model types
• Different architectures (convolutional and recurrent)
• Different acoustic model unit clusterings

• Multiple language models
• All based on LSTM recurrent networks
• Different input encodings
• Forward and backward running

• Model combination at multiple levels

For details, see our upcoming paper in ICASSP-2018



Microsoft

Cognitive

Toolkit

Data used

• Acoustic training:  2000 hours of conversational telephone data

• Language model training:
• Conversational telephone transcripts

• Web data collected to be conversational in style

• Broadcast news transcripts

• Test on NIST 2000 SWB+CH evaluation set

• Note: data chosen to be compatible with past practice
• NOT using proprietary sources



Microsoft

Cognitive

Toolkit

Acoustic Modeling Framework: Hybrid HMM/DNN

[Yu et al., 2010; Dahl et al., 2011]

Record performance in 2011 [Seide et al.]

Hybrid HMM/NN approach still standard
But DNN model now obsolete (!)
• Poor spatial/temporal invariance 

11

1st pass decoding



Microsoft

Cognitive

Toolkit

Acoustic Modeling: Convolutional Nets

[Simonyan & Zisserman, 2014; Frossard 2016, 
Saon et al., 2016, Krizhevsky et al., 2012]

Adapted from image processing
Robust to temporal and 
frequency shifts

12



Microsoft

Cognitive

Toolkit

Acoustic Modeling: ResNet

[He et al., 2015]

Add a non-linear offset to linear transformation of features
Similar to fMPE in Povey et al., 2005
See also Ghahremani & Droppo, 2016

13

1st pass decoding



Microsoft

Cognitive

Toolkit

Acoustic Modeling: LACE CNN

CNNs with batch normalization,  
Resnet jumps, and attention masks
[Yu et al., 2016]

14

1st pass decoding



Microsoft

Cognitive

Toolkit

Acoustic Modeling: Bidirectional LSTMs

Stable form of recurrent neural net
Robust to temporal shifts

[Hochreiter & Schmidhuber, 1997, 
Graves & Schmidhuber, 2005; Sak et al., 2014]

[Graves & Jaitly ‘14]

15



Microsoft

Cognitive

Toolkit

Acoustic Modeling:  CNN-BLSTM

• Combination of convolutional and recurrent net model

[Sainath et al., 2015]

• Three convolutional layers

• Six BLSTM recurrent layers



Microsoft

Cognitive

Toolkit

Language Modeling: Multiple LSTM variants

• Decoder uses a word 4-gram model

• N-best hypotheses are rescored with multiple LSTM recurrent 
network language models

• LSTMs differ by
• Direction:  forward/backward running

• Encoding: word one-hot, word letter trigram, character one-hot

• Scope: utterance-level / session-level



Microsoft

Cognitive

Toolkit

Session-level Language Modeling

• Predict next word from full conversation history, not just one 
utterance:

Speaker A

Speaker B

18

1

2

3

4

5 6 ?

LSTM language model Perplexity

Utterance-level  LSTM (standard) 44.6

+ session word history 37.0

+ speaker change history 35.5

+ speaker overlap history 35.0



Microsoft

Cognitive

Toolkit

Acoustic model combination

Step 0: create 4 different versions of each acoustic model by 
clustering phonetic model units (senones) differently

Step 1: combine different models for same senone set at the 
frame level (posterior probability averaging)

Step 2: after LM rescoring, combine different senone systems at 
the word level (confusion network combination)



Microsoft

Cognitive

Toolkit

Results

Senone set Acoustic models SWB WER CH WER

1 BLSTM 6.4 12.1

2 BLSTM 6.3 12.1

3 BLSTM 6.3 12.0

4 BLSTM 6.3 12.8

1 BLSTM + Resnet + LACE + CNN-BLSTM 5.4 10.2

2 BLSTM + Resnet + LACE + CNN-BLSTM 5.4 10.2

3 BLSTM + Resnet + LACE + CNN-BLSTM 5.6 10.2

4 BLSTM + Resnet + LACE + CNN-BLSTM 5.5 10.3

1+2+3+4 BLSTM + Resnet + LACE + CNN-BLSTM 5.2 9.8

+ Confusion network rescoring 5.1 9.8

Frame-level

combination

Word-level

combination

Word error rates (WER)



Human vs. Machine



Microsoft

Cognitive

Toolkit

Microsoft Human Error Estimate (2015)

• Skype Translator has a weekly 
transcription contract
• For quality control, training, etc.

• Initial transcription followed by a 
second checking pass
• Two transcribers on each speech 

excerpt

• One week, we added NIST 2000 
CTS evaluation data to the 
pipeline
• Speech was pre-segmented as in 

NIST evaluation

22



Microsoft

Cognitive

Toolkit

Human Error Estimate: Results

• Applied NIST scoring protocol (same as ASR)

• Switchboard: 5.9% error rate

• CallHome: 11.3% error rate

• SWB in the 4.1% - 9.6% range expected based on NIST study

• CH is difficult for both people and machines
• Machine error about 2x higher
• High ASR error not just because of mismatched conditions

New questions:
• Are human and machine errors correlated?
• Do they make the same type of errors?
• Can humans tell the difference?

23



Microsoft

Cognitive

Toolkit

Correlation between human and machine errors?

24

𝜌 = 0.65 𝜌 = 0.80

*Two CallHome conversations with multiple speakers per conversation side removed, see paper for full results

*



Microsoft

Cognitive

Toolkit

Humans and machines: different error types?
Top word substitution errors (≈ 21k words in each test set)

Overall similar patterns:   short function words get confused (also: inserted/deleted)
One outlier:  machine falsely recognizes backchannel “uh-huh” for filled pause “uh”
• These words are acoustically confusable, have opposite pragmatic functions in conversation
• Humans can disambiguate by prosody and context

25



Microsoft

Cognitive

Toolkit

Can humans tell the difference?

• Attendees at a major speech conference played “Spot the Bot”

• Showed them human and machine output side-by-side in 
random order, along with reference transcript

• Turing-like experiment: tell which transcript is human/machine

• Result:  it was hard to beat a random guess
• 53% accuracy (188/353 correct) 

• Not statistically different from chance (p ≈ 0.12, one-tailed)



CNTK



Microsoft

Cognitive

Toolkit

Intro - Microsoft Cognitive Toolkit (CNTK)

• Microsoft’s open-source deep-learning toolkit 

• https://github.com/Microsoft/CNTK



Microsoft

Cognitive

Toolkit

Intro - Microsoft Cognitive Toolkit (CNTK)

• Microsoft’s open-source deep-learning toolkit 
• https://github.com/Microsoft/CNTK

• Designed for ease of use
• — think “what”, not “how”

• Runs over 80% Microsoft internal DL workloads

• Interoperable:
• ONNX format
• WinML
• Keras backend
• 1st-class on Linux and Windows, docker support 



Microsoft

Cognitive

Toolkit

Benchmarking on a single server by HKBU

CNTK – The Fastest Toolkit

FCN-8 AlexNet ResNet-50 LSTM-64

CNTK 0.037 0.040 (0.054) 0.207 (0.245) 0.122

Caffe 0.038 0.026 (0.033) 0.307 (-) -

TensorFlow 0.063 - (0.058) - (0.346) 0.144

Torch 0.048 0.033 (0.038) 0.188 (0.215) 0.194

G980



Superior performance 

GTC, May 2017



Microsoft

Cognitive

Toolkit

Deep-learning toolkits must address two questions:

• How to author neural networks?  user’s job

• How to execute them efficiently? (training/test)  tool’s job!!



Microsoft

Cognitive

Toolkit

Deep-learning toolkits must address two questions:

• How to author neural networks?  user’s job

• How to execute them efficiently? (training/test)  tool’s job!!



Microsoft

Cognitive

Toolkit

Deep Learning Process
Script configures and executes through CNTK Python APIs…

trainer
• SGD

(momentum,
Adam, …)

• minibatching

reader
• minibatch source
• task-specific

deserializer
• automatic

randomization
• distributed

reading

corpus model

network
• model function
• criterion function
• CPU/GPU

execution engine
• packing, paddingco

lle
ct

data

d
e

p
lo

y

app



Microsoft

Cognitive

Toolkit

from cntk import *

# reader
def create_reader(path, is_training):

...

# network
def create_model_function():

...
def create_criterion_function(model):

...

# trainer (and evaluator)
def train(reader, model):

...
def evaluate(reader, model):

...

# main function
model = create_model_function()

reader = create_reader(..., is_training=True)
train(reader, model)

reader = create_reader(..., is_training=False)
evaluate(reader, model)

As easy as 1-2-3



Microsoft

Cognitive

Toolkit

from cntk import *

# reader
def create_reader(path, is_training):

...

# network
def create_model_function():

...
def create_criterion_function(model):

...

# trainer (and evaluator)
def train(reader, model):

...
def evaluate(reader, model):

...

# main function
model = create_model_function()

reader = create_reader(..., is_training=True)
train(reader, model)

reader = create_reader(..., is_training=False)
evaluate(reader, model)

As easy as 1-2-3

mpiexec --np 16 --hosts server1,server2,server3,server4 \
python my_cntk_script.py



Microsoft

Cognitive

Toolkit

from cntk import *

# reader
def create_reader(path, is_training):

...

# network
def create_model_function():

...
def create_criterion_function(model):

...

# trainer (and evaluator)
def train(reader, model):

...
def evaluate(reader, model):

...

# main function
model = create_model_function()

reader = create_reader(..., is_training=True)
train(reader, model)

reader = create_reader(..., is_training=False)
evaluate(reader, model)

As easy as 1-2-3

mpiexec --np 16 --hosts server1,server2,server3,server4 \
python my_cntk_script.py



Microsoft

Cognitive

Toolkit

neural networks as graphs



Microsoft

Cognitive

Toolkit

neural networks as graphs

example: 2-hidden layer feed-forward NN

h1 =  s(W1 x + b1) h1 = sigmoid (x  @ W1   + b1)

h2 =  s(W2 h1 + b2) h2 = sigmoid (h1 @ W2   + b2)

P =  softmax(Wout h2 + bout) P  = softmax (h2 @ Wout + bout)

with input x  RM and one-hot label L  RM

and cross-entropy training criterion

ce =  LT log P ce = cross_entropy (L, P)

Scorpusce =   max



Microsoft

Cognitive

Toolkit

neural networks as graphs

example: 2-hidden layer feed-forward NN

h1 =  s(W1 x + b1) h1 = sigmoid (x  @ W1   + b1)

h2 =  s(W2 h1 + b2) h2 = sigmoid (h1 @ W2   + b2)

P =  softmax(Wout h2 + bout) P  = softmax (h2 @ Wout + bout)

with input x  RM and one-hot label y  RJ

and cross-entropy training criterion

ce =  log Plabel ce = cross_entropy (L, P)

Scorpusce =   max



Microsoft

Cognitive

Toolkit

neural networks as graphs

example: 2-hidden layer feed-forward NN

h1 =  s(W1 x + b1) h1 = sigmoid (x  @ W1   + b1)

h2 =  s(W2 h1 + b2) h2 = sigmoid (h1 @ W2   + b2)

P =  softmax(Wout h2 + bout) P  = softmax (h2 @ Wout + bout)

with input x  RM and one-hot label y  RJ

and cross-entropy training criterion

ce =  log Plabel ce = cross_entropy (P, y)

Scorpusce =   max



Microsoft

Cognitive

Toolkit

neural networks as graphs

h1 = sigmoid (x  @ W1   + b1)

h2 = sigmoid (h1 @ W2   + b2)

P  = softmax (h2 @ Wout + bout)

ce = cross_entropy (P, y)



Microsoft

Cognitive

Toolkit

neural networks as graphs

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

h1 = sigmoid (x  @ W1   + b1)

h2 = sigmoid (h1 @ W2   + b2)

P  = softmax (h2 @ Wout + bout)

ce = cross_entropy (P, y)

ce

expression tree with

• primitive ops

• values (tensors)

• composite ops



Microsoft

Cognitive

Toolkit

neural networks as graphs

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

ce

why graphs?

• automatic differentiation!!
• chain rule: ∂F / ∂in = ∂F / ∂out ∙ ∂out / ∂in

• run graph backwards

→ “back propagation”

graphs are the “assembly language” of DNN tools



Microsoft

Cognitive

Toolkit

authoring networks as functions

• CNTK model: neural networks are functions
• pure functions

• with “special powers”:
• can compute a gradient w.r.t. any of its nodes

• external deity can update model parameters

• user specifies network as function objects:
• formula as a Python function (low level, e.g. LSTM)

• function composition of smaller sub-networks (layering)

• higher-order functions (equiv. of scan, fold, unfold)

• model parameters held by function objects

• “compiled” into the static execution graph under the hood

• inspired by Functional Programming

• becoming standard: Chainer, Keras, PyTorch, Sonnet, Gluon



Microsoft

Cognitive

Toolkit

authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

# --- graph building ---

M = 40 ; H = 512 ; J = 9000  # feat/hid/out dim

# define learnable parameters

W1   = Parameter((M,H)); b1   = Parameter(H)

W2   = Parameter((H,H)); b2   = Parameter(H)

Wout = Parameter((H,J)); bout = Parameter(J)

# build the graph

x = Input(M) ; y = Input(J)  # feat/labels

h1 = sigmoid(x  @ W1   + b1)

h2 = sigmoid(h1 @ W2   + b2)

P  = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, y)

ce



Microsoft

Cognitive

Toolkit

authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

# --- graph building with function objects ---

M = 40 ; H = 512 ; J = 9000  # feat/hid/out dim

#  - function objects own the learnable parameters

#  - here used as blocks in graph building

x = Input(M) ;  y = Input(J)  # feat/labels

h1 = Dense(H, activation=sigmoid)(x)

h2 = Dense(H, activation=sigmoid)(h1)

P  = Dense(J, activation=softmax)(h2)

ce = cross_entropy(P, y)

ce



Microsoft

Cognitive

Toolkit

authoring networks as functions

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

M = 40 ; H = 512 ; J = 9000  # feat/hid/out dim

# compose model from function objects

model = Sequential([Dense(H, activation=sigmoid),

Dense(H, activation=sigmoid),

Dense(J, activation=softmax)])

# criterion function (invokes model function)

@Function

def criterion(x: Tensor[M], y: Tensor[J]):

P = model(x)

return cross_entropy(P, y)

# function is passed to trainer

tr = Trainer(criterion, Learner(model.parameters), …)

ce



Microsoft

Cognitive

Toolkit

• fully connected (FCN) map

• describes objects through probabilities of “class membership.”

• convolutional (CNN) windowed >> map FIR filter

• repeatedly applies a little FCN over images or other repetitive structures

• recurrent (RNN) scanl, foldl, unfold IIR filter

• repeatedly applies a FCN over a sequence, using its own previous output

relationship to Functional Programming



Microsoft

Cognitive

Toolkit

composition

• stacking layers:

model = Sequential([Dense(H, activation=sigmoid),
Dense(H, activation=sigmoid),
Dense(J)])

• recurrence:

model = Sequential([Embedding(emb_dim),
Recurrence(GRU(hidden_dim)),
Dense(num_labels)])

• unfold:

model = UnfoldFrom(lambda history: s2smodel(history, input) >> hardmax,
until_predicate=lambda w: w[...,sentence_end_index],
length_increase=length_increase)

output = model(START_SYMBOL)



Microsoft

Cognitive

Toolkit

Layers API
• basic blocks:

• LSTM(), GRU(), RNNUnit()
• Stabilizer(), identity

• layers:
• Dense(), Embedding()
• Convolution(), Deconvolution()
• MaxPooling(), AveragePooling(), MaxUnpooling(),

GlobalMaxPooling(), GlobalAveragePooling()
• BatchNormalization(), LayerNormalization()
• Dropout(), Activation()
• Label()

• composition:
• Sequential(), For(), operator >>, (function tuples)
• ResNetBlock(), SequentialClique()

• sequences:
• Delay(), PastValueWindow()
• Recurrence(), RecurrenceFrom(), Fold(), UnfoldFrom()

• models:
• AttentionModel()



Microsoft

Cognitive

Toolkit

Extensibility

• Core interfaces can be

implemented in user

code

• UserFunction

• UserLearner

• UserMinibatchSource



Microsoft

Cognitive

Toolkit

deep-learning toolkits must address two questions:

• how to author neural networks?  user’s job

• how to execute them efficiently? (training/test)  tool’s job!!



Microsoft

Cognitive

Toolkit

high performance with GPUs

• GPUs are massively parallel super-computers

• NVidia Titan X: 3583 parallel Pascal processor cores

• GPUs made NN research and experimentation 
productive

• CNTK must turn DNNs into parallel programs

• two main priorities in GPU computing:

1. make sure all CUDA cores are always busy

2. read from GPU RAM as little as possible

[Jacob Devlin, NLPCC 2016 Tutorial]



Microsoft

Cognitive

Toolkit

minibatching

• minibatching := batch N samples, e.g. N=256; execute in lockstep



Microsoft

Cognitive

Toolkit

minibatching

• minibatching := batch N samples, e.g. N=256; execute in lockstep
• turns N matrix-vector products into

one matrix-matrix product → peak GPU performance

• element-wise ops and reductions benefit, too

• has limits (convergence, dependencies, memory)

• critical for GPU performance
• difficult to get right

→ CNTK makes batching fully transparent



Microsoft

Cognitive

Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) =  s(W1 x(t) + H1 h1(t-1) + b1) h1 = sigmoid(x  @ W1 + past_value(h1) + b1)

h2(t) =  s(W2 h1(t) + H2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P(t) =  softmax(Wout h2(t) + bout) P  = softmax(h2 @ Wout + bout)

ce(t) =  LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) =   max

→ no explicit notion of time



Microsoft

Cognitive

Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) =  s(W1 x(t) + H1 h1(t-1) + b1) h1 = sigmoid(x  @ W1 + past_value(h1) + b1)

h2(t) =  s(W2 h1(t) + H2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P(t) =  softmax(Wout h2(t) + bout) P  = softmax(h2 @ Wout + bout)

ce(t) =  LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) =   max

→ no explicit notion of time



Microsoft

Cognitive

Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) =  s(W1 x(t) + R1 h1(t-1) + b1) h1 = sigmoid(x  @ W1 + past_value(h1) + b1)

h2(t) =  s(W2 h1(t) + R2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ H2 + b2)

P(t) =  softmax(Wout h2(t) + bout) P  = softmax(h2 @ Wout + bout)

ce(t) =  LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) =   max

→ no explicit notion of time



Microsoft

Cognitive

Toolkit

symbolic loops over sequential data

extend our example to a recurrent network (RNN)

h1(t) =  s(W1 x(t) + R1 h1(t-1) + b1) h1 = sigmoid(x  @ W1 + past_value(h1) @ R1 + b1)

h2(t) =  s(W2 h1(t) + R2 h2(t-1) + b2) h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P(t) =  softmax(Wout h2(t) + bout) P  = softmax(h2 @ Wout + bout)

ce(t) =  LT(t) log P(t) ce = cross_entropy(P, L)

Scorpusce(t) =   max



Microsoft

Cognitive

Toolkit

symbolic loops over sequential data
h1 = sigmoid(x  @ W1 + past_value(h1) @ R1 + b1)

h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P  = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, L)



Microsoft

Cognitive

Toolkit

symbolic loops over sequential data
h1 = sigmoid(x  @ W1 + past_value(h1) @ R1 + b1)

h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P  = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, L)

•

+

s

•

+

s

•

+

softmax

W1

b1

W2

b2

Wout

bout

cross_entropy

h1

h2

P

x y

ce



Microsoft

Cognitive

Toolkit

symbolic loops over sequential data

•

+

s

•

+

softmax

W1

b1

Wout

bout

cross_entropy

h1

P

x y

ce

h1 = sigmoid(x  @ W1 + past_value(h1) @ R1 + b1)

h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P  = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, L)

•

+

s

W2

b2

h2

boliol



Microsoft

Cognitive

Toolkit

•

+

s

•

+

softmax

W1

b1

Wout

bout

cross_entropy

h1

P

x y

ce

h1 = sigmoid(x  @ W1 + past_value(h1) @ R1 + b1)

h2 = sigmoid(h1 @ W2 + past_value(h2) @ R2 + b2)

P  = softmax(h2 @ Wout + bout)

ce = cross_entropy(P, L)

• CNTK automatically unrolls cycles at execution time

• non-cycles (black) are still executed in parallel

• cf. TensorFlow: has to be manually coded+ •

R1

z-1

•

+

s

W2

b2

h2

+ •

R2

z-1

symbolic loops over sequential databoliol



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 3

sequence 5 sequence 6

sequence 7



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7schedule into the same slot, it may come for free!



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• CNTK handles the special cases:
• past_value operation correctly resets state and gradient at sequence boundaries

• non-recurrent operations just pretend there is no padding (“garbage-in/garbage-out”)

• sequence reductions

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7



Microsoft

Cognitive

Toolkit

• minibatches containing sequences of different lengths are automatically 
packed and padded

• fully transparent batching
• recurrent → CNTK unrolls, handles sequence boundaries

• non-recurrent operations → parallel

• sequence reductions → mask

batching variable-length sequences

p
a
ra

ll
e
l 
se

q
u

e
n

ce
s

time steps computed in parallel

padding

sequence 1

sequence 2 sequence 3

sequence 4

sequence 5 sequence 6

sequence 7



Microsoft

Cognitive

Toolkit

GPU 1 GPU 2 GPU 3

how to reduce communication cost:

communicate less each time

• 1-bit SGD:
[F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...
Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

1-bit quantized with residual

1-bit quantized with residual

data-parallel training

minibatch



Microsoft

Cognitive

Toolkit

how to reduce communication cost:

communicate less each time

• 1-bit SGD:  [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “1-Bit Stochastic Gradient Descent...Distributed Training of Speech DNNs”, Interspeech 2014]

• quantize gradients to 1 bit per value

• trick: carry over quantization error to next minibatch

communicate less often

• automatic MB sizing    [F. Seide, H. Fu, J. Droppo, G. Li, D. Yu: “ON Parallelizability of Stochastic Gradient Descent...”, ICASSP 2014]

• block momentum         [K. Chen, Q. Huo: “Scalable training of deep learning machines by incremental block training…,” ICASSP 2016]

• very effective parallelization method

• combines model averaging with error-residual idea

data-parallel training



Microsoft

Cognitive

Toolkit

data-parallel training

[Yongqiang Wang, IPG; internal communication]



Microsoft

Cognitive

Toolkit

• data parallel training with 1-bit SGD:
• up to 32 Maxwell GPUs per job (total farm had several hundred)

• key enabler for this project

• reduced training times from months to weeks
• BLSTM: 8 GPUs (one box); rough CE AMs: ~1 day; fully converged after ~5 days; discriminative training: 

another ~5 days

• CNNs and LACE: 16 GPUs (4 boxes); single GPU would take 50 days per data pass!

• model size on the order of 50M parameters

• perf (one GPU):

runtimes in Human Parity project



Microsoft

Cognitive

Toolkit

CNTK’s approach to the two key questions:

• efficient network authoring
• networks as function objects, well-matching the nature of DNNs

• focus on what, not how

• familiar syntax and flexibility in Python

• efficient execution
• graph → parallel program through automatic minibatching

• symbolic loops with dynamic scheduling

• unique parallel training algorithms (1-bit SGD, Block Momentum)



Microsoft

Cognitive

Toolkit

• ease of use
• what, not how

• powerful library

• minibatching is automatic

• fast
• optimized for NVidia GPUs & libraries

• easy yet best-in-class multi-GPU/multi-server support

• flexible
• Python and C++ API, powerful & composable

• integrates with ONNX, WinML, Keras, R, C#, Java

• 1st-class on Linux and Windows

• train like MS product groups: internal=external version

Cognitive Toolkit:
deep learning like Microsoft product groups



Summary and Outlook



Microsoft

Cognitive

Toolkit

Summary

• Reached a significant milestone in automatic speech recognition

• Human and ASR are similar in
• overall accuracy

• types of errors

• dependence on inherent speaker difficulty

• Achieved via
• Deep convolutional and recurrent networks

• Trained efficiently, in parallel on large matched speech corpus

• Combining complementary models using different architectures

• CNTK’s efficiency & data-parallel operation was critical enabler



Microsoft

Cognitive

Toolkit

Outlook

• Speech recognition is not solved!

• Need to work on
• Robustness to acoustic environment (e.g., far-field mics, overlap)

• Speaker mismatch (e.g., accented speech)

• Style mismatch (e.g., planned vs. spontaneous, single vs. multiple spkrs)

• Computational challenges
• Inference too expensive for mobile devices

• Static graph limits what can be expressed → Dynamic networks



Thank You!

Questions?

anstolck@microsoft.com fseide@microsoft.com


