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Automating the design of predictive 
models for clinical risk and prognosis
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Research Goal
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Improve Quality and Safety of  Healthcare 
while Managing Costs

using Machine Learning

The Policy
Perspective

The Clinical
Perspective

Guidelines, Policies, Standards

Personalized 

Clinical Decision Support
Actionable Intelligence

Population-serving

Cross-sectional



Research Goal
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Learning, Co-Evolving, Improving Health Systems

The Policy
Perspective

The Clinical
Perspective

Resources, Policy, 
Guidelines

Data

Bespoke
Machine 
Learning
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Goal: develop machine learning algorithms to extract 
actionable intelligence in order to improve clinical practice

Observational data 

Actionable intelligence
(Predictions, recommendations, practice 

guidelines, treatment effects, etc)

Diagnosis and 
Prognosis

Screening and 
testing

Treatments and 
interventions 

The Clinical Perspective: 
Decision Support Systems to Improve Patient Care 
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Ann Bob

• Urgency
– How long will Ann/Bob survive while waiting?

• Benefit
– How much will Ann/Bob benefit from this heart?

Who should get a heart?



• Urgency: Survival on Wait List
– HFSS
– MAGGIC
– SHFM

• Benefit: Survival after Transplantation
– DRI
– IMPACT
– RSS
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Clinical Risk Scores



Personalized survival predictions via 
Trees of  Predictors (ToPs)

Yoon J, Zame WR, Banerjee A, Cadeiras M, Alaa AM, van der Schaar, M. (2018) Personalized survival 
predictions via Trees of Predictors: An application to cardiac transplantation. PLOS ONE 13(3): e0194985. 
https://doi.org/10.1371/journal.pone.0194985

Yoon J, Zame WR, van der Schaar, M. (2018) ToPs: Ensemble Learning with Trees of Predictors. Trans. on 
Signal Processing
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Regression Tree ToPs

Features 
becoming more 
homogeneous

Features 
becoming more 
homogeneous

Labels 
becoming more 
homogeneous

Labels NOT 
becoming more 
homogeneous

Single Prediction Single Predictor
(Possibly wide range of predictions)

ToPs is NOT a regression tree!



United Network for Organ Transplantation (UNOS)
• ALL patients registered for heart transplantation in 

US in 1985-2015
• 35,000+ patients wait-listed but did not receive heart 

transplant
– Date of waitlisting + survival
– 33 features of patients

• 60,000+ patients received heart transplant
– Date of transplantation + survival
– 53 features of patients/donors
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Dataset
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3 months 1 year 3 years 10 years

ToPs/R 0.8467 0.8130 0.7921 0.7897

MAGGIC 0.6298 0.6413 0.6425 0.6290

Wait-List

3 months 1 year 3 years 10 years

ToPs/R 0.6763 0.6637 0.6538 0.6562

IMPACT 0.5808 0.5700 0.5524 0.5308

Post-
Transplant

Performance



Actual 
Survival

Correctly
Predicted 
(Specificity = .80)

Actual 
Mortality

Correctly 
Predicted
(Sensitivity 
=.80)

MAGGIC 4,723 1,984
(37.8%)

2,542 915
(36%)

ToPs/R 4,723 3,212
(68.0%)

2,542 1,754
(69.0%)

Additional
Correct
Predictions

1,228 839

12

Survival/Mortality at 3 Months
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• Information gain
• Modeling gain

Sources of  gain



Features used by Clinical Risk Scores 
(Wait-list)
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EF(%)

Blood 
Pressure

pkVO2

HFSS

SHFM

MAGGIC

Sodium

Ischemic 
Etiology

Conduction 
delay

Heart Rate

Age Gender

NYHA Class

Diuretic

Creatinine

Weight
Hemoglobin

Lymphocytes

BMI

Cholesterol
Uric Acid

Diabetic

COPD

Heart Failure

Beta blocker



Features used by Clinical Risk Score 
(Post-transplantation)
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DRI

IMPACT

RSS

Ischemic time

Donor Age

Recipient Race

Donor Race

BUN

Creatinine

Recipient Age

Previous 
Cardiac Surgery

Bilirubin

HF Etiology

Diabetes

Dialysis

Recipient 
Gender

Donor Gender

LVAD

RVAD

Ventilator Support
IABP

Infection

Donor HEP C

ECMO

Total 
Artificial 
Heart

eGFR



What are the Problems with Clinical Scores?

1. Models are one size-fits-all
– but ... population(s) are very heterogeneous

2. Models are linear
– but ... survival is non-linear: features interact

3. Models are horizon-independent
– but ... long-term survival is different from short-

term survival; different features matter for 
different time horizons
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Our Method ToPs – Designed to Solve Problems

1. Model is individualized
– addresses heterogeneous population(s)

2. Model is non-linear (where needed)
– addresses interaction of  features

3. Model is horizon-dependent
– addresses differences between long-term survival 

and short-term survival; different features matter 
for different time horizons
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• Built on
– Cox Regression
– Linear Regression
– Logistic Regression

• Choice of  regression model represents interaction of  
features

• Choice of  coefficients represents importance of  
features

• Data tells us
– how to group/cluster patients 
– which regression model to use for each 

group/cluster
– which coefficients to use for each group/cluster
– how to aggregate predictions

20

Interpretability? Tops/R (Regressions as Base Learners)
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Clinical Decision Support System



ML Performance Comparisons (Wait-list)

Algorithms 3-month 1-year 3-year 10-year

ToPs/R 0.8467 0.8130 0.7921 0.7897

Boosting
Methods

AdaBoost 0.8180 0.7865 0.7773 0.7452

Deep Boost 0.8211 0.7898 0.7731 0.7392

Logit Boost 0.7449 0.7371 0.7232 0.6776

XGBoost 0.8243 0.7935 0.7779 0.7456

Tree-based 
Methods

Decision Tree 0.8188 0.7833 0.7642 0.7440

Random Forest 0.8239 0.7926 0.7744 0.7280

Other Neural Nets 0.7881 0.7811 0.7705 0.7412



ML Performance Comparison (Post-transplantation)

Algorithms 3-month 1-year 3-year 10-year

ToPs/R 0.6763 0.6637 0.6538 0.6562

Boosting
Methods

AdaBoost 0.6506 0.6302 0.6034 0.6155

Deep Boost 0.6464 0.6347 0.6100 0.6133

Logit Boost 0.6370 0.6216 0.5961 0.6130

XGBoost 0.6183 0.6083 0.5877 0.6152

Tree-based 
Methods

Decision Tree 0.6296 0.6107 0.5895 0.5990

Random Forest 0.6529 0.6413 0.6113 0.6194

Other Neural Nets 0.6415 0.6387 0.6101 0.6150



+  High predictive accuracy (for some datasets)
+  Data-driven, few assumptions
- Many algorithms: Which one to choose?
- Many hyper-parameters: Need expertise in data science

AUROC MAGGIC UK Biobank UNOS-I UNOS-II

Best predictor 0.80 ± 0.004 0.76 ± 0.002 0.78 ± 0.002 0.65 ± 0.001

NN GradientBoost ToPs ToPs
Best Clinical Score 0.70 ± 0.007 0.70 ± 0.003 0.62 ± 0.001 0.56 ± 0.001

Cox PH 0.75 ± 0.005 0.74 ± 0.002 0.70 ± 0.001 0.59 ± 0.001

Previous Machine Learning in Prognostic Research



+  High predictive accuracy (for some datasets)
+  Data-driven, few assumptions
- Many algorithms: Which one to choose?
- Many hyper-parameters: Need expertise in data science

- Can we predict in advance which method is best?
- Can we do better?
- Many metrics of  performance (AUROC, AUPRC, C-index, 

quality of  well-being)

Previous Machine Learning in Prognostic Research

AUROC MAGGIC UK Biobank UNOS-I UNOS-II

Best predictor 0.80 ± 0.004 0.76 ± 0.002 0.78 ± 0.002 0.65 ± 0.001

NN GradientBoost ToPs ToPs
Best Clinical Score 0.70 ± 0.007 0.70 ± 0.003 0.62 ± 0.001 0.56 ± 0.001

Cox PH 0.75 ± 0.005 0.74 ± 0.002 0.70 ± 0.001 0.59 ± 0.001



Make 
Machine Learning  

DO the Crafting

How to do this?

Many diseases, many 
variables, various needs!

All is changing!

Can’t craft a model for each 
disease!



Make 
Machine Learning  

DO the Crafting

How to do this?

Many diseases, many 
variables, various needs!

All is changing!

Can’t craft a model for each 
disease!
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Previous AutoML? Auto-WEKA and Auto-Sklearn
Limited performance gains
Ad-hoc optimization and ad-hoc meta-learning 
Simplistic handling of  missing data
Do not capture uncertainty
Limited to classification problems (survival, competing risks etc.)



AutoPrognosis: A tool for crafting Prognostic Scores for 
Many Diseases
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Prediction

Survival Models

Competing Risks

Temporal Models

Causal Models

Principled Bayesian Optimization

First: a few technical details
Second: a few examples



We need an entire pipeline!
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Each pipeline is a path of  algorithms!

Find the best paths and tune parameters: 
A hard optimization problem!

Regression



Ensembles
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Instead of  the single best pipeline we use an ensemble

Why?

Uncertainty: finite data set to learn from, so we are not sure which 
pipeline is “best”
Information loss: using a single pipeline discards useful information 
from other pipelines

Regression



:  risk strata

Interpretability 
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We don’t want simply a black-box, we want explanations 
that users can interpret

Black-box model

Interpreter
Clinical
Explanations

Interpreter provides logical associations

Clinical conditions Risk stratum

Example:



AutoPrognosis: System Overview
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Pipeline configuration



AutoPrognosis: Pipeline Components

33

8 imputation algorithms, 10 feature preprocessing 
algorithms, 20 classifiers, 3 calibration methods

MANY hyperparameters in each algorithm

Total number of  hyperparameters = 110



Classification algorithms

Automated Pipeline Configuration (I)
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Imputation algorithms Feature process. algorithms

Calibration algorithms

Hyperparameters

Hyperparameters

Hyperparameters

Hyperparameters

Set of  all pipelines

Set of  all hyperparameters

Set of  all pipeline configurations

Combined Pipeline Selection and Hyperparameter optimization 
problem (CPSH) 



Automated Pipeline Configuration (II)
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The CPSH problem 

Bayesian optimization

P
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n

Gaussian process 
prior

Gaussian process 
posterior

Select new pipeline via 
acquisition function



The Curse of  Dimensionality 
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Statistical and computational complexity of  the CPSH problem 

GP BO does not work well for D > 10  [Wang, 2013]

Gaussian process 
prior

Gaussian process 
posterior

Select new pipeline via 
acquisition function

Sample complexity for non-
parametric estimation of  

α-smooth functions [Stone, 1982]

Computational complexity of GP posterior 
After t iterations [Rasmussen & Williams, 2006]

Exponentially 
many iterations!

Computational complexity of  
maximizing acquisition [Snoek, 2015]



Bayesian Optimization with Structured Kernel Learning
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Main idea: Some algorithms are “correlated” and some are not => 
Correlated algorithms should be made to share information

Random 
Forest

Tr
ee

s

De
pt

h

Sp
lit

XGBoost

Tr
ee

s

Ra
te

Neural
Network

La
ye

rs

Hi
dd

en
 

un
ite

s

One Gaussian process 
per group of  algorithms

Correlation is not known in advance, so must be learned

Learn a structured kernel that clusters correlated algorithms:

Low dimensionality 
for every cluster

Relevant information
sharing within a cluster



Sparse Additive Gaussian Processes
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Decompose high-dimensional GP into sum of  low-dimensional 
components

Random 
Forest

Tr
ee

s

De
pt

h
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lit

XGBoost

Tr
ee

s

Ra
te

Neural
Network

La
ye

rs

Hi
dd

en
 

un
ite

s

One Gaussian process 
per group of  algorithms

D-dimensional 
GP

Low-dimensional 
GPs

Space of  all pipelines

Partitions of

Structured kernel:

Sparse additive GPs:



Structured Kernel Learning 
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Define the variable                                 : indicator for the subspace 
allocation for algorithm    in       

Bayesian inference: 

Prior on 
decompositions

Compute posterior in 
concurrence with BO

Prior on           = Prior on

Gibbs Sampling

Gumbel-Max Sampler



Post-hoc Ensemble Construction
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Create an ensemble using the posterior distribution of  performances  
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Create a linear combination of  pipelines

Weight of  every pipeline = empirical probability of  it being the best!

Bayesian model averaging

Expected pipeline 
performance

Uncertainty 



Meta-learning via Empirical Bayes
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For every dataset seen by the system, create meta-features

Dataset

Statistical meta-features: entropy, size of  dataset, 
number of  features, class imbalance, etc.

Clinical meta-features: ICD-10 codes, lab tests, etc

Dataset 
1

Dataset 
2

Dataset 
N

. . . . 

Meta-features Tuned hyperparameters via 
empirical Bayes

Match new dataset to old 
ones using meta-features…



Example 1: Cystic Fibrosis (Scientific Reports, 2018)
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Collaboration with the UK CF trust

Using cross-sectional observational data for 99% of  CF patients 
in the UK  

Questions:

Scarce resources: donated lungs, surgical resources

Who should be referred to a lung transplant? 

What guidelines should be used for referral to a lung transplant? 



AutoPrognosis: Better Predictions (Out-of-sample)
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Prognostic Model AUC-PR

AutoPrognosis 0.59 ± 0.03

Clinical Practice 0.49 ± 0.02

AUC-PR (Sensitivity-Precision) is the metric of  interest!



AutoPrognosis: Better Predictions (Out-of-sample)
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Prognostic Model AUC-PR

AutoPrognosis 0.59 ± 0.03

Clinical Practice 0.49 ± 0.02

Auto-WEKA 0.50 ± 0.03

Auto-sklearn 0.51 ± 0.02

Nkam et al., 2017 0.49 ± 0.02

CF-ABLE-UK 0.28 ± 0.04

AUC-PR (Sensitivity-Precision) is the metric of  interest!



AutoPrognosis at work

AutoPrognosis learned to stratify the UK CF population in a way 
that led to a much more efficient allocation of  donor lungs



AutoPrognosis: Identifying risk factors
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• Contribution of  different features to predictive accuracy



AutoPrognosis: Risk Stratification
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Current practice focuses on 
spirometric variables (FEV1) to 

make decisions

AutoPrognosis discovers that 
more refined decisions can be 

achieved by incorporating 
variables related to gas exchange 

Lung function

Spirometry Gas exchange 



AutoPrognosis: Other examples
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Cardiovascular Disease
Breast Cancer
Dementia



ML+AI: 
Enormous potential for transformative impact in medicine 
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Linked EHR DataClinical 
Practice

Clinical Research

Pharma OMICS

Observational
Data

Data-induced
Genetic 

associations

Data-induced
Causal 

Discovery
Machine
Learning

Augmented
MD



How fast does AutoPrognosis learn?
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Theorem 

Let the number of algorithms in every subspace be bounded
by . For a Matérn kernel with length-scale parameter , then
the cumulative regret of AutoPrognosis is given by

Conventional GP-based BO: 

AutoPrognosis 

(common scenario:                              )

10-fold improvement
For T = 1000!!



Forecast ICU in practice
• Hospital: UCLA Ronald Reagan Medical Center

• Cohort of 6,094 patients
- Period: March 2013 ~ June 2015 (tested July 2015 – July 

2016)
- Age: 18 ~ 100+ years
- Gender: 

- Male (3,018 patients, 49.5%) 
- Female (3,076 patients, 50.5%)

- Length of stay: 1.5 hours ~ 159 days

51



Wide Variety of Diagnoses

Percentage of patients in top 20 ICD 9 codes
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Among 6,094 patients, 306 patients (5.0%) admitted to 
ICU unexpectedly; 5,788 patients (95.0%) discharged



Wide Variety of Diagnoses

Percentage of patients in top 20 ICD 9 codes
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Among 6,094 patients, 306 patients (5.0%) admitted to 
ICU unexpectedly; 5,788 patients (95.0%) discharged



Subtyping (Phenotyping)

• Discovering the different ways in which a disease 
manifests in different patients

• Key approach for personalized medicine

Infer subtype for 
each patient

Admission
information

.    .    .

54
ICML-W 2016



Performance Metrics

- TPR (True Positive Rate, i.e. Sensitivity) = True Positive/True ICU 
Patients

- TNR (True Negative Rate, i.e. Specificity) = True Negative/True 
Discharge patients

- PPV (Positive Predictive Value, i.e. Precision) = True 
Positive/Predicted ICU Patients

- NPV (Negative Predictive Value) = True Negative/Predicted Discharge 
patients

Predicted ICU 
patients

Predicted Discharge 
patients

True ICU patients True Positive False Negative
True Discharge 

patients
False Positive True Negative

55



• Machine learning 

…can’t do medicine! 

...can provide doctors with actionable information!

The “Augmented” MD

56

Data

Machine learning 
algorithms

Clinical
Practice

Personalized diagnosis and prognosis
Individualized treatment effects

Disease Atlas
Recommendations

Personalized risk assessment



Application to Cardiovascular Patient Care
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• Preventive care: 
• Meta-analysis Global Group in Chronic Heart Failure 

(MAGGIC)
• UK bio-bank.
• Heart-transplant wait-list management:
• United Network for Organ Sharing 
• Post-transplant care:
• United Network for Organ Sharing 
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