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Short abstract

Recent advances in deep learning have seen neural networks being applied to
all key parts of the modern IR pipeline, such as core ranking algorithms, click
models, query autocompletion, query suggestion, knowledge graphs, text simi-
larity, entity retrieval, question answering, and dialogue systems. The fast pace of
modern-day research has given rise to many different architectures and paradigms,
such as auto-encoders, recursive networks, recurrent networks, convolutional net-
works, various embedding methods, deep reinforcement learning, and, more re-
cently, generative adversarial networks, of which most have been applied to IR
settings. The amount of information available can be overwhelming both for ju-
nior students and for experienced researchers looking for new research topics and
directions. The aim of the tutorial is to provide an overview of the main network
architectures currently applied in IR and to show explicitly how they relate to
previous work and how they benefit IR research. Additionally, key insights into
IR problems that the new technologies give us are provided. The tutorial covers
methods employed in industry and academia, with in-depth insights into the un-
derlying theory, core IR tasks, applicability, key assets and handicaps, scalability
concerns and practical tips & tricks. We expect the tutorial to be useful both
for academic and industrial researchers and practitioners who want to develop
new neural models, use them in their own research in other areas or apply the
models described here to improve actual IR systems.



Previous offerings

NNA4IR was first presented at SIGIR 2017, Tokyo Japan [24] by the authors of this
proposal. We build on this first iteration of the tutorial and incorporate lessons
learnt. Based on user feedback, we reduce the material on semantic text matching
to one session instead of two, and add a session on recommender systems. Also,
given the importance of the topic in industry, we include an extra session devoted
to entities and an extra session on insights from industry. Finally, we add a
brief section to every session, devoted to efficiency issues regarding the methods
presented.

Extended abstract

Machine learning plays a role in many aspects of modern IR systems, and deep
learning is applied in all of them. The fast pace of modern-day research has
given rise to many approaches to many IR problems. The amount of information
available can be overwhelming both for junior students and for experienced re-
searchers looking for new research topics and directions. The aim of this full-day
tutorial is to give a clear overview of current tried-and-trusted neural methods
in IR and how they benefit IR.

Motivation

Prompted by the advances of deep learning in computer vision, neural networks
(NNs) have resurfaced as a popular machine learning paradigm in many other
directions of research, including IR. Recent years have seen NNs being applied to
all key parts of the typical modern IR pipeline, such as click models, core rank-
ing algorithms, dialogue systems, entity retrieval, knowledge graphs, language
modeling, question answering, and text similarity.

A key advantage that sets NNs apart from many learning strategies employed
earlier, is their ability to work from raw input data. Where designing features
used to be a crucial aspect and contribution of newly proposed IR approaches,
the focus has shifted to designing network architectures instead. As a conse-
quence, many different architectures and paradigms have been proposed, such as
auto-encoders, recursive networks, recurrent networks, convolutional networks,
various embedding methods, and deep reinforcement learning. The aim of this
tutorial is to provide an overview of the main network architectures currently
applied in IR and to show how they relate to previous work. The tutorial covers
methods applied in industry and academia, with in-depth insights into the un-
derlying theory, core IR tasks, applicability, key assets and handicaps, efficiency
and scalability concerns, and tips & tricks.

We expect the tutorial to be useful both for academic and industrial re-
searchers and practitioners who either want to develop new neural models, use
them in their own research in other areas or apply the models described here to
improve actual IR systems.



Brief outline of the topics to be covered

Table 1 gives an overview of the time schedule of the tutorial. The total time is 6
hours, plus breaks. We bring a team team of six lecturers, all with their specific

Table 1: Time schedule for NN4IR tutorial

Morning Afternoon

Preliminaries 45 min. Recommender systems 45 min.
Semantic matching 45 min. Modeling user behavior 45 min.
Learning to rank 45 min. Generating responses 45 min.
Entities 45 min. Industry insights 45 min.

areas of specialization. Each session will have two expert lecturers (indicated by
their initials below) who will together present the session.

Preliminaries [TK, MdR] The recent surge of interest in deep learning has
given rise to a myriad of model architectures. Different though the inner struc-
tures of NNs can be, many building blocks are shared. In this preliminary
session, we focus on key concepts, all of which will be referred to multiple
times in subsequent sessions. In particular we will cover distributed representa-
tions/embeddings [35], fully-connect layers, convolutional layers [25], recurrent
networks [34] and sequence-to-sequence models [43].

Semantic matching [CVG, BM] The problem of matching items based on
textual descriptions arises in many retrieval systems. The traditional IR ap-
proach involves computing lexical term overlap between query and document
[40]. However, a vocabulary gap occurs when query and documents use different
terms to describe the same concepts [29]. Semantic matching methods bridge
the vocabulary gap by matching concepts rather than exact word occurrences.
Neural network-based methods that provide a semantic matching signal come
in supervised, semi-supervised, and unsupervised flavours. In the supervised set-
ting, explicit (e.g., human-labelled relevance judgements [31, 36]) or implicit
labels (e.g., clicks [19, 37]) are available. In semi-supervised learning, domain-
specific or external information is used to generate pseudo-relevance labels that
are subsequently used to train a supervised approach [11]. Unsupervised methods
learn semantic representations without relevance labels by either combining pre-
trained word representations [13, 21, 51, 55, 56, 58] or learning representations
from scratch [2, 23, 27, 45-47].

Learning to rank [AB, MD] Capturing the notion of relevance for ranking
needs to account for different aspects of the query, the document, and their
relationship. Neural methods for ranking can use manually crafted query and
document features, and combine them with regards to a ranking objective. More-
over latent representations of the query and document can be learnt in situ. We



cover scenarios with different levels of supervision—unsupervised [41, 45, 46],
semi/weakly-supervised [11, 44], or fully-supervised using labeled data [36] or
interaction data [19].

Entities [CVG, TK] Entities play a central role in modern IR systems [12].
We cover neural approaches to solving the basic task of named entity recogni-
tion [8, 10, 26], as well learning representations in an end-to-end neural model
for learning a specific task like entity ranking for expert finding [46], prod-
uct search [45] or email attachment retrieval [48]. Furthermore, work related
to knowledge graphs will be covered, such as graph embeddings [5, 53, 57].

Recommender systems [MdR, BM] Deep learning has also found its way
into recommender systems. We cover learning of item (products, users) em-
beddings [4, 15, 49], as well as deep collaborative filtering using different deep
learning techniques and architectures [7, 52]. Furthermore, NN-based feature ex-
traction from content (such as images, music, text) [3, 32, 38], and session-based
recommendations with RNNs [18, 39] will be covered.

Modeling user behavior [AB, MdR] Modeling user browsing behavior plays
an important role in the development of modern IR systems. Accurately inter-
preting user clicks is difficult due to various types of bias. Over the last decade,
many click models based on Probabilistic Graphical Models (PGMs) have been
proposed [9]. Such click models can only model patterns that are explicitly en-
coded in the PGM. Recently, it was shown that recurrent neural networks can
learn to account for biases in user clicks directly from the click-through data, i.e.,
without the need for a predefined set of rules as is customary for PGM-based
click models [6]. Additionally, there are similar biases in click dwell times, which
the neural approach can account for too.

Generating responses [TK, MD] Recent inventions such as smart home de-
vices, voice search, and virtual assistants provide new ways of accessing infor-
mation. They require a different response format than the classic ten blue links.

Examples are conversational and dialog systems [30, 50] or machine reading
and question answering tasks where the model either infers the answer from
unstructured data, like textual documents that do not necessarily feature the
answer literally [16, 17, 22, 42, 54], or generates natural language given structured
data, like data from knowledge graphs or from external memories [1, 14, 28, 33].

Industry insights [AB, BM] Where the focus of academic papers can be on a
specific subtask, industry approaches have to ensure that a system works from
start to end. As a result, extra challenges are involved concerning the user ex-
perience. For example in Google’s SmartReply system [20] the neural model at
the core of the system is embedded in a much larger framework of non-neural
methods to make sure quality and efficiency requirements are met.

In this session, lessons learned from industry are shared and discussed.



Support materials supplied to attendees

Slides Slides will be made publicly available on http://nndir.com.

Bibliography An annotated compilation of references will list all work dis-
cussed in the tutorial and should provide a good basis for further study.

Code Apart from the various open source neural toolkits (Tensorflow, Theano,
Torch) many of the methods presented come with implementations released
under an open source license. These will be discussed as part of the presenta-
tion of the models and algorithms. We provide a list pointers to available code
bases.

Intended audience

— Intermediate level
— Familiarity with information retrieval terminology, basics of machine learning
and neural networks. No special skills are required.
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