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Machine learning brings social disruption at scale
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Machine learning is not magic (training time)
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Machine learning is not magic (inference time)
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Machine learning is deployed in adversarial settings

Mickey Mouse Baby Is in Trouble When Hiding In a...

@ TayTweets X m

@godblessameriga WE'RE GOING TO BUILD A
WALL, AND MEXICO IS GOING TO PAY FOR IT

Tay chatbot YouTube filtering

Training data poisoning Content evades detection at inference



Machine learning does not always generalize well (1/2)
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Training data Test data



What if the adversary systematically poisoned the data?

Label: Fish o 7 Label: Fish

A small
perturbation
to one
training
example:

Can change
multiple test
predictions:

Orig (confidence): Dog (97%) Dog (98%) Dog (98%) Dog (99% Dog (98%)
New (confidence): Fish (97%) Fish (93%) Fish (87%) Fish (63%) Fish (52%)

(Understanding Black-box Predictions via Influence Functions, Koh and Liang)



What if the adversary systematically evaded at inference time?

Lissa Marie <iissa_mariodiad cor> | 1351 (51 mirates ago) K &
Hi,

1 am Lissa Marie;
Business Optimization. We'll fficiectly handle such time-corsuming tasks for

resource cost. You don't even have to S L st tn i
resource intensive tasks from us.

We are well versed with Google Panda,
companies that sdopted these uj
the highest standards.

Our core focus inchudes the fallowng industry vericals:-

Only quality and relevant directory submissions

Bookmarking on relevant and best PR value websites

Keyword oriented articles

Relevant directory submissions

Local Google Business Listing with its

Business listings on different websites
of customers through SMO

Local Classified posting according to your business location

Press Release ission on high traffic i

Third party blog creation and posting

Web 2.0 creation and promotion

i x + PR campargn with ot Google Adwards caried xparts

& sign(VgJ (0, x,v)) ; W sct adot e Goog e

emgn(VmJ(O, x, y)) guidelines of Google and majcr search enges 1o

“panda” “nematode” “gibbon” Sovarne T oon oot cairemant an reaart ue propial 1o s bt Son arharen
57.7% confidence 8.2% confidence 99.3 % confidence Looking forwand 1o yor et nd ey RN

Best Regards,

Mare Lissa, you i

your blue signature )

(Goodfellow et al., 2014)

B. DISEASED High PUE
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Biggio et al., Szegedy et al., Goodfellow et al., Papernot et al., ...
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Machine learning does not always generalize well (2/2)

Training data Test data

Membership inference attack (Shokri et al.) 10



What is the threat model? s“é@

Adversarial goal Attack / defense example Q

: : Data poisoning
g’: Data integrity (Koh and Liang, 2017) .
c
E Model integrity @if:,?‘;?fn ‘
Data confidentiality Fe‘ﬂﬁiﬁﬁf,,'??f;} ing
: RAPPOR
Data privacy (Erlingsson, 2014)
. . Adversarial examples
Model integrity (Szegedy et al,, 2013)
o i o CryptoNets
% Data confidentiality (Dowiin et al.,, 2016)
& .
= , . Model extraction
£ Model confidentiality (Tramer et al., 2016)
. Membership inference
Data Privacy (Shokri et al., 2017)

[

Towards the Science of Security and Privacy in Machine Learning [[EEE EuroS&P 2018]

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman




Attacking Machine Learning Integrity
with Adversarial Examples



The threat model

Attacker may see the model: attacker needs to know details of the machine learning model

to do an attack --- aka a white-box attacker Gf
ML

13



Jacobian-based Saliency Map Approach (JSMA)

9
}&:’6“:’."\‘. Neural Network
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classified as “1”
by a DNN
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Architecture
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&

0X
) Misclassification
Check for:
F(X+6X)=4
Adversarial Sample
no . ) ”
misclassified as “4
by a DNN
F(X*) =4

[

The Limitations of Deep Learning in Adversarial Settings [I[EEE EuroS&P 2016]

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami
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Output classification
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Useful to think about
definitions and threat model

f

... beyond deep learning ... beyond computer vision

Adversarial examples...

‘ 8@@ P[X=Malware] = 0.90
O, sig® P[X=Benign] = 0.10

P[X*=Malware] = 0.10
P[X*=Benign] = 0.90

Decision Trees

[ Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples [arXiv preprint]
__Nicolas Papernot, Patrick McDaniel, and lan Goodfellow

[ Adversarial Attacks on Neural Network Policies [arXiv preprint]
. Sandy Huang, Nicolas Papernot, lan Goodfellow, Yan Duan, Pieter Abbeel

[ Adversarial Perturbations Against Deep Neural Networks for Malware Classification [ESORICS 2017]
Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, Patrick McDaniel
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http://www.youtube.com/watch?v=4r_KCjKHV_M

The threat model

Attacker may not see the model: attacker who knows very little (e.g. only gets to ask a few

questions) --- aka a black-box attacker
4>
SES
4>

17



Attacking remotely hosted black-box models

o~
.

“no truck sign”

Remote
ML sys
“STOP sign”

“STOP sign”

(1) The adversary queries remote ML system for labels on inputs of its choice.

[

Practical Black-Box Attacks against Machine Learning [AsiaCCS 2017]
Nicolas Papernot, Patrick McDaniel, lan Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami




Attacking remotely hosted black-box models

sut‘;:i?tljte l:neLms(;;:
\/
“no truck sign”

“STOP sign”
“STOP sign”

(2) The adversary uses this labeled data to train a local substitute for the remote system.

19



Attacking remotely hosted black-box models

Local
substitute

Remote
ML sys

“no truck sign”
“STOP sign”

(3) The adversary selects new synthetic inputs for queries to the remote ML system based on the local
substitute’s output surface sensitivity to input variations.



Attacking remotely hosted black-box models

Local —> @ —>
substitute

ML sys

(4) The adversary then uses the local substitute to craft adversarial examples, which are
misclassified by the remote ML system because of transferability.

21



Cross-technique transferability

o DNNF 38.27  23.02 8.36
&
=
< ol
o
2 LR} 6.31 11.29
(@)}
C
c
(]
O SsyM| 2.51 5.19
()]
{ et
=
o
S DT} 0.82 3.31
(]
o
= |
(@]
“KNNE 11.75 | 42.89
DNN LR SVM DT KNN

Target Machine Learning Technique

[ Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples [arXiv preprint] ]
. : . 22
Nicolas Papernot, Patrick McDaniel, and lan Goodfellow




Properly-blinded attacks on real-world remote systems

Adversarial examples

Remote Platform ML technique Number of queries misclassified
(after querying)
@ MetaMind Deep Learning 6,400 84.24%
amazon Logistic Regression 800 96.19%
webservices*
) Unknown 2,000 97.72%
Google Cloud Platform

All remote classifiers are trained on the MNIST dataset (10 classes, 60,000 training samples)
23






Defending against adversarial examples




Learning models robust to adversarial examples is hard

Error spaces containing adversarial Learning or detecting adversarial
examples are large examples creates an arms race

0.35

el
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%0.15

£ 0.10

0.05

0.00

0 50 100 150 200
Number of orthogonal attack directions

Is attacking machine learning easier than defending it? [Blog post at www.cleverhans.io]
lan Goodfellow and Nicolas Papernot 26




What makes a successful deep neural network?

Layer name Neural architecture Representation spaces

Softmax | O O | Panda

-

| LES
3rd hidden |OQOO| oy

4 HI9%
2nd hidden |OOQO| B9
1st hidden |O O O Ol

Inputs

Ly

>
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What makes a successful adversarial example?

Layer name Neural architecture Representation spaces Nearest neighbors

Softmax | O O | School Bus

-

g

3rd hidden |O O O Ol > = =
4 o

znatiscen [© © © O] B
1st hidden |O O O Ol
R B

Inputs

>




Nearest neighbors indicate support from training data...

Layer name

Softmax

3rd hidden

2nd hidden

1st hidden

Inputs

Neural architecture

OO0

>

0000

>

0000

-

0000

>

Representation spaces

Panda

School Bus

Nearest neighbors

HE9

HE 9

[

) =y
- =k =



.. Deep k-Nearest Neighbors (DkNN) classifier

School Bus

1. Searches for nearest neighbors in the training data at each layer Panda
2. Estimates the nonconformity of input x for each possible label y %
3. Apply conformal prediction to compute:

a. Confidence 3

“How likely is the prediction given the training data?”

b. Credibility

“How relevant is the training data to the prediction?”

Y mag 2
S= R

¢ wuyp =
— = 7

1] e
&

1]
# [
B

Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning [arXiv preprint]
Nicolas Papernot, Patrick McDaniel

———

30




Example applications of DKNN credibility
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Implications for the attacker and defender

Attacker Defender
HEo@Enan HEE Reject low credibility predictions:
DENEEESEN S N
HoOoBEBBEEEEEREE -> explicit tradeoff between clean
EEEERERET"HENEGGN accuracy and adversarial accuracy
EEEREBEETTE"N
BN S BEE" B Active learning: more training data through
BN | EEHEHRD human labeling of rejected predictions
BENSENFENEE"

AEEEEENET EHH Contributes to breaking “black-box” myth
ERFOEENEEN
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Some (surprising) connections to fairness & interpretability

5 o
/ 4 74
k. P N
o+ — 2 Wi
A i8S
| no ' o
V) AN ‘4 A
R A

Prediction: Basketball (68%)

Prediction: Racket (49%)

Adversarial Examples that Fool both Human and Computer
Vision [arXiv preprint]

Gamaleldin F. Elsayed, Shreya Shankar, Brian Cheung,
Nicolas Papernot, Alex Kurakin, lan Goodfellow, Jascha
Sohl-Dickstein
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Machine Learning with Privacy



Types of adversaries and our threat model

—— Model querying (black-box adversary)
- -box |
@ ? Shokri et al. (2016) Membership Inference Attacks against ML Models

Fredrikson et al. (2015) Model Inversion Attacks

Model inspection (white-box adversary)

Zhang et al. (2017) Understanding DL requires rethinking generalization

In our work, the threat model assumes:

- Adversary can make a potentially unbounded number of queries
- Adversary has access to model internals

35



A definition of privacy: differential privacy

Randomized
Algorithm

Randomized
Algorithm

Answer 1
Answer 2

Answer n

Answer 1
Answer 2

Answer n

"B
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Private Aggregation of Teacher Ensembles
(PATE)

Partition 1 Teacher 1
Partition 2 > Teacher 2
Sensitive . .
Data Partition 3 Teacher 3
Partition n Teacher n
— > Training —  Data flow

Semi-supervised Knowledge Trar]sfer for Deep Learning from Private Training Data [ICLR 2017 best paper]
Nicolas Papernot, Martin Abadi, Ulfar Erlingsson, lan Goodfellow, and Kunal Talwar




Aggregation

Count votes

nJ(:E’) = |{Z : 6 E Lo, fz(f) = ]}|

Take maximum

f(e) = angme {n |

38



Intuitive privacy analysis

If most teachers agree on the label, it does not depend on
specific partitions, so the privacy cost is small.

If two classes have close vote counts, the disagreement
may reveal private information.

39



Noisy aggregation

Count votes Add Laplacian noise Take maximum

I zap (1) $(a) = angmax {ny(@) + Lo (1)

nJ(:E’) = |{Z : 6 E Lo, fz(f)

40



Teacher ensemble

Teacher 1

Teacher 2

Teacher 3

Partition 1
Partition 2

Sensitive N
Data Partition 3
Partition n

Aggregated
Teacher

Teachern

—— Training

Data flow

11



Student training

Not available to the adversary I Available to the adversary

Partition 1 Teacher 1 I
Partition 2 Teacher 2 I
Sensitive . Aggregated :
Data Partition 3 Teacher 3 Teacher T Student Queries
Partition n Teacher n
I Public
Data
— Training ——  Inference Data flow

42



Why train an additional “student” model?

The aggregated teacher violates our threat model:

c Each prediction increases total privacy loss.

Privacy budgets create a tension between the accuracy and number of predictions.

a Inspection of internals may reveal private data.

Privacy guarantees should hold in the face of white-box adversaries.

43



Student training

Not available to the adversary I Available to the adversary

Partition 1 Teacher 1 I
Partition 2 Teacher 2 I
Sensitive . Aggregated :
Data Partition 3 Teacher 3 Teacher T Student Queries
Partition n Teacher n
I Public
Data
— Training ——  Inference Data flow

44



Deployment

I Available to the adversary

Student

——

Queries

—  Inference

45



Differential privacy analysis

Differential privacy:
A randomized algorithm M satisfies (¢,8) differential privacy if for all pairs of neighbouring
datasets (d,d’), for all subsets S of outputs:

PriM(d) e S| <e*Pr[M(d") e S| +§

Application of the Moments Accountant technique (Abadi et al, 2016)
Strong quorum = Small privacy cost

Bound is data-dependent: computed using the empirical quorum

46



Trade-off between student accuracy and privacy

Bm SVHN
mmm MNIST

25+ B Adult
dPathak et al., 2011)

N
(@]

J(Papernot et al., 2017)

=
o

HPapernot et al., 2017)
dShokri et al., 2015)

Error rate of privacy-preserving model
=
w

5 u
dAbadi et al., 2016)
HPapernot et al., 2017) dShokri et al., 2015)
0 2 4 6 8 200000 600000

Value of epsilon parameter in differential privacy
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Synergy between utility and privacy

1. Check privately for consensus
2. Run noisy argmax only when consensus is sufficient

- = LNMaX = » LNMax “’ ) o)
‘c LB B ™
X 74 e== Confident-GNMax - 1.42 # g == Confident-GNMax R B 1200~ Lo LNM§x answers | i
s = o J— Confident-GNMax %
o | = 1000 answers
= < 4 2
5 72 “ g
O o o 800
i o3 =
@70 0 $ 600
) o o
G 68 9 o 400
S > g
e -
g a ! E 200
66 =
‘ 0 : \ , : 0- : 3
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0% 20% 40% 60% 80% 100%

Number of queries answered Number of queries answered Percentage of teachers that agree

Scalable Private Learning with PATE [ICLR 2018]
Nicolas Papernot, Shuang Song, llya Mironov, Ananth Raghunathan, Kunal Talwar, Ulfar Erlingsson 48




Trade-off between student accuracy and privacy

s SVHN
B MNIST

25- e Adult
dPathak et al., 2011)

N
o

JPapernot et al., 2017)

10- 4APapernot et al., 2017)
dShokri et al., 2015)

Error rate of privacy-preserving model
()
(9)]

5
dAbadi et al., 2016)
apernot et al., 2017) dShokri et al., 2015)

o 2 4 6 8 200000 600000
Value of epsilon parameter in differential privacy
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Machine learning and Goodhart's law

Economist Charles Goodhart posited in 1975 that ...

“When a measure becomes a
target, it ceases to be a good
measure”

As ML models make more and more decisions, we will
have to satisfy them, and they will become targets.

50
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Thank you for listening!
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