
Towards Causal Datacenter Networks
Ellis Michael

University of Washington
Dan R. K. Ports
Microsoft Research

ABSTRACT
Traditionally, distributed systems conservatively assume an
asynchronous network. However, recent work on the co-
design of networks and distributed systems has shown that
stronger ordering properties are achievable in datacenter net-
works and yield performance improvements for the distributed
systems they support. We build on that trend and ask whether
it is possible for the datacenter network to order all messages
in a protocol-agnostic way. This approach, which we call om-
nisequencing, would ensure causal delivery of all messages,
making consistency a network-level guarantee.

ACM Reference Format:
Ellis Michael and Dan R. K. Ports. 2018. Towards Causal Datacen-
ter Networks. In Proceedings of 5th Workshop on Principles and
Practice of Consistency for Distributed Data , Porto, Portugal, April
23–26, 2018 (PaPoC’18), 4 pages.
https://doi.org/10.1145/3194261.3194269

1 INTRODUCTION
The asynchronous network has long been viewed as an obsta-
cle to achieving data consistency in distributed systems, as it
can reorder messages arbitrarily. In this work, we ask whether
a network can instead aid in building consistent systems. That
is, we ask: can a datacenter network itself provide consistency
guarantees?

Our work is motivated by a confluence of trends in network
design. Recent work has shown that it is possible to build
highly efficient packet sequencing devices, leveraging new
programmable network hardware. These have been used by
new distributed systems to accelerate specific applications,
like Paxos-based replication and distributed transactions.

We take this further, asking whether it is possible to se-
quence every network message – a concept we dub omnise-
quencing. While establishing a total global order of message

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PaPoC’18, April 23–26, 2018, Porto, Portugal
© 2018 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5655-8/18/04. . . $15.00
https://doi.org/10.1145/3194261.3194269

delivery might be desirable, doing so at large scale appears in-
feasible because it places strict limits on concurrent message
delivery. Weaker consistency levels, such as causal delivery,
however, may well be possible, and these nevertheless of-
fer substantially stricter semantics than traditional unordered
message delivery. We discuss several deployment scenarios
for an omnisequenced network, including a dedicated net-
work, a virtualized overlay on an existing physical network,
and a multi-tenant configuration. In effect, we aim to raise the
bar on consistency, making causal delivery the new baseline.

A causally ordered datacenter network resembles tradi-
tional software-based primitives like causal multicast from
ISIS [1], but can be implemented efficiently and at large scale.
It could be used, for example, to transparently make an ex-
isting storage system causally consistent, or as a primitive to
simplify the design of higher-level protocols such as transac-
tion processing.

This is very early-stage work. While we sketch a particular
system design below, the main purpose of this paper is to
provoke discussion about the possibility of network-level
consistency guarantees and their possible applications.

2 BACKGROUND
The standard approach to distributed systems design is to
assume nothing about the network – to model it as an asyn-
chronous, lossy medium that provides no guarantees on which
packets will be delivered, at what time, or in what order. And
indeed practical networks regularly demonstrate drops, de-
lays, and reorderings. Latency varies depending on network
utilization. Modern networks are designed with multiple paths
between any two nodes and aggressively exploit this prop-
erty for increased throughput; as a result, latency variance
across different paths can cause packets to be reordered. Mes-
sages are dropped regularly: not only during (relatively rare)
failures, but also as a means of signaling congestion.

Bleak as this situation may seem, there is in fact reason for
optimism. Today’s network devices are far from the “dumb”
hubs of the past – a modern network switch runs hundreds
of protocols, classifying packets and applying increasingly
complex protocol-specific rules at line rate. These rules do
not simply call for packets to be forwarded but can also in-
spect application-level content, perform computations, and
modify the packet [4]. This power is exposed to system ad-
ministrators through software-defined networking [3]. The

https://doi.org/10.1145/3194261.3194269
https://doi.org/10.1145/3194261.3194269

PaPoC’18, April 23–26, 2018, Porto, Portugal Ellis Michael and Dan R. K. Ports

net result is that, at least within the confines of a single data-
center, one ought to envision the network itself as a powerful
computational element.

While no “killer app” has yet emerged for this level of
programmability, it has been applied to improve congestion
control [20], load balancing [8], and network monitoring [16].
Most relevantly, a recent line of work (including ours) has
employed in-network processing to accelerate consensus op-
erations [5, 12, 13, 18]. A key idea in this approach is to
build a sequencer that assigns increasing sequence numbers
to packets that pass through it, which can be done highly effi-
ciently [9, 13]. Routing a subset of messages (e.g., operations
for a Paxos-replicated state machine) through one sequencer
at a time induces a total ordering over that set of messages,
and can be used to build a high-performance consensus proto-
col [13].

3 OMNISEQUENCING
Can we extend the idea of network-level sequencing beyond
the scale of a replica group to that of an entire application – or
potentially an entire datacenter? Doing so presents significant
scalability challenges, but has the potential to greatly simplify
the development of applications or improve data consistency.

The obstacles to scalable total-order sequencing are both
engineering-level and fundamental ones. In particular, atomic
totally-ordered delivery requires coordination and limits po-
tential concurrency, making its implementation at large-scale
appear intractable. We target, instead, the weaker model of
causal delivery of messages. In this section, we sketch a de-
sign to illustrate that causal delivery can be achieved at scale
using a co-design of network-level and server-level optimiza-
tions.

3.1 Causal Delivery
We begin by defining the causal delivery model we target.
In this model, messages are delivered to nodes in a way that
respects the happens-before (→) relation [2, 11, 19]. More
specifically, consider two messages, m and m′, which are both
sent to the same node. Let sm denote the send event of m and
rm denote the delivery of m. Causal delivery is the property:

sm → sm′ =⇒ rm → rm′

Causal delivery implies FIFO delivery across single channels.
Figure 1 shows an example of an execution in which causal
delivery is not satisfied.

Causal delivery has traditionally been maintained using
protocols based on vector clocks. In a broadcast network, it
suffices to have each node maintain a vector clock, updating it
as messages are received, and attach its vector clock to every
message it receives. To ensure causal delivery, nodes delay
delivery of a message until they have delivered all preceding
messages, as indicated by its vector clock.

Figure 1: The canonical example of an execution which respects
FIFO but not causal delivery.

Figure 2: An illustration of how FIFO links in a tree topology
guarantee causal delivery. Here, sm1 → sm2 → sm3 → sm4 . By the
time m2 is delivered, m1 must have been sent across l1. Similarly,
the delivery of m3 implies m1 was sent across l2. Therefore, m4
will be delivered after m1.

When nodes can communicate directly with each other
through unicast messages, they must maintain extra state.
Specifically, Schiper et al.’s protocol for causal delivery re-
quires maintaining an On×n (where n is the total number of
nodes) ordering buffer that encodes, for each node, the latest
message number that every other node sent to it [19]. This
information must be attached to every message sent in the
system.

Neither of these two approaches is practical for large
datacenter-scale systems. Relying on a broadcast network
limits the message processing capability of an entire system
to that of a single node, while the second requires an un-
manageably large amount of metadata to be attached to each
message.

3.2 A Scalable Solution
Taking inspiration from recent work on co-designing net-
works and distributed systems [12, 13, 18], we propose a
mechanism in which the physical topology of the network
itself is used to guarantee causal delivery of messages. For
simplicity, consider a network topology that is a simple tree.1

Suppose that message delivery could be made reliable and that
all links ensure FIFO delivery. It is not hard to see that such
a network would guarantee causal delivery of all messages;
Figure 2 illustrates this through an example.

Modern networking hardware is capable of inserting a per-
outgoing-port sequence number on each packet and checking
1Tree-based network topologies are universal, though real network topologies
usually incorporate multiple trees for fault tolerance and load balancing. We
revisit this issue in the following section.

Towards Causal Datacenter Networks PaPoC’18, April 23–26, 2018, Porto, Portugal

that each incoming packet’s sequence number matches the
expected one for that port. This can be used to verify that a
link is indeed a FIFO channel.

The problem of lost messages. Causal delivery implies
that if any message is lost, no causally dependent messages
– including any subsequent message from the same sender –
can be delivered. Because we envision omnisequencing being
implemented in network hardware with limited capability
to maintain state, the standard approach to building reliable
FIFO channels (buffering the messages sent across each link
until acknowledged) cannot be used. However, message loss
can be detected as a gap in sequence numbers arriving on
some link, implying that some message sent from the subtree
rooted at that link was lost. Such a failure could either be
exposed to the application to recover from [13], or trigger a
network-level recovery protocol.

A simple recovery protocol might invoke a message re-
covery coordinator that temporarily pauses message delivery
across the link in question, then contacts each server in the
subtree to obtain the set of outstanding, unacknowledged mes-
sages. It then delivers each of these pending messages in a
causally-consistent order – achievable by having each server
maintain a logical clock – before resuming normal operation.
Such a protocol is expensive! However, link-level flow control
and other technologies (collectively referred to as “lossless
Ethernet”) can make packet loss extremely rare – to the point
that others have advocated treating packet loss as equivalent
to node failure [10]. In light of that, an expensive protocol
may indeed be tolerable.

Note that the failure of a switch can be recovered from in
the same way, by treating all of its links as having dropped
messages. The switch can then be replaced using a standard
rerouting mechanism.

3.3 Virtual Omnisequencing
Above, we have assumed that the datacenter network is a
simple tree. While this assumption is not wholly without merit
– the spanning tree protocol [17], which deactivates links until
the network forms a tree, has been a mainstay of network
design for three decades – today’s networks are designed to
exploit redundant links for higher bandwidth [6, 15].

Our design above, by requiring a simple tree topology,
limits the bisection bandwidth of an omnisequenced network
to the bandwidth of a single link. We propose two strategies
for mitigating this problem by overlaying an omnisequenced
network onto a more well-connected physical network.

First, note that only a tree topology is only required for mes-
sages of a single causal domain. Separate trees could be im-
plemented for independent traffic, either on separate physical
networks or virtualized onto one network. The virtualization

approach is ideally suited to the multi-tenant datacenter set-
ting. Cloud providers are increasingly offering configurable
deployment options to their customers. A causally-ordered
network could be another such offering. The datacenter opera-
tor could then deploy many virtual omnisequencing networks,
each providing causal message delivery to a different cus-
tomer.

Second, note that in the tree topology is only necessary in
establishing a causal order for message deliveries. Follow-
ing the classic networking principle of separating the control
plane from the data plane, nodes could send bulk data across
the traditional network as normal, and send delivery notifica-
tions for those messages as omnisequenced packets. A node
receiving a message would wait for both the message and the
delivery notification (containing a unique identifier for the
message).

Separating the ordering of messages from the transfer of
data has the potential to not only increase maximum band-
width but also further decrease the probability of dropped
packets on the omnisequencing network. The small, uniform
size of delivery notifications could enable aggressive opti-
mization and prioritization [7, 18].

4 DISCUSSION
Previous work has shown that vector timestamps for causal
consistency can be compressed by exploiting temporal local-
ity [14]. Omnisequencing can be seen as compressing order-
ing information by exploiting spatial locality in the network,
while still providing the gap detection property that is crit-
ical for causal message delivery. All messages sent across
the same link are conflated to the same sequence number,
no matter their origin. Unlike schemes which involve nodes
and messages having On or On2 separate timestamps, our
approach is space-efficient and implementable in network
hardware.

Omnisequencing is an extension of previously proposed
sequencing approaches [12, 13] while still providing the same
guarantees. The one missing feature from the proposal above
is support for multicast and similar primitives; however, this
is readily implementable. Whereas previous sequencing solu-
tions were application specific, omnisequencing is a general
way to provide a strong ordering property in the network,
enforcing consistency across application boundaries.

We have focused on causal delivery as the network con-
sistency model here, as it is relatively well understood. An
open question is whether there are other weaker consistency
models (perhaps including those yet to be discovered!) that
support both an efficient implementation and useful seman-
tics in the network context. Regardless, we believe that recent
advances in network hardware provide an exciting new ca-
pability to implement consistency primitives at the network

PaPoC’18, April 23–26, 2018, Porto, Portugal Ellis Michael and Dan R. K. Ports

level, offering the potential to provide performance gains for
and simplify the design of both strong and weakly consistent
distributed systems.

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under award CNS-1615102 and a Grad-
uate Research Fellowship, and by gifts from Google and
VMware.

REFERENCES
[1] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in dis-

tributed systems. In Proceedings of the 11th ACM Symposium on
Operating Systems Principles (SOSP ’87), Austin, TX, USA, Oct. 1987.

[2] K. P. Birman and T. A. Joseph. Reliable communication in the presence
of failures. ACM Trans. Comput. Syst., 5(1):47–76, Jan. 1987.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 44(3):87–95, July 2014.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN. In Pro-
ceedings of ACM SIGCOMM 2013, pages 99–110. ACM, 2013.

[5] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé. Netpaxos:
Consensus at network speed. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, SOSR ’15,
pages 5:1–5:7, New York, NY, USA, 2015. ACM.

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: A scalable and flexible data
center network. In Proceedings of ACM SIGCOMM 2009, Barcelona,
Spain, Aug. 2009.

[7] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W.
Moore, S. Hand, and J. Crowcroft. Queues don’t matter when you
can JUMP them! In Proceedings of the 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’15), Oakland,
CA, USA, May 2015. USENIX.

[8] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica. NetCache: Balancing key-value stores with fast in-network
caching. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP ’17), Beijing, China, Oct. 2017. ACM.

[9] A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for
high performance RDMA systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 437–450, Denver, CO, June 2016.
USENIX Association.

[10] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst: Fast, scalable
and simple distributed transactions with two-sided (RDMA) datagram
RPCs. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 185–201, Savannah, GA, 2016.
USENIX Association.

[11] L. Lamport. Time, clocks, and ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[12] J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-free consistent
transactions using in-network concurrency control. In Proceedings of
the 26th ACM Symposium on Operating Systems Principles (SOSP ’17),
Beijing, China, Oct. 2017. ACM.

[13] J. Li, E. Michael, A. Szekeres, N. K. Sharma, and D. R. K. Ports. Just
say NO to Paxos overhead: Replacing consensus with network ordering.
In Proceedings of the 12th USENIX Symposium on Operating Systems

Design and Implementation (OSDI ’16), Savannah, GA, USA, Nov.
2016. USENIX.

[14] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd.
I can’t believe it’s not causal! scalable causal consistency with no
slowdown cascades. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’17), pages 453–468, Boston, MA,
2017. USENIX Association.

[15] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat. PortLand: A scalable
fault-tolerant layer 2 data center network fabric. In Proceedings of
ACM SIGCOMM 2009, Barcelona, Spain, Aug. 2009.

[16] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim. Language-directed hardware design for
network performance monitoring. In Proceedings of ACM SIGCOMM
2017, Los Angeles, CA, USA, Aug. 2017. ACM.

[17] R. Perlman. An algorithm for distributed computation of a spanning
tree in an extended lan. In Proceedings of ACM SIGCOMM 1985,
Whistler, BC, Canada, Sept. 1985. ACM.

[18] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy.
Designing distributed systems using approximate synchrony in data-
center networks. In Proceedings of the 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’15), Oakland,
CA, USA, May 2015. USENIX.

[19] A. Schiper, J. Eggli, and A. Sandoz. A new algorithm to implement
causal ordering. In Proceedings of the 3rd International Workshop on
Distributed Algorithms, pages 219–232, London, UK, 1989. Springer-
Verlag.

[20] N. K. Sharma, A. Kaufmann, T. Anderson, C. Kim, A. Krishnamurthy,
J. Nelson, and S. Peter. Evaluating the power of flexible packet process-
ing for network resource allocation. In Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’17), Boston, MA, USA, Mar. 2017. USENIX.

	Abstract
	1 Introduction
	2 Background
	3 Omnisequencing
	3.1 Causal Delivery
	3.2 A Scalable Solution
	3.3 Virtual Omnisequencing

	4 Discussion
	References
	References

