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Machine learning brings social disruption at scale
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Healthcare
Source: Peng and Gulshan (2017)

Education
Source: Gradescope

Transportation
Source: Google

Energy
Source: Deepmind



Machine learning is not magic (training time)
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Training data



Machine learning is not magic (inference time)
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Machine learning is deployed in adversarial settings
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YouTube filtering

Content evades detection at inference

Tay chatbot

Training data poisoning



Machine learning does not always generalize well (1/2)
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Training data Test data
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What if the adversary systematically poisoned the data?

8(Understanding Black-box Predictions via Influence Functions, Koh and Liang)
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What if the adversary systematically evaded at inference time?

Biggio et al., Szegedy et al., Goodfellow et al., Papernot et al., ...

(Goodfellow et al., 2014)



Machine learning does not always generalize well (2/2)
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Training data Test data

Cat
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Cat
Dog

Membership inference attack (Shokri et al.)



What is the threat model?
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Data integrity

Model integrity

Model integrity

Data poisoning
(Koh and Liang, 2017)

Backdoor
(Gu et al., 2017)

Adversarial examples
(Szegedy et al., 2013)

Data confidentiality

Membership inference
(Shokri et al., 2017)

Data Privacy

CryptoNets
(Dowlin et al., 2016)

Model confidentiality Model extraction
(Tramer et al., 2016)

Data confidentiality

Data privacy RAPPOR
(Erlingsson, 2014)

Federated learning
(McMahan, 2017)

Adversarial goal Attack / defense example

Towards the Science of Security and Privacy in Machine Learning [IEEE EuroS&P 2018]
Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman



Attacking Machine Learning Integrity 
with Adversarial Examples
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Attacker may see the model: attacker needs to know details of the machine learning model 

to do an attack --- aka a white-box attacker

Attacker may not see the model: attacker who knows very little (e.g. only gets to ask a few 

questions) --- aka a black-box attacker

The threat model
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ML

ML



Jacobian-based Saliency Map Approach (JSMA)
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The Limitations of Deep Learning in Adversarial Settings [IEEE EuroS&P 2016]
Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami
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Adversarial examples...

… beyond deep learning 
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… beyond computer vision

Logistic Regression

Support Vector Machines

Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples [arXiv preprint]
Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow

P[X=Malware] = 0.90
P[X=Benign] = 0.10 

P[X*=Malware] = 0.10
P[X*=Benign] = 0.90 

Adversarial Attacks on Neural Network Policies [arXiv preprint]
Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, Pieter Abbeel
Adversarial Perturbations Against Deep Neural Networks for Malware Classification [ESORICS 2017]
Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, Patrick McDaniel

Nearest Neighbors

Decision Trees

Useful to think about 
definitions and threat model

http://www.youtube.com/watch?v=4r_KCjKHV_M


Attacker may see the model: attacker needs to know details of the machine learning model 

to do an attack --- aka a white-box attacker

Attacker may not see the model: attacker who knows very little (e.g. only gets to ask a few 

questions) --- aka a black-box attacker

The threat model
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Attacking remotely hosted black-box models
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Remote 
ML sys

“no truck sign”
“STOP sign”

“STOP sign”

(1) The adversary queries remote ML system for labels on inputs of its choice. 

Practical Black-Box Attacks against Machine Learning [AsiaCCS 2017]
Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z.Berkay Celik, and Ananthram Swami
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Remote 
ML sys

Local 
substitute

“no truck sign”
“STOP sign”

“STOP sign”

(2) The adversary uses this labeled data to train a local substitute for the remote system.

Attacking remotely hosted black-box models
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Remote 
ML sys

Local 
substitute

“no truck sign”
“STOP sign”

(3) The adversary selects new synthetic inputs for queries to the remote ML system based on the local 
substitute’s output surface sensitivity to input variations.

Attacking remotely hosted black-box models
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Remote 
ML sys

Local 
substitute

“yield sign”

(4) The adversary then uses the local substitute to craft adversarial examples, which are 
misclassified by the remote ML system because of transferability. 

Attacking remotely hosted black-box models



Cross-technique transferability
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Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples [arXiv preprint]
Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow

ML



Properly-blinded attacks on real-world remote systems
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All remote classifiers are trained on the MNIST dataset (10 classes, 60,000 training samples)

Remote Platform ML technique Number of queries
Adversarial examples 

misclassified 
(after querying)

Deep Learning 6,400 84.24%

Logistic Regression 800 96.19%

Unknown 2,000 97.72%
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Defending against adversarial examples
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Learning models robust to adversarial examples is hard

26
Is attacking machine learning easier than defending it? [Blog post at www.cleverhans.io]
Ian Goodfellow and Nicolas Papernot

Error spaces containing adversarial 
examples are large

Learning or detecting adversarial 
examples creates an arms race

ML Victim



What makes a successful deep neural network?
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Softmax

3rd hidden

2nd hidden

1st hidden

Inputs

Layer name Neural architecture Representation spaces

Panda



What makes a successful adversarial example?
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School BusSoftmax

3rd hidden

2nd hidden

1st hidden

Inputs + = + =

Layer name Neural architecture Representation spaces Nearest neighbors



Nearest neighbors indicate support from training data...
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Panda School BusSoftmax

3rd hidden

2nd hidden

1st hidden

Inputs + = + =

Layer name Neural architecture Representation spaces Nearest neighbors



… Deep k-Nearest Neighbors (DkNN) classifier
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Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning [arXiv preprint]
Nicolas Papernot, Patrick McDaniel

1. Searches for nearest neighbors in the training data at each layer

2. Estimates the nonconformity of input x for each possible label y

3. Apply conformal prediction to compute:

a. Confidence

“How likely is the prediction given the training data?”

b. Credibility

“How relevant is the training data to the prediction?”
+ =

Panda School Bus



Carlini & WagnerBasic Iterative Method

Example applications of DkNN credibility
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Implications for the attacker and defender

Attacker

32

Defender

Reject low credibility predictions: 

-> explicit tradeoff between clean  
    accuracy and adversarial accuracy

Active learning: more training data through 
human labeling of rejected predictions

Contributes to breaking “black-box” myth



Some (surprising) connections to fairness & interpretability
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Adversarial Examples that Fool both Human and Computer 
Vision [arXiv preprint]
Gamaleldin F. Elsayed, Shreya Shankar, Brian Cheung, 
Nicolas Papernot, Alex Kurakin, Ian Goodfellow, Jascha 
Sohl-Dickstein



Machine Learning with Privacy
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Types of adversaries and our threat model
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In our work, the threat model assumes:

- Adversary can make a potentially unbounded number of queries
- Adversary has access to model internals

Model inspection (white-box adversary)
Zhang et al. (2017) Understanding DL requires rethinking generalization

Model querying (black-box adversary)
Shokri et al. (2016) Membership Inference Attacks against ML Models
Fredrikson et al. (2015) Model Inversion Attacks 

?
Black-box

ML



A definition of privacy: differential privacy
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Private Aggregation of Teacher Ensembles 
(PATE)

37

Partition 1

Partition 2

Partition n

Partition 3

...

Teacher 1

Teacher 2

Teacher n

Teacher 3

...

Training 

Sensitive 
Data

Data flow

Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data [ICLR 2017 best paper]
Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar



Aggregation
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Count votes Take maximum



Intuitive privacy analysis
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If most teachers agree on the label, it does not depend on 
specific partitions, so the privacy cost is small.

If two classes have close vote counts, the disagreement 
may reveal private information. 



Noisy aggregation
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Count votes Add Laplacian noise Take maximum



Teacher ensemble
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Student training
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Partition 1
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...
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Training 

Available to the adversaryNot available to the adversary

Sensitive 
Data

Public 
Data

Inference Data flow

Queries



Why train an additional “student” model?
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Each prediction increases total privacy loss.
Privacy budgets create a tension between the accuracy and number of predictions.

Inspection of internals may reveal private data.
Privacy guarantees should hold in the face of white-box adversaries.

1

2

The aggregated teacher violates our threat model:



Student training
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Deployment
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Inference 

Available to the adversary

QueriesStudent



Differential privacy:
A randomized algorithm M satisfies (ᶗ,ᶖ) differential privacy if for all pairs of neighbouring 
datasets (d,d’), for all subsets S of outputs:

Application of the Moments Accountant technique (Abadi et al, 2016)

Strong quorum ⟹ Small privacy cost

Bound is data-dependent: computed using the empirical quorum

Differential privacy analysis

46



Trade-off between student accuracy and privacy
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Synergy between utility and privacy
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1. Check privately for consensus
2. Run noisy argmax only when consensus is sufficient

Scalable Private Learning with PATE [ICLR 2018]
Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Ulfar Erlingsson



Trade-off between student accuracy and privacy
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Selective PATE



Machine learning and Goodhart’s law

Economist Charles Goodhart posited in 1975 that …

“When a measure becomes a 
target, it ceases to be a good 

measure”

As ML models make more and more decisions, we will 
have to satisfy them, and they will become targets.
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?
Thank you for listening! 
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