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Research Goal

Improve Quality and Safety of Healthcare
while Managing Costs
using Machine Learning
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The Clinical Perspective:
Decision Support Systems to Improve Patient Care

@ Goal: develop machine learning algorithms to extract
actionable intelligence in order to improve clinical practice

Observational data

Actionable intelligence
(Predictions, recommendations, practice
guidelines, treatment effects, etc)

Diagnosis and Screening and Treatments and

Prognosis testing interventions




Who should get a heart?

Bob

 Urgency
— How long will Ann/Bob survive while waiting?
* Benefit
— How much will Ann/Bob benefit from this heart?



Clinical Risk Scores

e Urgency: Survival on Wait List
— HESS
— MAGGIC
— SHFM

* Benefit: Survival after Transplantation
— DRI
— IMPACT
— RSS



Personalized survival predictions via
Trees of Predictors (ToPs
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(a) Entire tree (b} Growing the tree (¢) Weight optimization

Yoon J, Zame WR, van der Schaar, M. (2018) ToPs: Ensemble Learning with Trees of Predictors. Trans. on
Signal Processing

Yoon J, Zame WR, Banerjee A, Cadeiras M, Alaa AM, van der Schaar, M. (2018) Personalized survival
predictions via Trees of Predictors: An application to cardiac transplantation. PLOS ONE 13(3): €0194985.

https://doi.org/10.1371/journal.pone.0194985 @'PLOS ‘ ONE



ToPs is NOT a regression tree!

Regression Tree

Features )/
becoming more ,/
homogeneous;/

Labels
becoming more
homogeneous

Single Prediction

ToPs

Features /
/

becoming more ,/

homogeneou§/

Labels NOT
becoming more
homogeneous

Single Predictor
(Possibly wide range of predictions) o



Dataset

United Network for Organ Transplantation (UNOS)

 ALL patients registered for heart transplantation in
US in 1985-2015

e 35,000+ patients wait-listed but did not receive heart
transplant
— Date of waitlisting + survival
— 33 features of patients
60,000+ patients received heart transplant

— Date of transplantation + survival
— 53 features of patients/donors
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Wait-List

Post-

Transplant

ToPs/R

Performance

3 months

0.8467

1 year

0.8130

3 years

0.7921

10 years

0.7897

MAGGIC

0.6298

0.6413

0.6425

0.6290

ToPs/R

3 months

0.6763

0.6637

0.6538

0.6562

IMPACT

0.5808

0.5700

0.5524

0.5308




Survival/Mortality at 3 Months

Actual
Survival

MAGGIC 4,723
ToPs/R 4,723
Additional

Correct

Predictions

Correctly Actual Correctly
Predicted Mortality Predicted
(Specificity = .80) (Sensitivity
=.80)
1,984 2,542 915
(37.8%) (36%)
3,212 2,542 1,754
(68.0%) (69.0%)
1,228 839
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AFTER A HEART TRANSPLANT WITH
SCARY ACCURACY

By Dana Dovey On Friday, May 18, 2015 - 1218

The algorithm may help us make better use of limited available
hearts.The first heart used in a heart donation.
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HealioX cardiologytoday
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Healio Cardiology HF/Transplantation
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AIgoﬁthm predicts life expectancy in
advanced HF

Yoon J, ef al. PloS One. 2013:doi: 10,137 1/journal_pone 0194985

June 21, 2018

| €) DD TOPIC TO EMAIL ALERTS

Researchers reported that they developed a new algorithm that more accurately

predicts how long patients with advanced HF will survive, regardless of whether they
receive a transplant.
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“Our work suggests that more lives could be saved with the application of this new
machine learning-based algorithm,” Mihaela van der Schaar, PhD, Chancellor's
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Sources of gain

* Information gain

e Modeling gain



Features used by Clinical Risk Scores
(Wait-list)

SHEM

Diuretic Hemoglobin

Weight Lymphocytes

Uric Acid MAGGIC

HFSS

Ischemic
Etiology

Age Gender

NYHA Class

Sodium

EF(%)

Blood
Pressure

Conduction
delay

BMI

Heart Rate
Beta blocker Diabetic

Creatinine

pkVvVO2

Heart Failure
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Features used by Clinical Risk Score
(Post-transplantation)

IMPACT

Dialysis IABP

Ventilator Support .
Infection

RSS

DRI

Recipient Race Recipient Age

Creatinine Bilirubin

HF Etiology

Recipient ECMO

Gender

Donor Race

LVAD eGFR
RVAD

BUN

Diabetes

Donor HEP C

Ischemic time

Total
Artificial
Heart

Donor Age

Donor Gender

Previous
Cardiac Surgery
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What are the Problems with Clinical Scores?

1. Models are one size-fits-all

— but ... population(s) are very heterogeneous
2. Models are linear

— but... survival is non-linear: features interact
3. Models are horizon-independent

— but ... long-term survival is different from short-
term survival; different features matter for
different time horizons

18



Our Method ToPs — Designed to Solve Problems

1. Model is individualized

— addresses heterogeneous population(s)
2. Modelis non-linear (where needed)

— addresses interaction of features
3. Modelis horizon-dependent

— addresses differences between long-term survival
and short-term survival; different features matter
for different time horizons

19



Interpretability? Tops/R (Regressions as Base Learners)

Built on

— Cox Regression

— Linear Regression

— Logistic Regression

Choice of regression model represents interaction of
features

Choice of coefficients represents importance of
features

Dala tells us
— how to group/cluster patients

— which regression model to use for each
group/cluster

— which coefficients to use for each group/cluster
— how to aggregate predictions

20



Clinical Decision Support System

University of California Los Angeles

Input Variables
Compatibility Variables

Ischemic Time (hour)3 |
HLA-AMismatch [1 |
HLA-B Mismatch [1_ |
HLADR Mismatch [1 |

LTI

21

5|
Male  ~ |
8
Ves |
:m:
o |
o
el
=2
:m:
:m:
:m:
:m:
Ves |
:m:
:m:
o |
3
5
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Boosting
Methods

Tree-based
Methods

Other

ML Performance Comparisons (Wait-list)

ToPs/R
AdaBoost
Deep Boost
Logit Boost
XGBoost
Decision Tree
Random Forest

Neural Nets

0.8467
0.8180
0.8211
0.7449
0.8243
0.8188
0.8239
0.7881

0.8130
0.7865
0.7898
0.7371
0.7935
0.7833
0.7926
0.7811

0.7921
0.7773
0.7731
0.7232
0.7779
0.7642
0.7744
0.7705

0.7897
0.7452
0.7392
0.6776
0.7456
0.7440
0.7280
0.7412



ML Performance Comparison (Post-transplantation)

Boosting
Methods

Tree-based
Methods

Other

ToPs/R
AdaBoost
Deep Boost
Logit Boost
XGBoost
Decision Tree
Random Forest

Neural Nets

0.6763
0.6506
0.6464
0.6370
0.6183
0.6296
0.6529
0.6415

0.6637
0.6302
0.6347
0.6216
0.6083
0.6107
0.6413
0.6387

0.6538
0.6034
0.6100
0.5961
0.5877
0.5895
0.6113
0.6101

0.6562
0.6155
0.6133
0.6130
0.6152
0.5990
0.6194
0.6150



Previous Machine Learning in Prognostic Research

+ High predictive accuracy (for some datasets)

+ Data-driven, few assumptions
- Many algorithms: Which one to choose?
- Many hyper-parameters: Need expertise in data science

AUROC MAGGIC | UKBiobank | UNOSA | UNOSI

Best predictor 0.80 + 0.004 0.76 + 0.002 0.78 + 0.002 0.65 + 0.001
NN GradientBoost ToPs ToPs
Best Clinical Score 0.70 + 0.007 0.70 + 0.003 0.62 + 0.001 0.56 + 0.001

Cox PH 0.75 £ 0.005 0.74 £ 0.002 0.70 £ 0.001 0.59 £0.001



Previous Machine Learning in Prognostic Research

+ High predictive accuracy (for some datasets)

+ Data-driven, few assumptions
- Many algorithms: Which one to choose?
- Many hyper-parameters: Need expertise in data science

AUROC MAGGIC | UKBiobank | UNOSA | UNOSI

Best predictor 0.80 + 0.004 0.76 + 0.002 0.78+0.002  0.65 +0.001
NN GradientBoost ToPs ToPs

Best Clinical Score 0.70 + 0.007 0.70 + 0.003 0.62+0.001  0.56 +0.001

Cox PH 0.75 + 0.005 0.74 + 0.002 0.70+0.001  0.59 +0.001

- Can we predict in advance which method is best?
- Can we do better?
- Many metrics of performance (AUROC, AUPRC, C-index,

quality of well-being)



How to do this?

I\/!any dlsea:ses, rhany Can’t craft a model for each .Make .
variables, various needs! disease! Machine Learning
All is changing! ) DO the Crafting

\. \.



How to do this?

IV!any dlseafes, rhany Can’t craft a model for each .Make i
variables, various needs! disease! Machine Learning
All is changing! ) DO the Crafting

e Previous AutoML? Auto-WEKA and Auto-Sklearn

Limited performance gains

Ad-hoc optimization and ad-hoc meta-learning
Simplistic handling of missing data

Do not capture uncertainty

Limited to classification problems (survival, competing risks etc.)



AutoPrognosis: A tool for crafting Prognostic Scores for
Many Diseases

-------------------------------------------------------------------

1 1
| — ,
I| Complementary Meta-learning I .
i cohorts _J - v —— i AUtOPrognOSIS
=‘ ..'. ..................................................... BayeS|an Optlmlzatlon : ..........................................................................................
e ,,—,—,—,—,—,—,—,—,Y—,—,—,—,—,—Y—YYYY— ||, 4 N f ‘.
et B e N Am=sase-zaas N ====x | 05| | 5
Slinie Missing Data Feature 55 =
Data : Imputation preprocessing Eg Ly é_
D | it dleg| ¢
—— . J \ y _
‘};’_. ................................. .
: | Survival Models | :
P y : First: a few technical details
i | Competing Risks | : Second: a few examples
Temporal Models
Causal Models

Principled Bayesian Optimization 2




We need an entire pipeline!

@ Each pipeline is a path of algorithms!

@ Find the best paths and tune parameters:
A hard optimization problem!

MICE PCA H Random Forest
Isotonic ]
[ missForest Fast ICA ]—[ XGBoost }\{

Sigmoid ] —

—_— H E ]
L ] L
L ] L] L]
No calibration ]
[ EM ]—[ No preprocess. ]—[Neural Network
Calibration
Imputation Feature Processing Classification

Regression
29



Ensembles

@ Instead of the single best pipeline we use an ensemble
@ Why?

o Uncertainty: finite data set to learn from, so we are not sure which

pipeline is “best”
° Information loss: using a single pipeline discards useful information

from other pipelines

MICE PCA H Random Forest
Isotonic
[ missForest Fast ICA H XGBoost
. Sigmoid
g

—_— % E

] [ ]
No calibration
[ EM ]—[ No preprocess. ]—[Neural Network

Calibration

Imputation Feature Processing Classification

Regression 30



Interpretability

@ We don’t want simply a black-box, we want explanations
that users can interpret

[ MICE

EM No preprocess

Imputation Feature Processing

Classification

Black-box model

[

_'Il—)|l Interpreter :—) Clinical

r I P I Explanations
I -~y §F F §F F F §B |
[

@ Interpreter provides logical associations

ClACQ/\.../\Cl(T) — 1, VreR

Clinical c'onditions

R: risk strata

Risk stratum

@ Example:

Diabetic A Smoking — High risk for ischemic stroke

31



AutoPrognosis: System Overview

:' = )
!| Compl Meta-learnin I .
j| comppmentany g L ; AutoPrognosis
: ..................................................... Bayesian Optimization ....: ..........................................................................................
'l\ Jl
s=- TR TTTETE e m * ------------- i y
------------------------------------ 5 ° Predictions
Clinical Missing Data Feature es s =z g 2 :
: . - Classification 3 ' :
Data : mputation preprocessing ° E =
E [ ] ] :
p N2 ) Wk ) )
——— : 1 \.‘ 7 \ J _"
-..‘ 1 ._.*'
1 A )
1 \
l ° L3 . °
! Pipeline configuration “\
o [ [N S [N L L L L\ L\ [ (L (W L\ L[ [ L [ ~\
1 -, ~
: ,/ Q“
:[ MICE PCA Random Forest !
1
. 1
||= Isotonic I
h missForest Fast ICA == XGBoost )
1
i » . » Sigmoid :
[ ] L ] 1
: - (] :
: No calibration
1 EM No preprocess. Neural Network :
1
1
1
: Calibration :
]
‘\\ Imputation Feature Processing Classification s
Nh

________________________________________________ _’ 32



AutoPrognosis: Pipeline Components

@ 8 imputation algorithms, 10 feature preprocessing
algorithms, 20 classifiers, 3 calibration methods

@ MANY hyperparameters in each algorithm

@ Total number of hyperparameters =110

[ Pipeline Stage Algorithms
0 Data Imputation || O missForest (2) 0 Median (0) 0 Most-frequent (0) 0 Mean (0) oEM (1)
0 Matrix completion (2) o0 MICE (1) 0 GAIN 0 None (0)
& Feature process. || & Feature agglo. (4) & Kernel PCA (5) & Polynomial (3) & Fast ICA (4) & PCA (2)
& R. kitchen sinks (2) & Nystroem (5) & Linear SVM (3) & Select Rates (3) & None (0)
e Prediction e Bernoulli NB (2) e AdaBoost (4) e Decision Tree (4) e Grad. Boost. (6) e LDA (4)
e Gaussian NB (0) e XGBoost (5) e Extr. R. Trees (5) e Light GBM (5) eL. SVM (4)
e Multinomial NB (2) e R. Forest (5) e Neural Net. (5) e Log. Reg. (0) e GP (3)
e Ridge Class. (1) e Bagging (4) e -NN (1) e Surv. Forest (5) e Cox Reg. (0)
e DMGP e CMGP e DeepHit e HBM e TOPs
| * Calibration H * Sigmoid (0) * Isotonic (0) * None (0)

33




Automated Pipeline Configuration (I)

@ Imputation algorithms A @ Feature process. algorithms A/
Hyperparameters O Hyperparameters @f

@ Classification algorithms A. @ Calibration algorithms A,
Hyperparameters O, Hyperparameters O,

@ Setof all pipelines P = A4; x A x A. x A,
@ Set of all hyperparameters © = 0, x Oy x O, x O,

@ Set of all pipeline configurations Pg

@ Combined Pipeline Selection and Hyperparameter optimization
problem (CPSH)

Pék* € argmaxp,cpg % Zfil E(PtQ; Dt(jzzina ,Dx(fgid)

34



Automated Pipeline Configuration ()

@ The CPSH problem argmaxp,ep, & S5, £(Py; D, D)

@ Bayesian optimization p _ _
F(B) = 5K, £(P; DO, DD + &

Gaussian process
prior

1.54

1.0 1 2 3 4
0.5- f|P97P97P6’7P9

0.0F-—a = A ®
0.5 ﬂ.'

f~ GP(u(Py), k(Py, P)))

Pipeline performance

3
-1.5- P9 ‘PQl Pél
GaUSSian process 0.0 0.1 0.2 03 0.4 0.5 0.6 0.7
posterior 0243

fIH{P;}e

S\ AP 1P
0.14
0.12 4
0.104
0.08 4
0.06
0.04
0.02 H

D'DD T L] T T T T T
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7

Select new pipeline via
acquisition function

Acquisition function

oc/iEEEEEEEEEEER I EEEEEEE

8 0.9 1.0 1 7]
Pt = arg maxp A(l f|{l t} )
0 ) 0 gt

35



The Curse of Dimensionality

@ Statistical and computational complexity of the CPSH problem

@ GP BO does not work well for O > 10 [Wang, 2013]

. Sample complexity for non-
Gaussian process ‘ parametric estimation of

prior a-smooth functions [Stone, 1982]
o
f ~ GP(u(Py), k(Ps, P}) Ot 21D
Exponentially
Gaussian process ‘ many Rerations|
posterior Computational complexity of GP posterior
F1(Ph After £ iterations [Rasmussen & Williams, 2006]
oSt
O(t3)

Computational complexity of
maximizing acquisition [Snoek, 2015]

Select new pipeline via ‘
acquisition function

P} = argmaxp, A(Py; f | {P}}+) @, (nD)

36



Bayesian Optimization with Structured Kernel Learning

@ Main idea: Some algorithms are “correlated” and some are not =>
Correlated algorithms should be made to share information

@ Correlation is not known in advance, so must be learned

@ Learn a structured kernel that clusters correlated algorithms:

@ Low dimensionality One Gaussian process
for every cluster per group of algorithms
ﬂ Re|evant infOf'mation Ra““"‘%\ Neural
R . . c  Forest XGBoost Network
sharing within a cluster — — 1 1

37



Sparse Additive Gaussian Processes

@ Decompose high-dimensional GP into sum of low-dimensional
components

One Gaussian process
A per group of algorithms

Space of all pipelines 4\

Random Neural

@ Forest XGBoost Network
A (™) B Em =
{ }m © .. I - - —
Partitions of A

Sparse additive GPs: e NN =

_ M (m) o

f(A) — Zm:lfm(‘/\' ) kl(A(l),A’(l)) ]@(A(Q)’Af@))
D-dimensional Low-dimensional
GP GPs

Structured kernel: k(A,A) =Y e (A A7)

38



Structured Kernel Learning

@ Define the variable z.,; € {1,..., M} indicator for the subspace

allocation for algorithm : in A, . )
Prioron 2y ; =Prioron {A(™},,
@ Bayesian inference:

Prior on Compute posterior in
decompositions concurrence with BO
@ ~ Dirichlet(M,7) | P(z,a| {£(P})}e.7) o< PUS (P} | 2) Bz |o) B(a, 7)
Zy.i ~ Multinomial(c)
‘ Gibbs Sampling

P(2y,s = m|2/{z0:}, He) o P(Hy | 2) (AT + )
N l Gumbel-Max Sampler
W~ Gumbel(0,1), m € {1,..., M},
Zyi~ argmax P(Hy | z, 2y = m)(!ASJm)l + Ym) + Wi -

39



Post-hoc Ensemble Construction

@ Create an ensemble using the posterior distribution of performances

o ] Expected pipeline

§ 0] performance

o) os4 T

E 00dee e JUPPEPEEL L ‘

S ey

g 0.5+ . s ¥ -

£ ..l - Uncertainty

8 s

& 0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1.0 P 6

3 1 4 5 2

Py Py Py P I

¢ Bayesian model averaging
@ Create a linear combination of pipelines ) _, wz'Pé

@ Weight of every pipeline = empirical probability of it being the best!

w; = P(Py = Py | Hy)
=TT® (= p) - (02 +02)72),

JF#i
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Meta-learning via Empirical Bayes

@ For every dataset seen by the system, create meta-features

< > Statistical meta-features: entropy, size of dataset,
number of features, class imbalance, etc.
Dataset
Clinical meta-features: ICD-10 codes, lab tests, etc
N—
< < <
N N N
Dataset Dat;set ® o o o Dat;set

- - - -
7’ ’
Y L Ay
~-._’ % ~ s.._, %

Meta-features

Match new dataset to old

Tuned hyperparameters via ones using meta-features...

empirical Bayes
41



Example 1: Cystic Fibrosis (Scientific Reports, 2018)

& Collaboration with the UK CF trust

Using cross-sectional observational data for 99% of CF patients
in the UK

@ Scarce resources: donated lungs, surgical resources

& Questions:

Who should be referred to a lung transplant?

What guidelines should be used for referral to a lung transplant?



AutoPrognosis: Better Predictions (Out-of-sample)

Prognostic Model m

AutoPrognosis 0.59 £ 0.03

Clinical Practice 0.49 + 0.02

AUC-PR (Sensitivity-Precision) is the metric of interest!
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AutoPrognosis: Better Predictions (Out-of-sample)

Prognostic Model m

AutoPrognosis 0.59 £ 0.03

Clinical Practice 0.49 £ 0.02
Auto-WEKA 0.50+0.03
Auto-sklearn 0.51+£0.02

Nkam et al., 2017 0.49 £ 0.02

CF-ABLE-UK 0.28 £0.04

AUC-PR (Sensitivity-Precision) is the metric of interest!
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AutoPrognosis at work

@ AutoPrognosis learned to stratify the UK CF population in a way
that led to a much more efficient allocation of donor lungs

Cutoff threshulld ® No adverse outcomes in 2015
1 @® Death or lung transplant in 2015
I
: Transplant referrals based
T on AutoPrognosis ~ [~--- )
1 1
1 1
No Oxygen Therapy | GRS, = TR - a6 |
and FEV1 > 30% voTe PPV = 655 !
I E
I ]
Oxygen Therapy | dﬂ, @ e i
and FEV1 > 30% . !
------------------------- T ..
: I !
NoOxygen Therapy | | @ euiimN@RSRRPEE0S |
and FEV1 < 30% ! : b
: i |
o - | TPR = 46% o - o
Xygen Therapy | 1 PPV = 48% P gy 3 DODE ST ) P
and FEV1 < 30% | | oy X
. Transplant referrals based |-———— e e eeeee e ;
on the FEV1 criterion
0.0 0.2 0.4 0.6 0.8 1.0

AutoPrognosis Predictions



AutoPrognosis: ldentifying risk factors

@ Contribution of different features to predictive accuracy

Oxygen Therapy I — FEV1 % Predicted [ -
FEV1 I — FEV1 I
FEV1 % Predicted I —— FEV1 % Predicted (2011)
FEV1 % Predicted (2011) FEV1 % Predicted (2010) [
CFRD | — FEV1 % Predicted (2009) I —
Diabetes | —_— IV Antibiotic Days in Hospital [ -
Heterozygous | —|— Oxygen Therapy I
Homozygous | FEV1 % Predicted (2008) [
IV Antibiotic Days in Hospital _ Best FEV1 [
FEV1 % Predicted (2010) [ — Weight 3
FEV1 % Predicted (2009) _— BMI +
Oral Corticosteroids | IV Antibiotic Days at Home [
Best FEV1 _— CFRD (-
Noninvasive Ventilation T —— Diabetes =
FEV1 % F"I’EdiCtEd (2008) . — Oral Corticosteroids -
IV Antibiotic Days at H%Tnel |—_ Noninvasive Ventilation —
Weight :_I Best FEV1 % Predicted | e
Best FEV1 % Predicted T —F— Hefgh; | —T
Height =+
Non-lV Hospital Admission [___=—— Heterozygous | =
Age =+ _Homozygous | —
Non-IV Hospital Admission | —

0.0 0.1 0.2 0.3 0.4 0.5
AUC-PR 0.0 0.2 0.4 0.6 0.8

AUC-ROC
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AutoPrognosis: Risk Stratification

Gas exchange

Spirometry

Current practice focuses on
spirometric variables (FEV1) to
make decisions

AutoPrognosis discovers that
more refined decisions can be
achieved by incorporating
variables related to gas exchange

Association
Rules

(FEV1 < 30%)
and
(Oxygenation)
and
(IV antibiotics)

(FEV1 < 30%)
and
(Owygenation)
and
(No IV antibiotics)

[FEV1 > 30%)
and
{Oxygenation)
and
(Mo IV antibiotics)

[FEV1 > 30%)
and
(Mo Oxygenation)
and
(Mo IV antibiotics)

AutoPrognosis Predictions

. -

Very high risk

High risk

I =

Moderate risk

5%

Low risk

LA
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AutoPrognosis: Other examples

Cardiovascular Disease

Breast Cancer
Dementia

48



ML+AI:
Enormous potential for transformative impact in medicine

Clinical Linked EHR Data Clinical Research
Practice

............

“““
** g
.

K . Observational
% Data

Q
Q
Q
Q
U
Q)
o J
hd ]
ol Ll
- L
- -
[ ]
- (]
- -
- = .
- -~ -
. N .
\J .
. - .
. .

* e R
- ”." ‘ ”u .". %,
Kllllllllllll-: 9 -:‘"""III’E g
+ Data-induced * ; .
i Causal Machine . Data-induced *,

* *

Learning . Genetic
----------- associations

Pharma Augmented OMICS
MD 49

Discovery o,

. .
.......
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How fast does AutoPrognosis learn?

Theorem

Let the number of algorithms in every subspace be bounded
by d . For a Matérn kernel with length-scale parameter ¢, then
the cumulative regret of AutoPrognosis is given by

¢4d(d+1)

R(T) = 2¢DT 2041 log(T)

@ Conventional GP-based BO: R(T) ~ T

@ AutoPrognosis R(T) ~ T% =) 10-fold improvement
For T=1000"
(common scenario:d = 5,/ = 25)

50



Forecast ICU in practice

Hospital: UCLA Ronald Reagan Medical Center

Cohort of 6,094 patients

Period: March 2013 ~ June 2015 (tested July 2015 — July
2016)

Age: 18 ~ 100+ years

Gender:
- Male (3,018 patients, 49.5%)
- Female (3,076 patients, 50.5%)

Length of stay: 1.5 hours ~ 159 days

51



12

10

Wide Variety of Diagnoses

Percentage of patients in top 20 ICD 9 codes

I I \ I I I \
I Shortness of Breathl I Hypertensionl I Septicemia I |Sepsis| | Abdomen and pelvisl

I Chronic renal failurel

I Feverl I Pneumonia" Renal faliurel

o I Malaise and fatigue I

I Urethra and urinary atlackl

| Altered mental status I

- | Heart failure

I Gastrointestinal hemorrhage“ Diabetesl N

Percentage of patients

IAnemiaI IChestpainI .

" [Atral firilation]

Respiratory

Nausea| -

| Abnormalities

786.05401.9 38.9 995.91 789 780.6 486 584.9 599 780.97285.9 786.5 585 780.79578

428 427.31787.01 250 787.91786.09

ICD-9 codes

Among 6,094 patients, 306 patients (5.0%) admitted to
ICU unexpectedly; 5,788 patients (95.0%) discharged
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Percentage of patients

12

10

Wide Variety of Diagnoses

Percentage of patients in top 20 ICD 9 codes

786.05 (7%)

I Other (22.5%) I I

I Shortness of Breathl I Hyperter

401.9 (6%)

I Chronic renal failurel

38.9 (5%)

o | Malaise and fatigue I

I Gastrointestinal hemorrhage“ Diabetesl |

- 095.91 (5%)
787.01 (3%)

- | Heart failure

789 (5%)

780.6 (5%)

42731 (3%) .
428 (3%)

578 (3%)

Respiratory H
| Abnormalities

" [Atral firilation]

780.79 (3%)

486 (5%) 555 (39%)

5849 (5%) T 786.5 (4%)

599 (4%) 285.9 (4%)
780.97 (4%)

drdd AT D

786.05401.9 38.9 9¢

80.78 578 428 427.31787.01 250 787.91786.09

Among 6,094 patients, 306 patients (5.0%) admitted to
ICU unexpectedly; 5,788 patients (95.0%) discharged
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Subtyping (Phenotyping)

e Discovering the different ways in which a disease
manifests in different patients

e Key approach for personalized medicine

Admission Infer subtype for
[ L] é [
information each patient

HASMM(T',)| [ HASMM(T,)| - - - [HASMM(I'g)

ICML-W 2016
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Performance Metrics

TPR (True Positive Rate, i.e. Sensitivity) = True Positive/True ICU

Patients

TNR (True Negative Rate, i.e. Specificity) = True Negative/True

Discharge patients

PPV (Positive Predictive Value, i.e. Precision) = True
Positive/Predicted ICU Patients

NPV (Negative Predictive Value) = True Negative/Predicted Discharge

patients

Predicted ICU
patients

Predicted Discharge
patients

True ICU patients

True Positive

False Negative

True Discharge

patients

False Positive

True Negative
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The “Augmented” MD

@ Machine learning

...can’t do medicine!
...can provide doctors with actionable information!

Machine learning
algorithms

)

Personalized risk assessment
Personalized diagnosis and prognosis
Individualized treatment effects

Disease Atlas

Data

Recommendations ..
Clinical ﬂ
Practice |

1 r
é .;&
= «.a 8
. & & = @
b . B¢ I
e E
a
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Application to Cardiovascular Patient Care

@ Preventive care:

e Meta-analysis Global Group in Chronic Heart Failure
(MAGGIC)

e UK bio-bank.

@ Heart-transplant wait-list management:
e United Network for Organ Sharing

@ Post-transplant care:

* United Network for Organ Sharing
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