AutoPrognosis

Automating the design of predictive models for clinical risk and prognosis

Mihaela van der Schaar
University of Oxford
The Alan Turing Institute

Acknowledgements

- Ahmed Alaa
- Jinsung Yoon
- Prof. William Zame
- Many clinical collaborators

Research Goal

Improve Quality and Safety of Healthcare while Managing Costs using Machine Learning

- Population-serving
- Cross-sectional

The Clinical Perspective

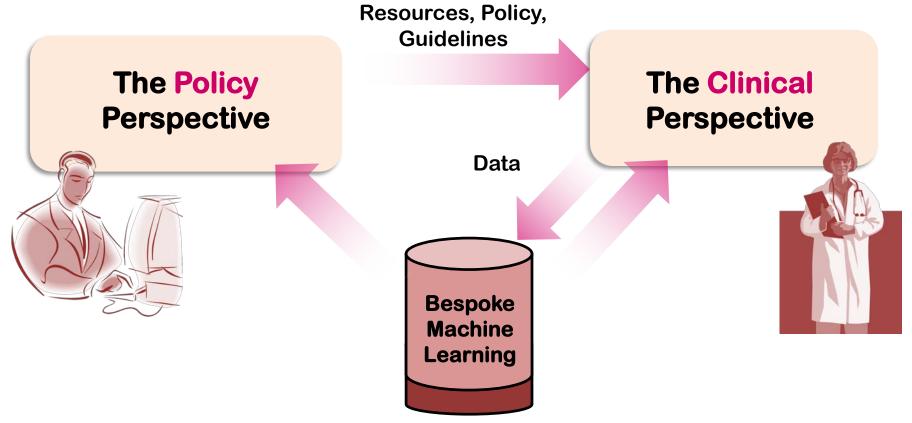
Personalized

Guidelines, Policies, Standards

Clinical Decision Support Actionable Intelligence

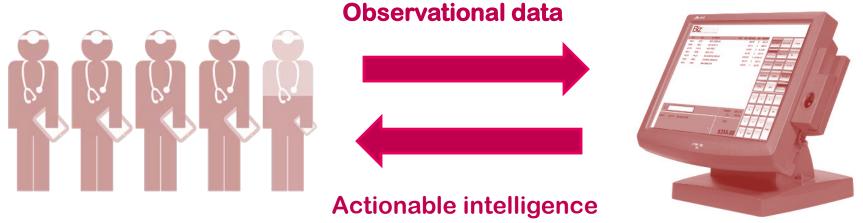
Research Goal

Learning, Co-Evolving, Improving Health Systems



The Clinical Perspective: Decision Support Systems to Improve Patient Care

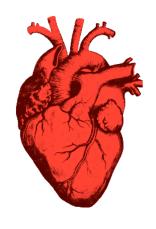
Goal: develop machine learning algorithms to extract actionable intelligence in order to improve clinical practice



(Predictions, recommendations, practice guidelines, treatment effects, etc)

Who should get a heart?

Ann



Bob

Urgency

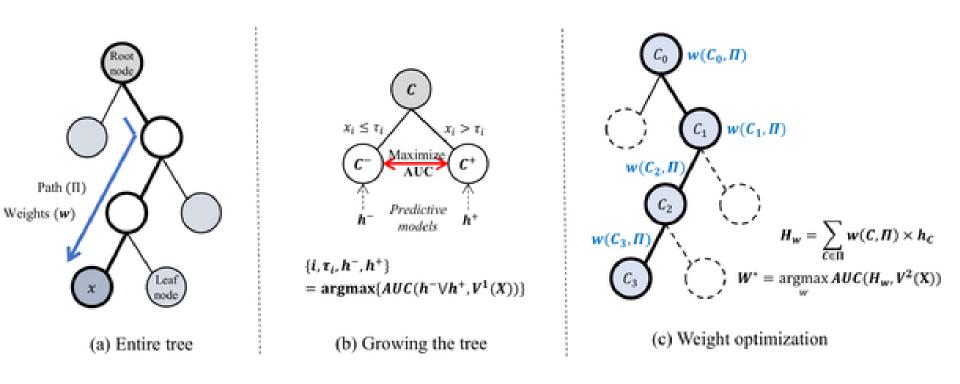
- How long will Ann/Bob survive while waiting?
- Benefit
 - How much will Ann/Bob benefit from this heart?

Clinical Risk Scores

- Urgency: Survival on Wait List
 - HFSS
 - MAGGIC
 - SHFM
- Benefit: Survival after Transplantation
 - DRI
 - IMPACT
 - RSS

Personalized survival predictions via

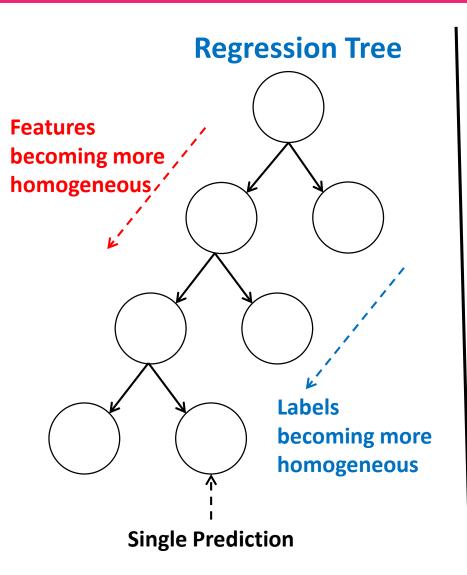
Trees of Predictors (ToPs)

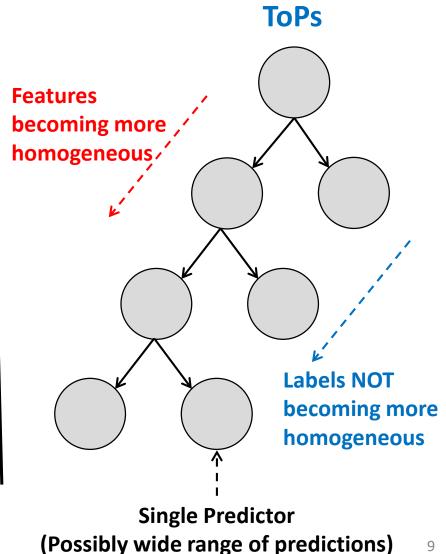


Yoon J, Zame WR, van der Schaar, M. (2018) ToPs: Ensemble Learning with Trees of Predictors. *Trans. on Signal Processing*

Yoon J, Zame WR, Banerjee A, Cadeiras M, Alaa AM, van der Schaar, M. (2018) Personalized survival predictions via Trees of Predictors: An application to cardiac transplantation. *PLOS ONE* 13(3): e0194985. https://doi.org/10.1371/journal.pone.0194985

ToPs is NOT a regression tree!





Dataset

United Network for Organ Transplantation (UNOS)

- ALL patients registered for heart transplantation in US in 1985-2015
- 35,000+ patients wait-listed but did not receive heart transplant
 - Date of waitlisting + survival
 - 33 features of patients
- 60,000+ patients received heart transplant
 - Date of transplantation + survival
 - 53 features of patients/donors

Performance

Wait-List

	3 months	1 year	3 years	10 years
ToPs/R	0.8467	0.8130	0.7921	0.7897
MAGGIC	0.6298	0.6413	0.6425	0.6290

Post-Transplant

	3 months	1 year	3 years	10 years
ToPs/R	0.6763	0.6637	0.6538	0.6562
IMPACT	0.5808	0.5700	0.5524	0.5308

Survival/Mortality at 3 Months

	Actual Survival	Correctly Predicted (Specificity = .80)	Actual Mortality	Correctly Predicted (Sensitivity =.80)
MAGGIC	4,723	1,984 (37.8%)	2,542	915 (36%)
ToPs/R	4,723	3,212 (68.0%)	2,542	1,754 (69.0%)
Additional Correct Predictions		1,228		839

Newsweek

AFTER A HEART TRANSPLANT WITH SCARY ACCURACY

By Dana Dovey On Friday, May 18, 2018 - 12:18

The algorithm may help us make better use of limited available hearts. The first heart used in a heart donation.

NEWS EDUCATION/CME JOURNALS MEETING CALENDAR BOOKS JOBS

All News Video Opinion In the Journals Meeting News Resource Centers Learn the Heart Trial Se

Healio > Cardiology > HF/Transplantation

IN THE JOURNALS

Algorithm predicts life expectancy in advanced HF

Yoon J, et al. PLoS One. 2018;doi:10.1371/journal.pone.0194985.

June 21, 2018

ADD TOPIC TO EMAIL ALERTS

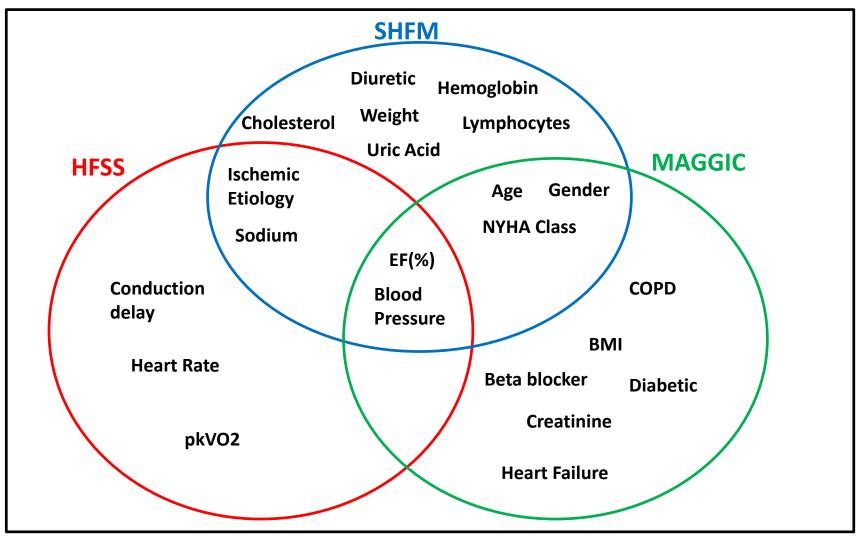
Researchers reported that they developed a new algorithm that more accurately predicts how long patients with advanced HF will survive, regardless of whether they receive a transplant.

"Our work suggests that more lives could be saved with the application of this new machine learning-based algorithm," **Mihaela van der Schaar, PhD,** Chancellor's

Sources of gain

- Information gain
- Modeling gain

Features used by Clinical Risk Scores (Wait-list)



Features used by Clinical Risk Score (Post-transplantation)



What are the Problems with Clinical Scores?

- 1. Models are one size-fits-all
 - but ... population(s) are very heterogeneous
- 2. Models are linear
 - but ... survival is non-linear: features interact
- 3. Models are horizon-independent
 - but ... long-term survival is different from shortterm survival; different features matter for different time horizons

Our Method ToPs – Designed to Solve Problems

- 1. Model is individualized
 - addresses heterogeneous population(s)
- 2. Model is non-linear (where needed)
 - addresses interaction of features
- 3. Model is horizon-dependent
 - addresses differences between long-term survival and short-term survival; different features matter for different time horizons

Interpretability? Tops/R (Regressions as Base Learners)

- Built on
 - Cox Regression
 - Linear Regression
 - Logistic Regression
- Choice of regression model represents interaction of features
- Choice of coefficients represents importance of features
- Data tells us
 - how to group/cluster patients
 - which regression model to use for each group/cluster
 - which coefficients to use for each group/cluster
 - how to aggregate predictions

Clinical Decision Support System

University of California Los Angeles

Input Variables

Recipient Variables	S	Donor Var	iables	Compatibility Variables
Clinical and demographic features		Age (years)	28	Ischemic Time (hour) 3
Age (years)	50	Gender	Male •	HLA-A Mismatch 1
Gender	Male ▼	Height (cm)	181	HLA-B Mismatch 1
Height (cm)	178	Weight (kg)	83	HLA-DR Mismatch 1
Weight (kg)	80	Donor blood group	Α •	
Diabetes	Yes ▼	Hep C Antigen	Yes ▼	
Infection	No ▼	Diabetes	Yes ▼	
Transfusion	No ▼			
Number of Previous Heart Transplants	0			
Creatinine (µmol/l)	1.2			
Total Bilirubin (µmol/l)	1.3			
Mean PRA (%)	5.1			
Blood Type	A ·			
Life support				
Ventilator Assist	No ▼			
ECMO Assist	No ▼			
LVAD Assist	No ▼			
Dialysis	No ▼			
IABP Assist	Yes ▼			
Total Artificial Heart	No ▼			
Inotropic Assist	No ▼			
Other Circulatory Support	No ▼			
Waiting status and time				
Days in Status 1A (days)	3			
Days in Status 1B (days)	9			
Days in Status 2 (days)	25			

ML Performance Comparisons (Wait-list)

	Algorithms	3-month	1-year	3-year	10-year
	ToPs/R	0.8467	0.8130	0.7921	0.7897
Boosting Methods	AdaBoost	0.8180	0.7865	0.7773	0.7452
	Deep Boost	0.8211	0.7898	0.7731	0.7392
	Logit Boost	0.7449	0.7371	0.7232	0.6776
	XGBoost	0.8243	0.7935	0.7779	0.7456
Tree-based	Decision Tree	0.8188	0.7833	0.7642	0.7440
Methods	Random Forest	0.8239	0.7926	0.7744	0.7280
Other	Neural Nets	0.7881	0.7811	0.7705	0.7412

ML Performance Comparison (Post-transplantation)

	Algorithms	3-month	1-year	3-year	10-year
	ToPs/R	0.6763	0.6637	0.6538	0.6562
	AdaBoost	0.6506	0.6302	0.6034	0.6155
Boosting	Deep Boost	0.6464	0.6347	0.6100	0.6133
Methods	Logit Boost	0.6370	0.6216	0.5961	0.6130
	XGBoost	0.6183	0.6083	0.5877	0.6152
Tree-based	Decision Tree	0.6296	0.6107	0.5895	0.5990
Methods	Random Forest	0.6529	0.6413	0.6113	0.6194
Other	Neural Nets	0.6415	0.6387	0.6101	0.6150

Previous Machine Learning in Prognostic Research

- + High predictive accuracy (for some datasets)
- + Data-driven, few assumptions
- Many algorithms: Which one to choose?
- Many hyper-parameters: Need expertise in data science

AUROC	MAGGIC	UK Biobank	UNOS-I	UNOS-II
Best predictor	0.80 ± 0.004	0.76 ± 0.002	0.78 ± 0.002	0.65 ± 0.001
	NN	GradientBoost	ToPs	ToPs
Best Clinical Score	0.70 ± 0.007	0.70 ± 0.003	0.62 ± 0.001	0.56 ± 0.001
Cox PH	0.75 ± 0.005	0.74 ± 0.002	0.70 ± 0.001	0.59 ± 0.001

Previous Machine Learning in Prognostic Research

- + High predictive accuracy (for some datasets)
- + Data-driven, few assumptions
- Many algorithms: Which one to choose?
- Many hyper-parameters: Need expertise in data science

AUROC	MAGGIC	UK Biobank	UNOS-I	UNOS-II
Best predictor	0.80 ± 0.004	0.76 ± 0.002	0.78 ± 0.002	0.65 ± 0.001
	NN	GradientBoost	ToPs	ToPs
Best Clinical Score	0.70 ± 0.007	0.70 ± 0.003	0.62 ± 0.001	0.56 ± 0.001
Cox PH	0.75 ± 0.005	0.74 ± 0.002	0.70 ± 0.001	0.59 ± 0.001

- Can we predict in advance which method is best?
- Can we do better?
- Many metrics of performance (AUROC, AUPRC, C-index, quality of well-being)

How to do this?

Many diseases, many variables, various needs!
All is changing!

Can't craft a model for each disease!

Make
Machine Learning
DO the Crafting

How to do this?

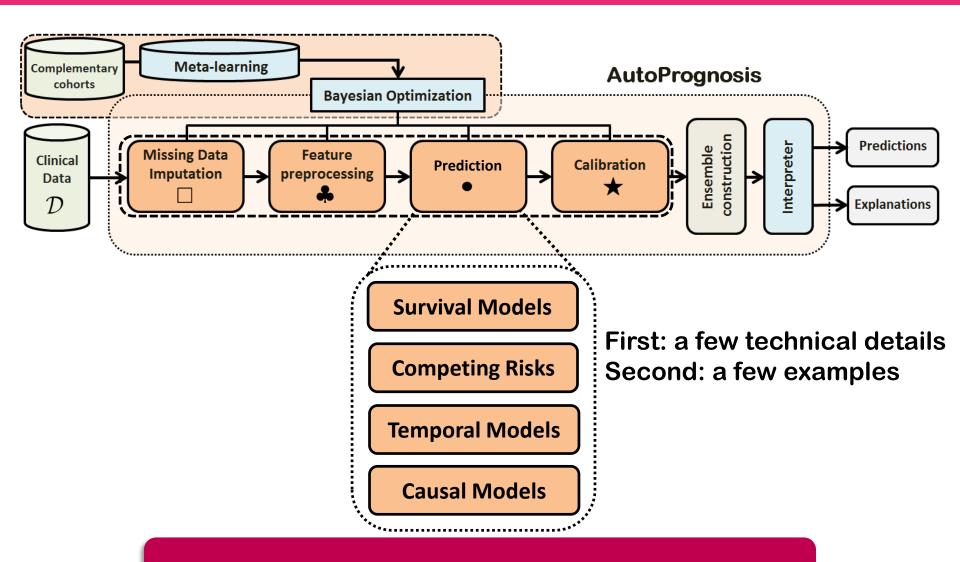
Many diseases, many variables, various needs!
All is changing!

Can't craft a model for each disease!

Make
Machine Learning
DO the Crafting

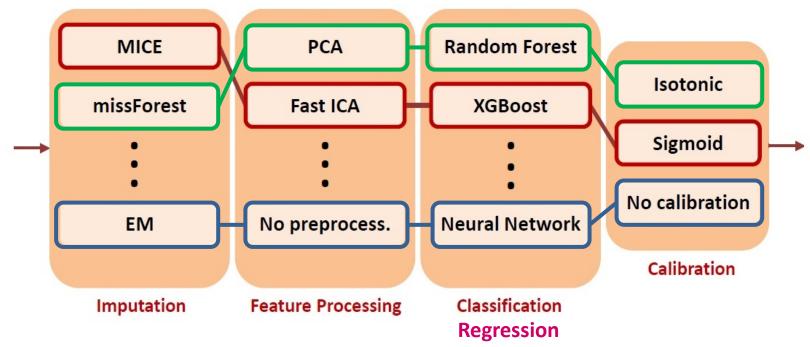
- Previous AutoML? Auto-WEKA and Auto-Sklearn
 - Limited performance gains
 - Ad-hoc optimization and ad-hoc meta-learning
 - Simplistic handling of missing data
 - Do not capture uncertainty
 - Limited to classification problems (survival, competing risks etc.)

AutoPrognosis: A tool for crafting Prognostic Scores for *Many Diseases*



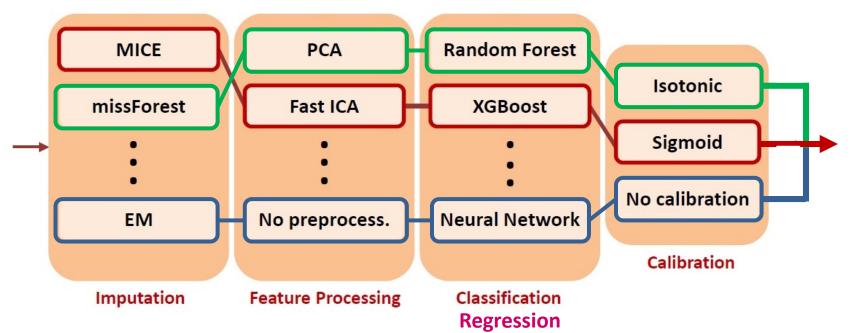
We need an entire pipeline!

- Each pipeline is a path of algorithms!
- Find the best paths and tune parameters:
 A hard optimization problem!



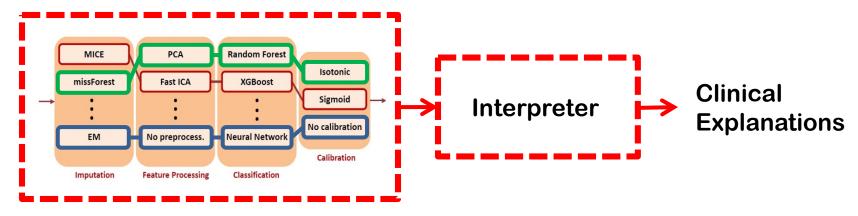
Ensembles

- Instead of the single best pipeline we use an ensemble
- Why?
 - *Uncertainty*: finite data set to learn from, so we are not sure which pipeline is "best"
 - *Information loss:* using a single pipeline discards useful information from other pipelines



Interpretability

 We don't want simply a black-box, we want explanations that users can interpret



Black-box model

Interpreter provides logical associations

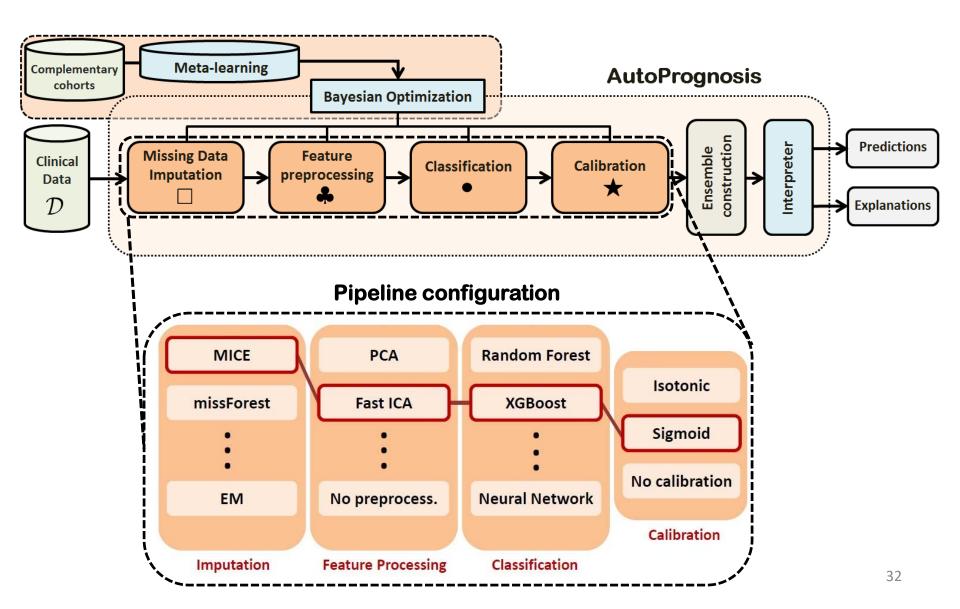
$$C_1 \wedge C_2 \wedge \ldots \wedge C_{l(r)} \implies r, \forall r \in \mathcal{R}$$
Clinical conditions Risk stratum

 \mathcal{R} : risk strata

Example:

Diabetic \land Smoking \implies High risk for ischemic stroke

AutoPrognosis: System Overview



AutoPrognosis: Pipeline Components

- 8 imputation algorithms, 10 feature preprocessing algorithms, 20 classifiers, 3 calibration methods
- MANY hyperparameters in each algorithm
- Total number of hyperparameters = 110

Pipeline Stage			Algorithms		
□ Data Imputation	☐ missForest (2) ☐ Matrix completion (2)	☐ Median (0) ☐ MICE (1)	☐ Most-frequent (0) ☐ GAIN	☐ Mean (0) ☐ None (0)	□ EM (1)
• Feature process.	♣ Feature agglo. (4) ♣ R. kitchen sinks (2)	♣ Kernel PCA (5) ♣ Nystroem (5)	♣ Polynomial (3) ♣ Linear SVM (3)	♣ Fast ICA (4) ♣ Select Rates (3)	♣ PCA (2) ♣ None (0)
• Prediction	 Bernoulli NB (2) Gaussian NB (0) Multinomial NB (2) Ridge Class. (1) DMGP 	 AdaBoost (4) XGBoost (5) R. Forest (5) Bagging (4) CMGP 	 Decision Tree (4) Extr. R. Trees (5) Neural Net. (5) k-NN (1) DeepHit 	 Grad. Boost. (6) Light GBM (5) Log. Reg. (0) Surv. Forest (5) HBM 	 LDA (4) L. SVM (4) GP (3) Cox Reg. (0) TOPs
★ Calibration	★ Sigmoid (0)	★ Isotonic (0)	★ None (0)		

Automated Pipeline Configuration (I)

- Imputation algorithms \mathcal{A}_d Hyperparameters Θ_d
- Classification algorithms \mathcal{A}_c Hyperparameters Θ_c
- Feature process. algorithms A_f Hyperparameters Θ_f
- Calibration algorithms \mathcal{A}_a Hyperparameters Θ_a
- Set of all pipelines $\mathcal{P} = \mathcal{A}_d \times \mathcal{A}_f \times \mathcal{A}_c \times \mathcal{A}_a$
- Set of all hyperparameters $\Theta = \Theta_d \times \Theta_f \times \Theta_c \times \Theta_a$
- ullet Set of all pipeline configurations $\,\mathcal{P}_{\Theta}$
- Combined Pipeline Selection and Hyperparameter optimization problem (CPSH)

$$P_{\theta^*}^* \in \arg\max_{P_{\theta} \in \mathcal{P}_{\Theta}} \frac{1}{K} \sum_{i=1}^K \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)})$$

Automated Pipeline Configuration (II)

- The CPSH problem $\arg \max_{P_{\theta} \in \mathcal{P}_{\Theta}} \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)})$
- Bayesian optimization

Gaussian process prior

$$f \sim \mathcal{GP}(\mu(P_{\theta}), k(P_{\theta}, P'_{\theta}))$$

Gaussian process posterior

$$f \mid \{P_{\theta}^t\}_t$$

Select new pipeline via acquisition function

$$P_{\theta}^{t+1} = \arg\max_{P_{\theta}} A(P_{\theta}; f \mid \{P_{\theta}^t\}_t)$$

$$f(P_{\theta}) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{L}(P_{\theta}; \mathcal{D}_{\text{train}}^{(i)}, \mathcal{D}_{\text{valid}}^{(i)}) + \varepsilon$$

The Curse of Dimensionality

- Statistical and computational complexity of the CPSH problem
- GP BO does not work well for D > 10 [Wang, 2013]

Gaussian process prior

$$f \sim \mathcal{GP}(\mu(P_{\theta}), k(P_{\theta}, P'_{\theta}))$$

Sample complexity for nonparametric estimation of α-smooth functions [Stone, 1982]

$$\Theta(t^{-\frac{\alpha}{2\alpha+D}})$$

Exponentially many iterations!

Gaussian process posterior

$$f \mid \{P_{\theta}^t\}_t$$

Computational complexity of GP posterior After *t* iterations [Rasmussen & Williams, 2006]

$$\mathcal{O}(t^3)$$

Select new pipeline via acquisition function

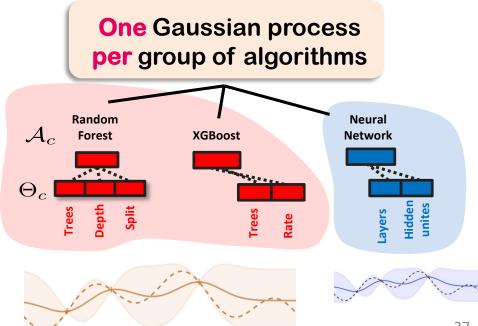
Computational complexity of maximizing acquisition [Snoek, 2015]

$$P_{\theta}^{t+1} = \arg\max_{P_{\theta}} A(P_{\theta}; f \mid \{P_{\theta}^t\}_t)$$

$$\mathcal{O}(n^D)$$

Bayesian Optimization with Structured Kernel Learning

- Main idea: Some algorithms are "correlated" and some are not => Correlated algorithms should be made to share information
- Correlation is not known in advance, so must be learned
- **Learn** a structured kernel that clusters <u>correlated</u> algorithms:
 - Low dimensionality for every cluster
 - Relevant information sharing within a cluster



Sparse Additive Gaussian Processes

Decompose high-dimensional GP into sum of low-dimensional components

Λ

Space of all pipelines

$$\{{f \Lambda}^{(m)}\}_m$$

Partitions of Λ

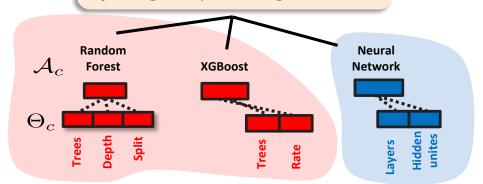
Sparse additive GPs:

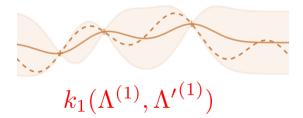
$$f(\Lambda) = \sum_{m=1}^{M} f_m(\Lambda^{(m)})$$

D-dimensional GP

Low-dimensional GPs

One Gaussian process per group of algorithms





$$k_2(\Lambda^{(2)}, {\Lambda'}^{(2)})$$

Structured kernel:
$$k(\Lambda, \Lambda') = \sum_{m=1}^{M} k_m(\Lambda^{(m)}, {\Lambda'}^{(m)})$$

Structured Kernel Learning

- Define the variable $z_{v,i} \in \{1, ..., M\}$: indicator for the subspace allocation for algorithm i in A_v
 - Prior on $z_{v,i}$ = Prior on $\{\Lambda^{(m)}\}_m$

Bayesian inference:

Prior on decompositions

 $\alpha \sim \text{Dirichlet}(M, \gamma)$ $z_{v,i} \sim \text{Multinomial}(\alpha)$

Compute posterior in concurrence with BO

$$\mathbb{P}(z,\alpha \mid \{f(P_{\theta}^t)\}_t,\gamma) \propto \mathbb{P}(\{f(P_{\theta}^t)\}_t \mid z) \, \mathbb{P}(z\mid\alpha) \, \mathbb{P}(\alpha,\gamma)$$

Gibbs Sampling

$$\mathbb{P}(z_{v,i} = m \mid z/\{z_{v,i}\}, \mathcal{H}_t) \propto \mathbb{P}(\mathcal{H}_t \mid z) \left(|\mathcal{A}_v^{(m)}| + \gamma_m\right)$$

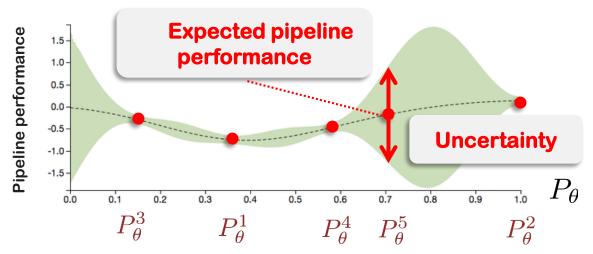
Gumbel-Max Sampler

$$\omega_m \stackrel{\text{i.i.d}}{\sim} \text{Gumbel}(0,1), m \in \{1, ..., M\},$$

$$z_{v,i} \sim \arg\max_m \mathbb{P}(\mathcal{H}_t \mid z, z_{v,i} = m)(|\mathcal{A}_v^{(m)}| + \gamma_m) + \omega_m.$$

Post-hoc Ensemble Construction

• Create an ensemble using the posterior distribution of performances

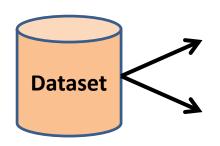


- Bayesian model averaging
- lacktriangle Create a linear combination of pipelines $\sum_i w_i P_{ heta}^i$
- Weight of every pipeline = empirical probability of it being the best!

$$w_i = \mathbb{P}(P_{\theta}^{i^*} = P_{\theta}^i \mid \mathcal{H}_t)$$
$$= \prod_{j \neq i} \Phi\left((\mu_i - \mu_j) \cdot (\sigma_i^2 + \sigma_j^2)^{-\frac{1}{2}}\right),$$

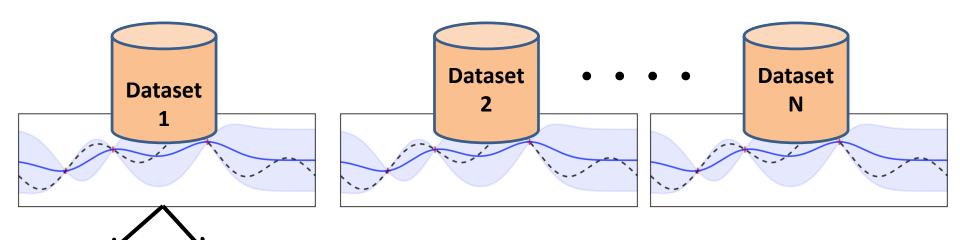
Meta-learning via Empirical Bayes

For every dataset seen by the system, create meta-features



Statistical meta-features: entropy, size of dataset, number of features, class imbalance, etc.

Clinical meta-features: ICD-10 codes, lab tests, etc



Meta-features

Tuned hyperparameters via empirical Bayes

Match new dataset to old ones using meta-features...

Example 1: Cystic Fibrosis (Scientific Reports, 2018)

Collaboration with the UK CF trust

Using cross-sectional observational data for 99% of CF patients in the UK

- Scarce resources: donated lungs, surgical resources
- Questions:

Who should be referred to a lung transplant?

What guidelines should be used for referral to a lung transplant?

AutoPrognosis: Better Predictions (Out-of-sample)

Prognostic Model	AUC-PR
AutoPrognosis	0.59 ± 0.03
Clinical Practice	0.49 ± 0.02

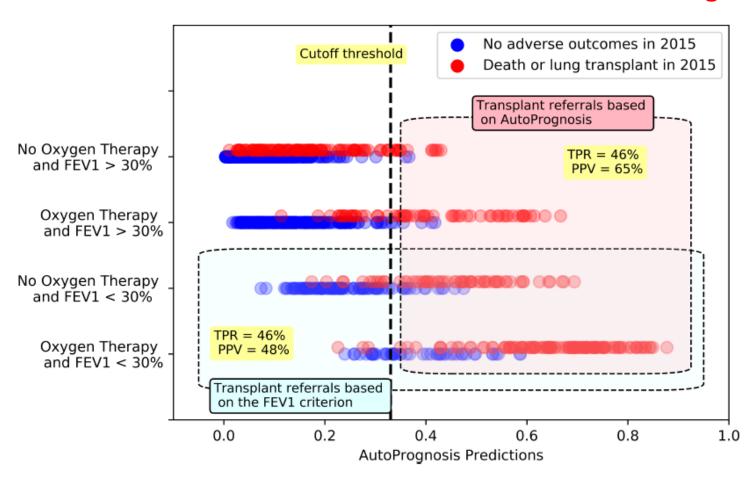
AutoPrognosis: Better Predictions (Out-of-sample)

Prognostic Model	AUC-PR
AutoPrognosis	0.59 ± 0.03
Clinical Practice	0.49 ± 0.02
Auto-WEKA	0.50 ± 0.03
Auto-sklearn	0.51 ± 0.02
Nkam et al., 2017	0.49 ± 0.02
CF-ABLE-UK	0.28 ± 0.04

AUC-PR (Sensitivity-Precision) is the metric of interest!

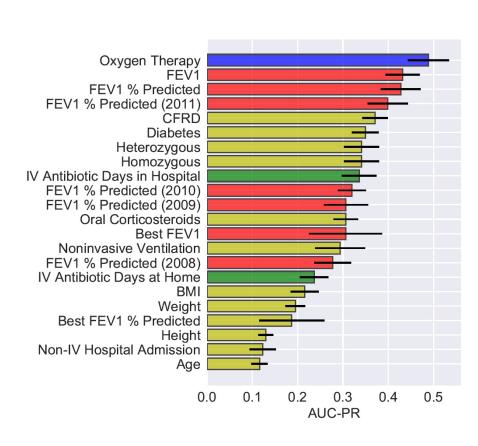
AutoPrognosis at work

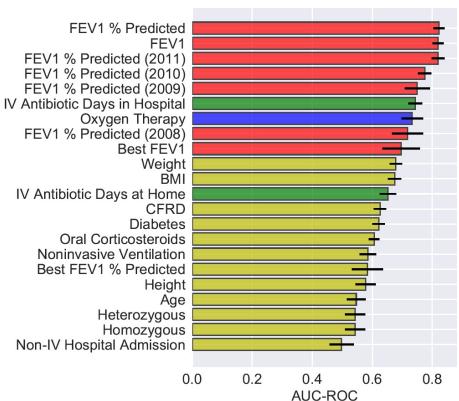
• AutoPrognosis learned to stratify the UK CF population in a way that led to a much more efficient allocation of donor lungs



AutoPrognosis: Identifying risk factors

Contribution of different features to predictive accuracy





AutoPrognosis: Risk Stratification

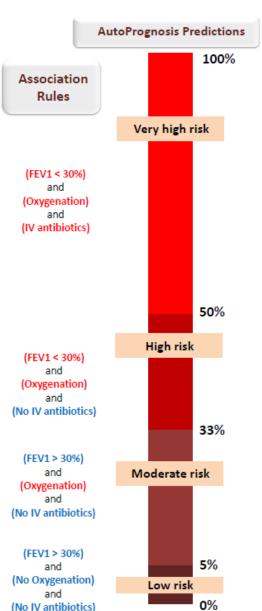
Lung function

Spirometry

Gas exchange

Current practice focuses on spirometric variables (FEV1) to make decisions

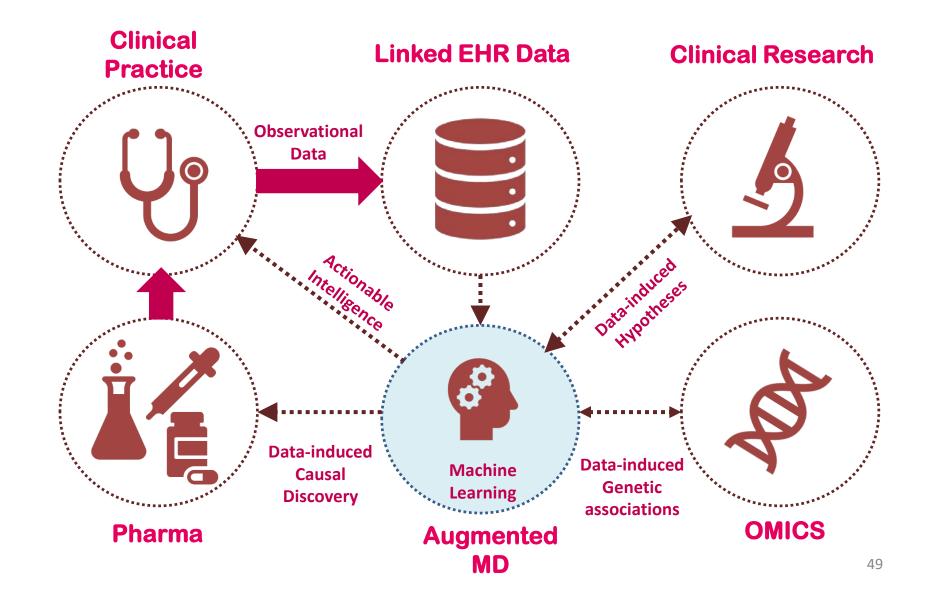
AutoPrognosis discovers that more refined decisions can be achieved by incorporating variables related to gas exchange



AutoPrognosis: Other examples

Cardiovascular Disease Breast Cancer Dementia

ML+AI: Enormous potential for transformative impact in medicine



How fast does AutoPrognosis learn?

Theorem

Let the number of algorithms in every subspace be bounded by d . For a Matérn kernel with length-scale parameter ℓ , then the cumulative regret of AutoPrognosis is given by

$$R(T) = 2^d D T^{\frac{\ell + d(d+1)}{2\ell + d(d+1)}} \log(T)$$

- ullet Conventional GP-based BO: $R(T) \sim T$
- lacktriangle AutoPrognosis $R(T) \sim T^{rac{2}{3}}$

10-fold improvement For T = 1000!!

(common scenario: $d=5, \ell=25$)

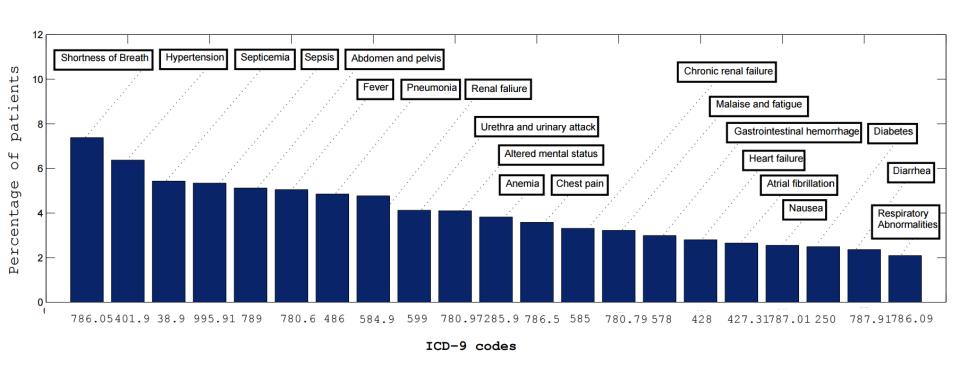
Forecast ICU in practice

Hospital: UCLA Ronald Reagan Medical Center

- Cohort of 6,094 patients
- Period: March 2013 ~ June 2015 (tested July 2015 July 2016)
- Age: 18 ~ 100+ years
- Gender:
 - Male (3,018 patients, 49.5%)
 - Female (3,076 patients, 50.5%)
- Length of stay: 1.5 hours ~ 159 days

Wide Variety of Diagnoses

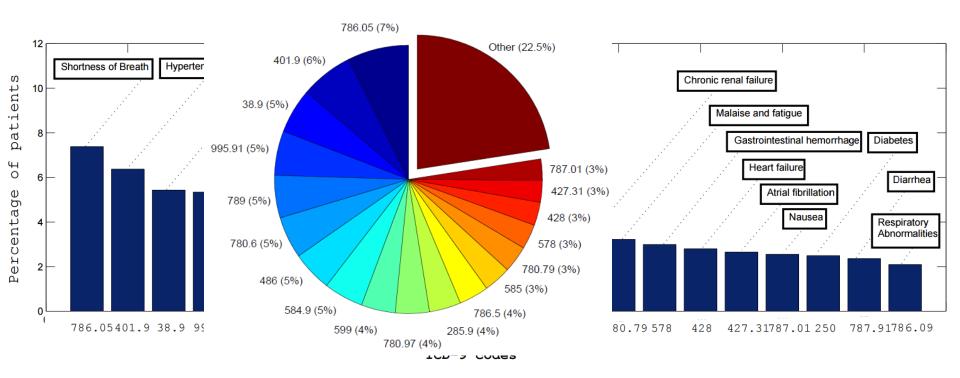
Percentage of patients in top 20 ICD 9 codes



Among 6,094 patients, 306 patients (5.0%) admitted to ICU unexpectedly; 5,788 patients (95.0%) discharged

Wide Variety of Diagnoses

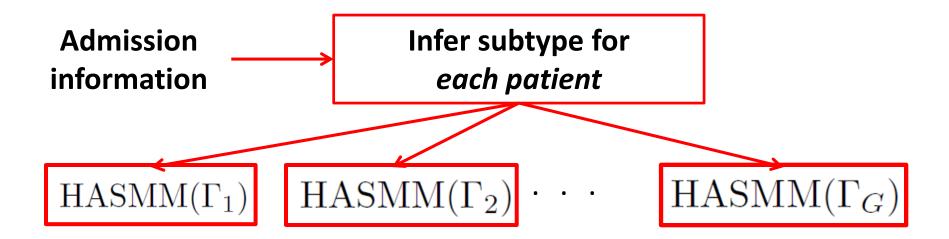
Percentage of patients in top 20 ICD 9 codes



Among 6,094 patients, 306 patients (5.0%) admitted to ICU unexpectedly; 5,788 patients (95.0%) discharged

Subtyping (Phenotyping)

- Discovering the different ways in which a disease manifests in different patients
- Key approach for personalized medicine



Performance Metrics

- TPR (True Positive Rate, i.e. Sensitivity) = True Positive/True ICU Patients
- TNR (True Negative Rate, i.e. Specificity) = True Negative/True
 Discharge patients
- PPV (Positive Predictive Value, i.e. Precision) = True
 Positive/Predicted ICU Patients
- NPV (Negative Predictive Value) = True Negative/Predicted Discharge patients

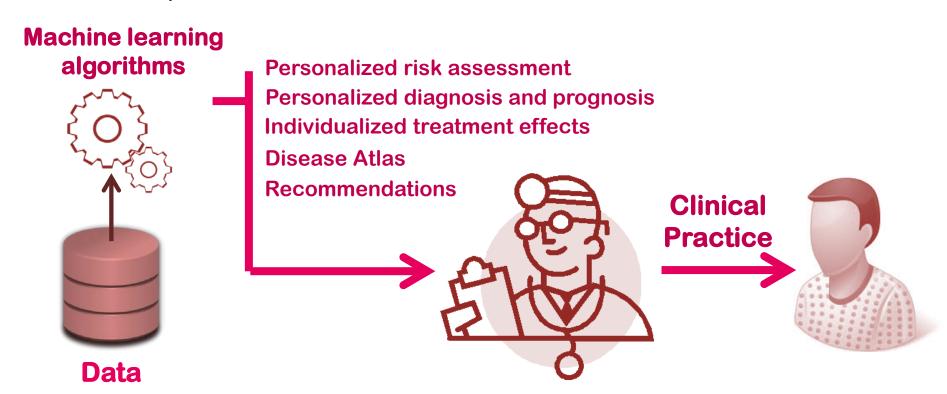
	Predicted ICU	Predicted Discharge
	patients	patients
True ICU patients	True Positive	False Negative
True Discharge	False Positive	True Negative
patients		True Negative

The "Augmented" MD

Machine learning

... can't do medicine!

... can provide doctors with actionable information!



Application to Cardiovascular Patient Care

- Preventive care:
- Meta-analysis Global Group in Chronic Heart Failure (MAGGIC)
- UK bio-bank.
- Heart-transplant wait-list management:
- United Network for Organ Sharing
- Post-transplant care:
- United Network for Organ Sharing