
Highly efficient Machine learning for HoloLens

Andrew Fitzgibbon, Microsoft

@awfidius



2



3



4





APPLICATIONS

OF HOLOLENS

 Deskless workers 

 Merge real and digital world

 3D designers / decision makers / 

learners

 Create and communicate 3D concepts in 3D

 Everyone…



TASK WORKER



3D LEARNING

/ MEDICAL



FEATURES OF

HOLOLENS

 Fully self-contained computer

 Running Windows 10 Holographic

 Computer-vision based 3D localization

 Hand gesture recognition

 Onboard speech recognition

 Under power/thermal constraints



AN INTRODUCTION TO HOLOLENS

HARDWARE





4 Environment 
Understanding 
Cameras

HoloLens Sensor Bar
Depth Sensor

2MP Photo / HD Video Camera



Head Tracking Technologies

“Outside-in” head tracking

[H
TC

 V
iv

e
S
e
tu

p
 m

a
n
u
a
l]

“Inside-out” head tracking



15

4 wide-angle tracking cameras



HEADTRACKING CAMERAS: WORLDVIEW 16

4 wide-angle tracking cameras



4 Environment 
Understanding 
Cameras

HoloLens Sensor Bar
Depth Sensor

2MP Photo / HD Video Camera



Input
3D Data

Gesture
Events

HAND GESTURE RECOGNITION: HOLOLENSV1



HAND GESTURES DRIVEN BY MACHINE LEARNING

Hand gesture recognition

Machine learning

- Decision trees in V1
- Based on Kinect Body Tracking

- Deep learning accelerator in V2

Gesture events and XYZ only



Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences 
Taylor et al., ACM Transactions on Graphics 35(4), pp. #143, 1–12, Proc. SIGGRAPH 2016



4 Environment 
Understanding 
Cameras

HoloLens Sensor Bar
Depth Sensor

2MP Photo / HD Video Camera





See-Through Lenses (waveguides)

HoloLens Optics and IMU

HD 16:9 Light Engines

IMU





HoloLens MLB (Main Logic Board)

▪ Windows 10

▪ Custom-built 
Microsoft Holographic Processing Unit (HPU 1.0)

▪ 64GB Flash

▪ 2GB RAM (1GB CPU and 1GB HPU)

▪ x86 architecture



HPU (HOLOGRAPHIC PROCESSING UNIT): CHIP PLOT

24 Processors, 500MHz each + DNN core

Programmed in C++, with SIMD intrinsics

Our research code was 10x more efficient 
than the best competitor

To move to HoloLens we needed another 
100x.

Even games programmers make mistakes 
today, and mistakes can mean 5x loss of 
efficiency.

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

PLL
s

PLL
s

PLLs

P
L

L
s

DDR3

MIPI

P
C

Ie

IO

IO

IO

F
ab

ri
c,

 S
h

ar
ed

 
A

cc
el

er
at

o
rs

 a
n

d
 S

R
A

M





HoloLens Spatial Sound

also 4 microphones for speech/beamforming





EFFICIENT COMPUTER VISION & ML:
Learning + Model fitting





MODEL FITTING: FIRST MAKE A MODEL 33

Model driven by parameters 𝜃 ∈ ℝ𝑑, e.g. 𝑑 = 28



Energy Function

Observed 3D data point

Closest point on model

Bad pose 𝜃 Good pose 𝜃

Contribution to energy

Model Optimization

Pose parameters 𝜃

𝜃

𝐸(𝜃)



GOAL

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ,

Devise strategies for finding 𝑥 which minimizes 𝑓
• Gradient descent++: Stochastic, Block, Minibatch

• Coordinate descent++: Block

• Newton++: Gauss, Quasi, Damped, Levenberg Marquardt, dogleg, Trust 
region, Doublestep LM, [L-]BFGS, Nonlin CG

• Not covered
• Proximal methods: Nesterov, ADMM…



CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓



CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓



38

quadratic

convex

quasiconvex

multi-
extremum



39

quadratic

convex

quasiconvex

multi-
extremum

Easy Hard



CLASSES OF FUNCTIONS

quadratic convex quasiconvex multi-
extremum

noisy horrible

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

Devise strategies for finding 𝑥 which minimizes 𝑓



IT’S WORTH ITTO GETTOTHE OPTIMUM 41



[SUB-]CLASSES OF FUNCTIONS

Given function
𝑓 𝑥 :ℝ𝑑 ↦ ℝ

𝑓 𝑥 = ෍

𝑛=1

𝑁

𝑓𝑛(𝑥) Stochastic gradient descent

𝑓 𝑥 = ෍

𝑛=1

𝑁

𝑓𝑛 𝑥 2 [Damped] Gauss-Newton
Levenberg-Marquardt

𝑓 𝑥 = ෍

𝑛=1

𝑁

min
𝑡𝑛

𝑓𝑛 𝑥, 𝑡𝑛
Block coordinate descent
VarPro?



SUBCLASSTHREE

min
𝑥

෍

𝑛=1

𝑁

min
𝑡𝑛

𝑓𝑛 𝑥, 𝑡𝑛

SLAM, model fitting, recommenders,...
𝒔𝑛

𝑡𝑛



SUBCLASSTHREE

min
𝑥

෍

𝑛=1

𝑁

min
𝑡𝑛

𝑓𝑛 𝑥, 𝑡𝑛

Solution 1: Block coordinate descent (“ICP”)

while (something):

∀𝑛: 𝑡𝑛 = argmin
𝑡

𝑓𝑛 𝑥, 𝑡

𝑥: = argmin
𝑥

σ𝑛=1
𝑁 𝑓𝑛 𝑥, 𝑡𝑛

𝒔𝑛
𝑡𝑛



SUBCLASSTHREE

min
𝑥

෍

𝑛=1

𝑁

min
𝑡𝑛

𝑓𝑛 𝑥, 𝑡𝑛

Solution 2: Joint optimization (“lifting”)

min
𝑥,𝑡1,…,𝑡𝑁

෍

𝑛=1

𝑁

𝑓𝑛 𝑥, 𝑡𝑛

A 𝑑-dimensional problem becomes 𝑁 + 𝑑

Much much faster in practice, 

𝒔𝑛

if problem structure used well

𝑡𝑛



SUBCLASSTHREE

min
𝑥

෍

𝑛=1

𝑁

min
𝑡𝑛

𝑓𝑛 𝑥, 𝑡𝑛

Solution 2: Joint optimization (“lifting”)

min
𝑥,𝑡1,…,𝑡𝑁

෍

𝑛=1

𝑁

𝑓𝑛 𝑥, 𝑡𝑛

A 𝑑-dimensional problem becomes 𝑁 + 𝑑
Much much faster in practice, if problem structure 
used well

𝑥 𝑡1…𝑡𝑁

Jacobian
𝜕𝑓𝑛

𝜕𝑥
|
𝜕𝑓𝑛

𝜕𝑡1..𝑛



AN EXEMPLARY PROBLEM

47

“Based on a true story”, not necessarily historically accurate

Note well: this problem is a good proxy for much more realistic problems: 

1. Stereo camera calibration

2. Multiple-camera bundle adjustment

3. Surface fitting, e.g. subdivision surfaces to range data, realtime hand tracking

4. Matrix completion

5. Image denoising.

[From Neil Lawrence]



AN EXEMPLARY PROBLEM

The year: 1801
The hot topic: A “guest planet”, named Ceres
The big question: Where will it reappear?



AN EXEMPLARY PROBLEM



AN EXEMPLARY PROBLEM

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑝𝑛
𝑞𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Known model (ellipse) and objective (geometric distance):

𝑓 𝑥 = ෍

𝑛=1

𝑁

min
𝑡

𝑓𝑛 𝑥, 𝑡

𝑓𝑛 𝑥, 𝑡 =
𝑥1 cos 𝑡 + 𝑥2 sin 𝑡 + 𝑥3 − 𝑝𝑛
𝑥4 cos 𝑡 + 𝑥5 sin 𝑡 + 𝑥6 − 𝑞𝑛

2

Sample 𝒔𝑛



AN EXEMPLARY PROBLEM

Measurements or “samples”:

• 2D points 𝒔𝑛 =
𝑝𝑛
𝑞𝑛

for 𝑛 = 1. . 𝑁

• Captured at essentially unknown times 𝑡𝑛

Known model (ellipse) and objective (geometric distance):

𝑓 𝑥 = ෍

𝑛=1

𝑁

min
𝑡

𝑓𝑛 𝑥, 𝑡

𝑓𝑛 𝑥, 𝑡 =
𝑥1 cos 𝑡 + 𝑥2 sin 𝑡 + 𝑥3 − 𝑝𝑛
𝑥4 cos 𝑡 + 𝑥5 sin 𝑡 + 𝑥6 − 𝑞𝑛

2



RUNNING AN OFF-THE-SHELF FITTER DOES NOT. 52

“Direct least squares fitting of ellipses”
[Fitzgibbon et al, 1999]

Does not minimize “sum of distances” 
objective, but a “nearby” convex objective



SPEED RESULTS: SNEAK PREVIEW

A slow method A fast method, slowed down 10x



CONVERGENCE CURVES

10
-1

10
0

10
1

10
2

10
3

10
-1.4

10
-1.3

10
-1.2

10
-1.1

Time (sec)

Er
ro

r

“Previous iteration” convergence test 

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘−1 < 𝜏 will stop here.

“Half the time ago” convergence test

𝑓 𝑥𝑘 − 𝑓 𝑥𝑘/2 < 𝜏 will stop here.



AH, BUT WHAT ABOUT TEST ERROR?

10
-1

10
0

10
1

10
2

10
3

10
-1.4

10
-1.3

10
-1.2

10
-1.1

Time (sec)

Er
ro

r



AND INTHE REAL WORLD



BETTER THAN STATE-OF-THE-ART, 10X FASTER



Bonus material



SRAJER ET AL., AUTODIFF ’16: BENCHMARK

GMM



HONG ET AL, CVPR’17: BUNDLE ADJUSTMENT



SVOBODA ET AL. 2018: LM IN SINGLE PRECISION



CONCLUSION

▪ Use discriminative machine learning (e.g. DNNs) 
to get near an optimum (e.g. down to 10 pixels)

▪ Use model fitting to get quality solutions (e.g. 
down to 0.1 pixels).



CONCLUSION

▪ “Non convex optimization is slow”

▪ “There’s no point in getting doing 
better than 1% off the optimum”

▪ “There’s no point in optimizing my 
code”

▪ “Bundle adjustment needs a good 
initialization”

Clichés 

I want you 

to stop 

using


