
A multiresolution analysis for detection of abnormal lung sounds

Dimitra Emmanouilidou1, Kailash Patil1, James West1 and Mounya Elhilali1

Abstract— Automated analysis and detection of abnormal
lung sound patterns has great potential for improving access
to standardized diagnosis of pulmonary diseases, especially
in low-resource settings. In the current study, we develop
signal processing tools for analysis of paediatric ausculta-
tions recorded under non-ideal noisy conditions. The proposed
model is based on a biomimetic multi-resolution analysis of
the spectro-temporal modulation details in lung sounds. The
methodology provides a detailed description of joint spectral
and temporal variations in the signal and proves to be more
robust than frequency-based techniques in distinguishing crack-
les and wheezes from normal breathing sounds.

I. INTRODUCTION

Lung and respiratory sounds contain crucial information
about pathologies of lungs and/or airway obstruction [1], [2].
Chest examination is the widely used method for diagnosis
of pulmonary conditions. However, acoustic information cap-
tured by clinical auscultation is limited in a number of ways,
including frequency attenuation due to the stethoscope, inter-
observer variability, untrained healthcare providers or subjec-
tivity in differentiating subtle sound patterns. Computerized
technologies come as a natural non invasive complimentary
diagnostic aid. Automated techniques are not only advan-
tageous for providing standardized methods for electronic
auscultation, they also enable long duration monitoring and
subsequent analysis allowing for a deeper understanding of
the mechanisms that produce abnormal pulmonary sounds.

Lung sounds typically span the range of 50 to 2500Hz and
consist of multiple components originating from different
sources within the respiratory system. Normal breathing
sounds generally follow cyclic patterns indicating the airflow
during respiratory cycles. In cases of pulmonary diseases,
these sounds are often superimposed with anomalous patterns
reflecting airway obstructions or pathological conditions. The
nature of the anomalous sounds varies between stationary
events such as wheezes or rhonchus, to transient sounds such
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as crackles, both at fine and coarse scales. Of all lung sounds
of interest for medical diagnosis, wheezes and crackles are
the most studied components and are indicative of specific
pathologies [3], [4]. Wheezes are generally louder than the
underlying breathing sound with duration longer than 250ms
and are usually signs of obstructive pulmonary diseases (such
as asthma). Crackles are transient and explosive sounds, re-
lated to the sudden opening of abnormally closed airways and
could be indicative of conditions such as pneumonia or lung
infection. Their short duration (< 20ms) and lower intensity
introduce difficulties in their discrimination and characteri-
zation. Despite their differences, they are not well-defined
patterns from a signal processing point of view. Wheezes
have been reported to span a wide range of frequencies: 100-
2500 or 400-1600Hz [5], [6]. Similarly, crackles have been
characterized over a lower but also not well defined range
spanning 100-500Hz [5], [7]. Such variability is even harder
to characterize in case of paediatric auscultations.

Existing approaches in the literature use techniques to
capture the spectral and temporal details of sounds like
wheezes and crackles, ranging from frequency analysis using
Fourier transform [8], [9], to time-frequency and Wavelet
analysis [10], [11], [12]. Other techniques apply image pro-
cessing methods on the sound spectrograms [13] or compare
with reference signals. In most studies however, auscultation
recordings often correspond to adults, acquired in a con-
trolled near ideal environment with well defined diagnoses
where noise was of minor concern. In the present study, we
aim to obtain better insight into the signal characteristics of
anomalous lung sounds from pediatric auscultations recorded
from infants in Nepal in non ideal conditions, contaminated
by crying, background chatter and environmental noise. The
study presents an alternative signal processing scheme and
develops an analysis methodology for assessment of model
accuracy for detecting adventitious sounds and distinguishing
them from normal breathing patterns.

II. METHODS
A. Multiresolution Analysis

The framework presented here is based on biomimetic
analysis of sound signals believed to take place along the
auditory pathway from the point the signal reaches the
ear, all the way to central auditory stages up to auditory
cortex. Briefly, sound signals s(t) are analyzed through a
bank of 128 cochlear filters h(t; f), modeled as constant-Q
asymmetric bandpass filters equally spaced on a logarithmic
frequency scale spanning 5.3 octaves. The cochlear output
is then transduced into inner hair cell potentials via a
high and low pass operation. The resulting auditory nerve
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signals undergo further spectral sharpening modeled as first-
difference between adjacent frequency channels followed by
half-wave rectification. Finally, a midbrain model resulting
in additional loss in phase locking is performed using short
term integration (or low-pass operator µ(t; τ) with constant
τ=2msec) resulting in a time frequency representation, the
auditory spectrogram (1). More details can be found in [14].

y(t, f) = max[∂f (∂t(s(t) ∗ h(t; f))), 0] ∗ µ(t; τ) (1)

At the central auditory stages, cortical neurons analyze
details of the spectrographic representation, particularly the
signal changes or modulations along both time and fre-
quency. This operation is modeled as 2D affine Wavelet
transform. Each filter is tuned (Q=1) to a specific temporal
modulation ω0 (or rate in Hz) and spectral modulation Ω0

(or scale in cycles/octave or c/o), as well as directional
orientation in time-frequency space (+ for upward and −
for downward). For input spectrogram y(t; f), the response
of each cortical neuron is given by:

r±(t, f ;ω0,Ω0) = y(t, f) ∗t,f STRF±(t, f ;ω0,Ω0) (2)

where ∗t,f corresponds to convolution in time and frequency
and STRF± is the 2D filter response of each cortical neuron.
The resulting cortical representation is a mapping of the
sound from a one-dimensional time waveform onto a high-
dimensional space. In the current implementation, signals
were sampled at 8KHz and parsed onto 3-sec segments. For
the two-class problem described later, the model included
rate filters covering 0.5-32Hz in logarithmic resolution. For
the multi-class problem the cortical analysis included 10 rate
filters in the range of 40-256Hz and 7 scale filters in 0.125-8
c/o, also in logarithmic steps. The resulting cortical repre-
sentation was integrated over time to maintain only three
axes of rate-scale-frequency (R-S-F) and was augmented
with a nonlinear statistical analysis using support vector
machine (SVM) with radial basis function (RBF) kernels
[15]. Briefly, SVMs are classifiers that learn to separate the
patterns of cortical responses caused by the lung sounds. The
use of RBF kernels is a standard technique that allows one
to map data from the original space onto a new linearly
separable representational space. In the 2-class problem,
normal versus abnormal segments were considered. In the
multi-class problem categorization was divided into normal,
crackle and wheeze sounds where 3 binary classifiers one-
versus-all were build, SVMij , i,j∈ {1, 2, 3}, i 6=j. The final
decision was based on a majority voting strategy. Each model
performance was measured through a 10-fold cross validation
with data split into 90-10% for training and testing.

B. Performance Analysis

For the diagnostic accuracy of the model different perfor-
mance measures were used, all averaged over 10 independent
Monte Carlo runs. In all cases the classification rates (CRs)
are reported. For the two-class problem in particular, sen-
sitivity (Sens), specificity (Spec) and AUC, the area under
the Receiving Operating Characterictic curve (ROC) were
used. For the three-class, the 3-way ROC analysis proposed

by Mossman [16] was calculated. Mossman established an
analogy of the 2-class ROC analysis to the 3-class case,
where the volume under the ROC surface (VUS) expressed
the probability that three chosen examples, one each from
class 1, 2 and 3, will be classified correctly. Each example
is represented by a triplet of probabilites (p1, p2, p3), where∑k

i pi=1, and pi=P (y=i|x) expressing the confidence that
example x with label y belongs in class i. Plotting these
triplets in a three dimensional coordinate space, all ex-
amples are bounded by the triangle with triplets (1,0,0),
(0,1,0), (0,0,1). These vertices signify a 100% confidence
that an example belongs to class 1, 2 or 3 respectively.
VUS was obtained using Mossman’s decision rule III on
all randomly drawn trios: a trio of examples from each
class 1, 2 and 3 is considered correctly rated if the sum
of the lengths of the three line segments connecting each
triplet with the triangle corner associated to its class is
smaller than using any other combination to connect these
triplets to the triangle corners. A discriminating test based
on chance would obtain V US=1/6. As proposed in [17], to
compute pi, we considered each one of the 2-class SVMij

that discriminates between class i and j, with i6=j, i, j ∈
{1, 2, 3}. We first need to find the pairwise class probabilities
pij=P (y=i|y=i or j, x), that vector x belongs in class i
given SVMij and x. Assuming that distance d of x from
the hyperplane, as outputted by SVMij is as informative
as the input vector x, we estimate these probabilities by
p̂ij=P (y=i|y=i or j, d), by normalizing the correspond-
ing distances to [0, 1]. High probabilities are assigned to
examples with greater distances. Notice that pji=1−pij .
Having attained pij≈p̂ij for every (i, j) pair, we seek
the three posterior probabilities pi=P (y=i|x). With k=3
classes, P (

⋃k
j=1 y=j|x)=P (

⋃k
j=1,j 6=i(y=j) ∪ (y=i)|x)=1,

and
∑k

j=1,j 6=i P ((y=i) ∪ (y=j)|x) − (k − 2)P (y=i|x)=1,
which yields: pi = 1∑k

j=1,j 6=i
(pij)−1−(k−2)

. All pi were

further normalized so that
∑k

i pi=1 holds, and express the
confidence about the true class of example x.

C. Dataset

The chest sounds were acquired with a digital recording
stethoscope ThinkLabs Inc. connected to a MP3 player at
44, 1 KHz sampling rate in the noisy environment of a busy
hospital outpatient pediatric clinic in Kathmandu, Nepal.
Subjects were young children, healthy or with lower respi-
ratory illness. Two physicians annotated all cases and a total
number of 28 recordings of 15-sec duration were selected:
10 normal, 10 wheeze and 8 crackle cases. Our model does
not yet include a denoising phase, a necessary step especially
considering pediatric auscultations in this non ideal acquisi-
tion setup. To correctly evaluate the proposed method cases
containing only noise or without signal recording (due to
child movement) were excluded. All acquired lung signals
were downsampled and split as discussed earlier. Each 3-
sec segment maintained the same annotation as the original;
notice however that wheezes or crackles mostly occured
during a short period within the sound segment, resulting in
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many excperts being annotated as having an abnormal sound
without an actual event being present. Conductive and back-
ground noise-talking and/or crying, was strongly apparent,
rendering the accurate discrimination between normal and
abnormal sounds a difficult task.

III. RESULTS AND DISCUSSION

The joint R-S-F representation of each sound was consid-
ered based on the cortical model presented earlier, where
the SVM algortihm was able to discriminate normal and
abnormal cases with Sens=89.44% and Spec=80.50%. To
compare the benefit of the rate-scale representation over
existing techniques, the feature extraction method proposed
in [9] was applied: the power spectrum of each excerpt was
obtained and summed along the frequency axis ranging from
0-800Hz to form a feature vector. The authors used a neural
network with two hidden layers for data classification. Since
the focus is on the feature parametrization of lung sounds, we
need the same SVM backend to compare our method to that
from Waitman et al, called Spectral System (SS) in this study.
In line with the analysis in [9], we analyzed 3-sec segments
with the SS system but varied the feature vector lengths from
10 to 100. Best average performance was achieved for length
90. The AUC values were 0.9217 for the R-S-F and 0.7761
for the SS model. Summary results are presented in Table I
in the form of a confusion matrix. Columns correspond to
outcomes, rows to true annotations and the diagonal depicts
the correct classification % rates.

In order to understand the difficulties of classification
of the lung sounds and the ability of the proposed feature
dimensions to capture the lung sound characteristics, Fig. 1 is
presented. Fig. 1(a) shows a spectrogram of a normal subject.
Immediately clear are circular breathing patterns. However,
also apparent are noise-like patterns (time 1.2-2.8 sec) that
could be easily confused with transient events like crackles.
The right panel shows the rate-scale representation based
on the cortical analysis of the same signal segment. The
figure highlights the presence of a periodic breathing cycle
at 4Hz. Strong energy at both positive and negative temporal
modulations suggests that the signal fluctuates at 4Hz with
no particular upward or downward orientation. Spectrally,
the rate-scale pattern shows a concentration of energy in
lower scales (<1c/o). This pattern is again reflective of
the broadband-like nature of breathing patterns as well as
transient noise events. In contrast, Fig. 1(b)-(c) depict similar
spectrograms and rate-scale patterns for a diagnosed crackle
and wheeze case, respectively. The spectrograms of both
cases contain patterns that may easily be confused as wheeze-
like. Fig. 1(b) at time 2.5-2.8sec depicts a ”crying” interval,
not easily discernible as a non wheeze event (contrast with
1.1-1.7sec of Fig. 1(c)). On the other hand, the asummetry
of the rate-scale pattern for both cases begins to show clearer
distinction between normal and crackling and wheezing
events. Note that the colorbar of rate-scale plots on all cases
are different, even though spectrograms were normalized to
same level. This is indicative of differences in modulation
strength in the signal along both time and frequency.

TABLE I
AVERAGE CLASSIFICATION RATES % OF THE 2-CLASS PROBLEM

R-S-F Output SS Output
True Annotation Normal Abnormal Normal Abnormal

Normal 80.50 19.50 70.25 29.75
Abnormal 10.56 89.44 18.33 81.67

Average AUC values for R-S-F: 0.9217 and for SS: 0.7761
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Fig. 1. Time-frequency (column 1) and rate-scale representation (column 2)
of data used in the study, showing a normal(a), a crackle(b) and a wheeze(c)
case. Notice the difficulties in discrimination based on only time-freequency
contents. However distinction is clearer in the rate-scale representation due
to the asymmetry noticed comparing the normal with the adventitious cases
and a detailed look would indicate stronger components for crackles.

The importance of these feature dimensions can be fur-
ther investigated considering the more difficult task of a
3-class problem. Exploiting both symmetry and intensity
differences in the rate scale representation a discrimination
among normal, crackles and wheeze segments is possible
through the joint R-S-F setup, as described in the methods,
yieldng a VUS score 0.601. Recall that a classifier based
on chance would achieve VUS=0.167. Detailed CRs may be
found in Table II revealing that crackle segments (explosive
and short in duration) are more difficult to discriminate,
often confused with noise contaminating normal segments.
To judge the significance of the frequency components
information in the feature vector, all frequency information
was averaged resulting in the joint Rate-Scale (R-S) repre-
sentation (patterns in column 2 of Fig. 1), with VUS=0.729
and CRs as shown in Table II. Corresponding results on
the 2-class problem showed Sens=90.22%, Spec=73.50%,
AUC=0.9219. A possible reason for the performance jump
in the 3-class case compared to the R-S-F representation,
could be that knowledge of the specific frequency bands
of the abnormal sounds add non-informative details to the
model. Another explanation could be the sound set size: not
having access to adequate number of abnormal lung sound
recordings with enough frequency range variability could be

3141



TABLE II
AVERAGE CLASSIFICATION RATES % OF THE 3-CLASS PROBLEM FOR THE POPOSED METHOD

R-S-F Output R-S Output [R,S] Output
True Annotation Normal Crackle Wheeze Normal Crackle Wheeze Normal Crackle Wheeze

Normal 77.49 10.01 12.50 76.75 16.50 6.75 76.07 11.79 12.14
Crackle 21.25 39.25 39.50 19.50 45.76 34.74 20.71 50.35 28.93
Wheeze 20.60 23.20 56.20 10.02 16.38 73.60 10.00 21.71 68.29

Average VUS values for R-S-F: 0.601, for R-S: 0.729 and for [R,S]: 0.608

also affecting the performance. It is unclear at this point
how much frequency localized are the specific sound patterns
and whether the frequency coverage correlates with specific
pathological or ecological substrates. Further investigation is
ongoing to gain more insight into the nature of the data.

Finally, we closely investigated the importance of having
such a joint spectro-temporal modulation space. To this
effect, we assess the relevance of the marginal feature dimen-
sions for rates and scales, where we consider the rate alone
feature vector extending the scale representation ([R,S]) and
the achieved 3-class VUS score was 0.6075 and the 2-class
AUC was 0.8572. CRs are shown in Table II. We note that
the joint R-S representation appears more informative in
discriminating between the sounds of interest, compared to
both rates and scales in a concatenated vector.

IV. CONCLUSION

An automated multi resolution analysis of lung sounds was
introduced in this study. While the majority of the literature
methods is based on extracting frequency features and ana-
lyzing spectrograms or other time frequency representations,
this study proposes a spectro-temporal modulation feature
extraction, inspired from auditory cortical representations.
A real life application is considered with clinical pediatric
auscultation performed in non controlled noisy environments,
capturing possible variations of sound events in spontaneous
breathing conditions. SVM classifiers were trained on the
different extracted features and evaluated using correct clas-
sification rates and VUS scores, measuring the discriminating
ability among normal, crackle and wheeze cases.

The observed results revealed that lung sounds contain
more informative details than the time-frequency domain
can capture. Temporal and spectral modulation features are
able to increase the discrimination capability compared to
features based only on frequency axis. A joint rate-scale
representation is able to perform sufficient discrimination
even in noisy sound segments where talking and crying
can impede or complicate the identification of abnormal
sounds. This is the first step to a deeper understanding of
the signal processing characteristics defining sound events in
lung recordings, yielding promising results. Continued focus
will be to pre-process sounds applying denoising techniques,
specific oriented to background and conductive noise. Further
work will be to extract the breathing cycle and isolate
events related to inspiration or expiration, leading to a more
accurate discrimination of abnormal sounds, as indicators of
pulmonary conditions and their severity.
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