

Learning to Play:
The Multi-Agent
Reinforcement Learning
in Malmo (MARLO)
Competition

Speaker: Katja Hofmann Machine Intelligence and Perception Microsoft Research

y @katjahofmann

The Malmo Collaborative Al Challenge

Goal: foster research in collaborative Al

First round: April / May 2017 (83 registered teams)

Second round planed, starting summer 2018

Details: https://www.microsoft.com/en-us/research/academic-program/collaborative-ai-challenge

Prizes:

Microsoft Azure for Research

Key questions

Can agents generalize?

To new (instances of) games and new opponents?

How can we lower the barrier to entry?

Consider: engineering, compute

Project Malmo: Minecraft as platform for Al research

Project Malmo

A platform for AI experimentation, built on Minecraft

microsoft.com/enus/research/project/project-malmo/

Open source on github github.com/Microsoft/malmo

The Malmo Platform for Artificial Intelligence Experimentation Matthew Johnson, Katja Hofmann, Tim Hutton, & David Bignell 2016

Use Cases and Design Principles

Connect Al agents into the game through an intuitive yet powerful API

Provide researchers with tools for task creation – building on existing Minecraft capabilities

Build for extensions and novel uses – open source; "plug-and-play" design of observation, command, reward handlers

Low entry barrier: provide cross-language (currently: Java, .NET, C/C++, Python, Lua) & cross-platform (Windows, Linux, MacOS) API

A natural environment for multi-agent learning

Decoding multitask DQN in the world of Minecraft

Lydia Liu, Urun Dogan, Katja Hofmann

EWRL & Deep Learning Workshop @ NIPS 2016 ewrl.files.wordpress.com/2016/11/ewrl13 -2016-submission-29.pdf

Asynchronous Data
Aggregation for End to
End Visual Navigation
in Minecraft

Mathew Monfort, Matthew Johnson, Aude Oliva, Katja Hofmann

AAMAS 2017
<u>ifaamas.org/Proceedings/aamas2017/pdfs/p530.pdf</u>

The MARLÖ Competition – Multi-Agent Reinforcement Learning in MalmÖ

Competition Framework

Organizers

3091

34

Participar

MARLÖ 2018 [©]

Multi-Agent Reinforcement Learning in Minecraft

By Microsoft Research

Starting soon

9 34

UNFOLLOW

- ✓ Streamline
- ✓ Standardize
- ✓ Provide baselines

Overview

Leaderboard

Discussion

Dataset

Submissions

Participants

Standardizing the Reinforcement Learning Loop

Standardizing the Reinforcement Learning Loop

```
import gym
import marlo
env = gym.make('MinecraftBasic-v0')
env.init(
    allowContinuousMovement=["move", "turn"],
    videoResolution=[800, 600]
env.reset()
done = False
while not done:
        env.render()
        action = env.action_space.sample()
        obs, reward, done, info = env.step(action)
        print(action)
env.close()
```

Baselines

https://github.com/chainer/chainerrl

Baselines

Watch ▼

* Star

Fork 112

chainer / chainerrl

https://github.com/chainer/chainerrl

The MARLÖ Competition – Multi-Agent Reinforcement Learning in MalmÖ

Task Design

General Video Game
Al: a Multi-Track
Framework for
Evaluating Agents,
Games and Content
Generation Algorithms

Diego Perez-Liebana, Jialin Liu, Ahmed Khalifa, Raluca D. Gaina, Julian Togelius, Simon M. Lucas

https://arxiv.org/pdf/1802.10363

http://www.gvgai.net

Games and Tasks for MARLO

MARLO Tournament

WWWWWWWW

W*...*W

WW....W

WW....W

WW....W

WW....W

WW....W

WW....W

WW....W

WW....W

Mob Chase – Level Design

Parameters:

- Time & Weather
- Number & Type of mobs
- Number & Block type of exits
- Number of obstacles
- Edge block type (fences)
- Ground block type
- Size of play area
- Number of maximum steps allowed

= Game space size: 6.05E+6 (* level configurations)

Mob Chase - Variants

Challenge 1: General Sum Games

	Catch the Pig	Run for the Exit
Catch the Pig	5, 5	0,1
Run for the Exit	1,0	1,1

Challenge 1: General Sum Games

	Catch the Pig	Run for the Exit
Catch the Pig	5, 5	0,1
Run for the Exit	1,0	1,1

Aim: encourage approaches for general sum games – most realistic but hard!

Consider uncertainty over reward structure – encourage generalization

Challenge 2: Extensive Form

Challenge 2: Extensive Form

Values depend on trajectories

– combinatorial blow-up

But provides key information, e.g., for opponent modelling

Challenge 3: Incomplete (Partial) Information

Challenge 3: Incomplete (Partial) Information

First-person view provides natural direction for learning to generalize

But provides only a partial view of the game state (and opponent actions)

What's next?

Summary

Can agents generalize?

To new (instances of) games and new opponents?

How can we lower the barrier to entry?

Consider: engineering, compute

- ✓ Streamline
- ✓ Standardize
- Provide baselines

Schedule (draft)

Open

July 10, 2018

- Competition Open at Crowd.ai
- Final version of the framework, sample controllers are available
- Training tasks run locally as warm-up

Qualifying Round

July 10-Oct 7, 2018

- Multi-agent validation tasks
- Top 32 evaluated teams are invited to the final round

Final Round

AIIDE, Nov, 2018

- Multi-agent games in remote server for final tournament
- Live competition!
- Academic program, including papers and invited keynotes!

Tutorials

Aug 14-18, 2018

- Tutorial at IEEE CIG 2018
- 2 hours session of talk and hands-on

Schedule (draft)

Open

July 10, 2018

- Competition Open at Crowd.ai
- Final version of the framework, sample controllers are available
- Training tasks run locally as warm-up

Qualifying Round

July 10-Oct 7, 2018

- Multi-agent validation tasks
- Top 32 evaluated teams are invited to the final round

Final Round

AIIDE, Nov, 2018

- Multi-agent games in remote server for final tournament
- Live competition!
- Academic program, including papers and invited keynotes!

Tutorials

Aug 14-18, 2018

- Tutorial at IEEE CIG 2018
- 2 hours session of talk and hands-on

Submissions for contributed talks + extended abstracts open now until July 27!

Prizes!

Award

- 1st place: 10,000 USD-equivalent Azure plus a travel grant to join a relevant academic conference or workshop.
- · 2nd place: 5,000 USD-equivalent Azure.
- · 3rd place: 3,000 USD-equivalent Azure.

Publication

 The top three entries will be invited as co-authors in a paper summarizing the competition structure, rules, approaches, results and main take-aways. Follow

@Project_Malmo

Project Malmo website aka.ms/malmo

Competition website aka.ms/marlo

