Wide-Area Analytics with Multiple Resources

Chien-Chun Hung

Ganesh

Leana Golubchik

Usc Ananthanarayanan USC

chienchun.hung @usc.edu

Microsoft

leana@usc.edu

ga@microsoft.com

Minlan Yu

Harvard
minlanyu@seas.harvard.edu

Abstract

Running data-parallel jobs across geo-distributed sites
has emerged as a promising direction due to the growing
need for geo-distributed cluster deployment. A key dif-
ference between geo-distributed and intra-cluster jobs is
the heterogeneous (and often constrained) nature of com-
pute and network resources across the sites. We propose
Tetrium, a system for multi-resource allocation in geo-
distributed clusters, that jointly considers both compute
and network resources for task placement and job sched-
uling. Tetrium significantly reduces job response time,
while incorporating several other performance goals with
simple control knobs. Our EC2 deployment and trace-
driven simulations suggest that Tetrium improves the aver-
age job response time by up to 78% compared to existing
data-locality-based solutions, and up to 55% compared to
Iridium, the recently proposed geo-distributed analytics
system.

1 Introduction

Large online service providers like Microsoft, Google,
Amazon and Facebook are deploying tens of datacenters
and many hundreds of smaller “edge” clusters globally
to provide their users with low latency access to their ser-
vices [2, 7, 35]. These geo-distributed sites continuously
generate data both about the services deployed on them
(like end-user session logs) as well as server health (like
performance monitor logs). Collectively analyzing this

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions @acm.org.

EuroSys ’18, April 23-26, 2018, Porto, Portugal

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5584-1/18/04. .. $15.00
https://doi.org/10.1145/3190508.3190528

Mingyang Zhang
USC
mingyangz @usc.edu

geo-distributed data is crucial for many operational and
management tasks. Examples of such tasks include ana-
lyzing server logs to maintain system health dashboards,
analyzing user logs to make advertisement choices, and
picking relay servers for online services using network
performance logs [37, 42].

As the results produced by these analytics queries are
used for making critical decisions by data analysts and
real-time applications, minimizing their response times is
the key. Recent efforts in geo-distributed analytics have
demonstrated that centrally aggregating all the data to a
single site and then analyzing them can seriously limit
the timeliness of the analytics for the above applications.
In addition, they lead to wasteful use of the WAN band-
width [17, 47]. It has emerged that executing the queries
geo-distributed by leaving the data in-place at the sites
can lead to faster query completions [17, 32, 47, 55].

An important characteristic of geo-distributed clusters
is heterogeneity: in compute as well as network resources.
The bandwidth capacities of the sites may vary by an or-
der of magnitude [18, 47, 54]. Compute capacities are
also highly diverse. Conversations with one of the largest
online service providers (OSP) [10] reveal that the hetero-
geneity in compute capacity (cores and memory) among
its datacenters varies by two orders of magnitude. Further,
the availability of network and compute resources also
varies depending on utilizations. An additional source of
heterogeneity is the non-uniform distribution of a job’s
input data across sites; e.g., when analyzing user session
logs of Bing within the last two hours, more user data is
likely to be present on sites where it is working hours for
their nearby users than night times. (See §2.1 for details.)

Recent works on geo-distributed data analytics only
recognized the network heterogeneity. These solutions
minimize network transfers alone by placing mapper
tasks at the sites where their input is located and plac-
ing reducer tasks to minimize shuffle time [17, 39, 47,
54, 55]. Their design assumes that the sites are indistin-
guishable in their compute capacities and have effectively
infinite capacities to run the tasks. As described above,
the former is invalid in real deployments [10]. Further,

https://doi.org/10.1145/3190508.3190528

prior work on data analytics, even within single DCs,
have documented “multi-waved” execution of analytics
jobs of even a single stage (e.g., reduce stage) due to the
constraints on compute capacities (i.e., only a fraction
of the job’s tasks execute simultaneously per “wave”)
[14, 15, 45].

Placing tasks only for minimizing network transfer de-
lay can lead to more tasks being scheduled at a site than
available compute slots, which causes multiple waves
of execution even when slots are available at other sites
(§2.2). Not only does this inflate job response time, it
also introduces inaccuracy in its model of network band-
widths when the reduce tasks of subsequent waves ex-
ecute. This is because their network traffic was not ac-
counted to occur at the time of the later waves. This error
in bandwidths cascades and degrades further scheduling
decisions.

In this paper, we take the first effort towards allocating
multiple resources — compute slots and network — to data
analytics jobs with parallel tasks across heterogeneous
geo-distributed clusters. The problem of multi-resource
allocation is relatively easier in intra-DC analytics due
to the near homogeneity between machines (or racks) in
compute and network capacities.

While at first blush, the problem appears to be that of
multi-dimensional bin packing of balls (tasks), there are
key differences which make theoretical packing heuris-
tics hard to adapt. The resource demands of tasks in our
setup are not static but depend on the site (bin) where
the task is placed. For instance, the WAN usage of a
map or reduce task depends on the amount of its input
data present on its own local site. Even recent systemic
solutions for intra-DC packing [28-30], fall short for a
geo-distributed setting because they model remote net-
work accesses of tasks (e.g., reading data from a remote
site) with a simple and fixed “penalty”. While such a
fixed penalty works for a homogeneous setting, this is
a crucial omission in the heterogeneous geo-distributed
setup.

Further, the heterogeneity among the geo-distributed
sites means that we have to jointly make decisions on all
the tasks of a job so that all of them face equal resource
contention and finish together. The duration of a job with
many parallel tasks depends on the last task’s completion.
Note that this scheduling requirement is orthogonal to
straggler mitigation via speculation [15, 16, 57] and data
skew addressal [40, 41]. Finally, it is also important to
optimize the scheduling across jobs since they compete
for the same set of slots and bandwidth. In doing so, we
optimize for the same metrics of interest to intra-DC
analytics — response time and fairness.

Unfortunately, the problem of allocating multiple re-
sources of geo-distributed sites for simultaneous jobs

of many parallel tasks is computationally intractable.
Hence, we devise an efficient heuristic.! We formulate
the multi-resource scheduling problem for optimizing a
single job’s response time, by placing its tasks across the
sites, as a linear program (LP). An important aspect of
our formulation is the modeling of multiple waves of exe-
cution among tasks within a stage, and hence also decide
the ordering in which the tasks are scheduled in each
stage. We have different formulations for the map stages
(one-to-one mapping) and reduce stages (many-to-many
shuffling), based on their communication patterns across
the sites. We believe this is the first multi-wave modeling
proposed for multi-resource scheduling.

To schedule multiple geo-distributed jobs, we integrate
the above LP with the Shortest Remaining Processing
Time (SRPT) heuristic. The LP described helps us ac-
curately and efficiently identify jobs with the least re-
maining time, instead of proxies like remaining number
of tasks. It also re-evaluates its task placement based on
resources consumed by tasks of other simultaneous jobs
in each scheduling instance. In doing so, it balances the
goals of response time, makespan and fairness.

Our solution is careful about the usage of WAN band-
width, i.e., bytes transferred across sites. As WAN band-
width is the important resource especially in wide-area
analytics [17, 55], our solution incorporates a WAN usage
budget for the scheduling decisions. A simple knob in
our solution trades off between optimizing job response
times and WAN usage.

We have built Tetrium, a system for multi-resource allo-
cation in geo-distributed clusters inside Apache Spark [5].
We evaluate Tetrium using (a) an Amazon EC2 deploy-
ment across several geographically distributed regions
[2] running the TPC-DS [8] and the Big Data bench-
marks [3], as well as (b) large-scale simulation experi-
ments driven by production traces. Tetrium improves the
average job response time by up to 78% compared to
existing locality techniques [5, 56], up to 55% compared
to Iridium [47], and 33% compared to Tetris [28].

2 Motivation

We first motivate the heterogeneity in both geo-distributed
clusters for analytics jobs (§2.1). Next, we use an exam-
ple to show the key challenges in scheduling jobs for
such heterogeneous settings (§2.2).

2.1 Geo-distributed data analytics

Architecture Figure 1 shows the architecture of a
geo-distributed analytics framework that logically spans
multiple sites (datacenters of different sizes). Each site
contains multiple compute slots (corresponding to some
amount of memory and cores), and diverse uplink and

'We leave the discussion about optimality in Section §8.

Australia

Edge
Cluster

Singapore

Edge
Cluster

USA
Global
Manager

Data [Compute Slot ==) Bandwidth

Figure 1: Wide-area data analytics across geo-distributed
cluster. Analytics jobs are submitted to the global manager,
and may require data stored across geo-distributed sites
which have various capacities in compute slots and band-
width.

downlink bandwidths. We assume all sites are connected
with a congestion-free network in the core like prior
work [47], which is validated by measurement studies [4].
Data can be generated at any site and the input data re-
quired by a job may be located across different sites. A
centralized global manager accepts analytics jobs and
translates them into a DAG of stages with multiple par-
allel tasks. Minimizing the response times is the key
for geo-distributed analytical jobs because the output of
these jobs are often used for making critical and real-time
decisions.

Heterogeneity across Clusters Aggregating all the
data to a central location is wasteful since we do not
know beforehand the datasets that get accessed; most
data (82%, as per our analysis, in a large OSP’s big data
cluster) is never accessed or accessed very few number of
times (Figure 1 in [12] says that 80% of data is accessed
< 2 times over a five day period in Microsoft Cosmos).
Prior work has demonstrated that aggregating data after
the query arrives seriously limits the timeliness of the
analytics [17, 47]. The better approach to geo-distributed
data analytics is leaving the data “in place” and distribute
the tasks of a job across the different clusters. Yet, the
key challenge in this approach is heterogeneity across the
clusters, as we elaborate on next.

(1) Heterogeneous data sizes: Data generated at the
sites also vary. For a globally deployed service across
many sites, the size of the user session logs at the sites is
dependent on the number of sessions served by the site,
which naturally have significant variation. Our analysis
of Skype logs on call performance generated at over 100
different Azure sites (relays) shows considerable varia-
tion: relative to the site with the minimum data generated,
the median, 90™ percentile and maximum values are 8 x,

-

CDF
ocooo

oD o=
CDF
ococoo

(<Y O SEOR SN

/

0 50 100 150 200 0 3 6 9 12 15 18

Normalized Compute Normalized Bandwidth
(a) Compute (b) Network

Figure 2: Heterogeneity in compute and network capaci-
ties among hundreds of sites of one of the largest online ser-
vice providers (OSP). Both graphs are normalized to the
corresponding lowest values.

15x and 22x more [37]. These logs are constantly ana-
lyzed for dashboards and system health.

It is difficult to provision the sites with compute capac-
ity proportional to the data generated for the following
two reasons. First, the distribution of data sizes vary over
time and is not a constant. Second, the distribution of
data across sites for a given job might be vastly different
than the overall distribution of data size. As a result, a
job may have imbalance in computing slots compared to
the computing capacity at sites.

(2) Heterogeneous compute capacities: Figure 2(a)
shows that the compute capacities of clusters of one of
the largest online service providers (OSP). We see that
compute capacities differ by up to two orders of magni-
tude across hundreds of sites. This is because clusters are
built at different times with different levels of investment,
different capacity requirements, are constrained by site
size, energy, cooling, etc. The impending trend of edge
computing [1, 9] will only increase the heterogeneity
since edge clusters are envisioned to be just a few racks
of servers, as opposed to large data centers.

The available capacities tend to vary even more [18,
47]: heavy usage of one or a few clusters by non-analytics
jobs leads to limited availability in them. Clusters are
often not provisioned exclusively for analytics but share
resources, e.g., with client-facing services. When the
client load to these services increase, the resources avail-
able for data analytics shrinks and contributes to the
heterogeneity.

(3) Heterogeneous network bandwidths: Figure 2(b)
measures the skew in network bandwidth across different
inter-site links of the large OSP. Note the 18 x variation in
bandwidths normalized to the least value. In fact, recent
work has shown similar heterogeneity across Amazon
EC?2 sites of over 25X in their bandwidths [54]. Equal
spreading of tasks across all sites, as is recommended
by prior approaches [16, 53], will bottleneck sites with
lower bandwidths. Therefore, we should also consider
network resources for geo-distributed jobs.

Notation Explanation
Sy number of compute slots at site x

BYP Blown yplink/downlink bandwidth at site x
Iinput Ishufl
X X

input/intermediate data at site x

My, Ry number of map-/reduce-tasks placed at site x
tmapstred computation time of a map-/reduce-task
Tager network transfer duration of map-stage

Tnap computation duration of map-stage

Tohufi network transfer duration of reduce-stage
Tred computation duration of reduce-stage

Table 1: Definition of Notations.

To sum up, the heterogeneity mentioned above makes
it difficult to build geo-distributed clusters that match
available resources to data distribution. Addressing such
heterogeneity in resource scheduling decisions is the
focus of this work.

2.2 Illustrative Examples

We now motivate the needs for jointly scheduling com-
pute and network resources through illustrative examples,
and show how state-of-the-art solutions fall short. We
consider a geo-distributed setup that has varying num-
ber of compute slots (Sy) at each site x as well as up-
link/downlink bandwidth capacities (By” and BZ*""); the
volume of data I, stored at each site might be unevenly
distributed. Table 1 summarizes our notation.

Joint Compute- & Network-Aware Task Placement:
Figure 4 specifies a 3-site example setup, in which site-1
is the most powerful in terms of number of compute slots
and bandwidth, while it has the least amount of input data
compared to the other 2 sites. We consider an analytical
job with one map and one reduce stage at the ease of
explanation, while the insights can be generalized to jobs
with multiple stages. Each map task processes 100 MB
input data and takes 2 sec to finish; after map stage, the
intermediate data only has half of the size of input data.
There are 500 tasks in reduce stage, and each reduce
task takes 1 sec to finish. The state-of-the-art solution
of assigning tasks across the sites is Iridium [47], which
processes all the map tasks locally and then decide the
best placement of reduce tasks that minimizes network
resources. In the map stage, the computation bottleneck
is at site 2: 2ses- [30] = 60 sec. In reduce stage, Irid-
ium places the reduce tasks so that the shuffle time is
minimized. The shuffle bottleneck in reduce stage is at
site 2, in which its downloading takes %gios =10.5
sec, and its uploading also takes 10.5sec without going
into details. The computation bottleneck in reduce stage

is at site 3: 1 sec -[327 = 18 sec. The end-to-end job
completion time for this job is therefore 88.5 sec.?

A better placement in this example considering both
network and computation capacity would transfer some
input data from site-2 (15.7 GB) and site-3 (21.4 GB) to
site-1 as site-1 has powerful computation capacity. De-
spite the minor increment (15.7 sec) in transferring input
data to site-1, the better assignment balances the compu-
tation workloads among the sites so that the computation
duration in map-stage drops from 60 sec to 30 sec. In
reduce-stage, it again reduces the computation duration
from 18 sec to 8 sec by considering both network and
computation capacity. Note that although Iridium opti-
mizes shuffle time, the better assignment in this example
has a better intermediate data distribution which leads
to faster shuffle time (6.13 sec) compared to Iridium
(10.5 sec). The end-to-end job completion time for this
placement is 59.83 sec, which is only 68% of Iridium’s
completion time. Figure 3 specifies the placement and
numbers in details.

There are two key insights by comparing the two solu-
tions. First, in the map phase, it is sometimes beneficial
when we shift some workload away from the compute
bottlenecked site (i.e., site 2) to other sites for a small
increase in network transfer. Note that the opposite solu-
tion of aggregating all input data to the most powerful
site, referred as Central approach, is far from optimal as
well. Central approach would aggregate all input data to
site-1, and runs all the computation there without having
to transfer data across the sites again. The end-to-end
job completion time based on Central approach, without
going into details, is 93 sec, which is 1.55x of the bet-
ter assignment mentioned above. Second, in the reduce
stage, although Iridium aims at minimizes the network
transfer time by avoiding data transfer for map stage
and optimizes the shuffle time for reduce stage, it does
not consider the computation capacity at each site (es-
pecially site 3). This example highlights the importance
of coordinating the heterogeneous capacity across the
sites, as well as jointly considering network and compute
resources to optimize for job completion time.

Joint Job Scheduling & Task Placement:

Task placement under multiple resource constraints
becomes more intricate when multiple simultaneous jobs
compete for resources. Placing the tasks of the jobs ac-
cording to each job’s optimal placement may no longer
be the best option. We explain this using an example

2Here we are calculating the total duration based on worst-case esti-
mation that there is no overlap between the network transfer time and
computation time in each stage. In practice, a task starts computation,
once its data are gathered, without waiting for the network transfer time
of the other tasks.

Map Stage Reduce Stage

Site-1 Site-2 Site-3

Input Data (GB) 20 30 50 Intermediate Data (GB)

Map Stage Reduce Stage
Site-1 Site-2 Site-3
Input Data (GB) 20 30 50 Intermediate Data (GB) 28.55 7.15 14.3

=200
o= \
M; =500

R, =150 ﬂ R; =350
—
S| 7.5GB

Map Stage Reduce Stage
Site-1 | Site-2 | Site-3 | Site-1 | Site-2 | Site-3
Network Transfer Time (sec) 0 0 0 2 |10.5|3.75

Computation Time (sec) 10 | 60 | 50 0 15 | 18
0+60+10.5+18=88.5

Combined Duration (sec)

(a) Iridium

M1 =571 =286
15.7GB 21.4GB 4.1GB 18GB
=
4,05GB 092G

, =143 M, = 286 RZ:71ﬂR3:43
2.03GB
Map Stage Reduce Stage

Site-1 | Site-2 | Site-3 | Site-1 | Site-2 | Site-3
Network Transfer Time (sec) 7.42|15.7 | 10.7 | 2.45 | 6.13 | 5.11
Computation Time (sec) 30 | 30 | 30 8 8 8

15.7+30+6.13 + 8 =59.83

Combined Duration (sec)

(b) Better Approach

Figure 3: Task Placement Results: Iridium (left) and A Better Approach (right). M; and R; are the numbers of map and
reduce tasks at site i, respectively. The results of network transfer and computation time, as well as the total time, are
listed in the table below the figures. The better approach finishes the job faster by substantially reducing the bottlenecked
computation time (e.g., site-2 in map stage) while incurring marginal network delay.

Site-1 Site-2 Site-3
Number of Compute Slots, S, 40 10 20
Uplink Bandwidth (GB/s), By’ 5 1 2
Downlink Bandwidth (GB/s), BL"™ 5 1 5
Input Data (GB), 7" 20 30 50

Figure 4: Bandwidth, compute capacities and input data
for our three-site example setup.

with 3 sites and each has 3 compute slots and 1 GBps up-
load/download bandwidth. There are two jobs (job-1 and
job-2) in this example, each with 3 and 12 tasks respec-
tively. For simplicity, both jobs contain only a map-stage,
and each task runs for 1 sec. Job-1’s input data require
0, 1 and 2 tasks across the 3 sites, while job-2 requires
2, 4, and 6 tasks. The optimal placement for each job in
isolation would run all the tasks locally without any data
transfer, i.e., My,M»,M3 =0, 1,2 for job-1 and 2,4,6 for
job-2, which leads to response time 1 sec for job-1 and
2 sec for job-2 (since job-2 requires 2 waves of com-
putation). When the 2 jobs are jointly scheduled, their
best placement would depend on the order of the jobs.
Scheduling job-1’s tasks prior to job-2 will not change
job-1’s task placement, but the best placement for job-2
becomes 6,4,2 with response time 2.4sec’; the average
duration for the two jobs is 1.7 sec. The opposite order-
ing - job-2’s tasks followed by job-1’s tasks - will lead
to optimal placement for job-2, while the best placement
for job-1 becomes 3,0,0 with response time 3.3 sec; this
leads to worse average duration 2.65 sec.

Two takeaways from this example: (1) The optimal
schedule (in this example) was obtained without either

3The bottleneck for job-2 is at site-1: transferring data for 4 remote
tasks takes 4 - 100 MB 1 GBps = 0.4 sec while finishing 6 tasks takes
2sec, i.e., 2 waves; it adds up to 2.4 sec in response time.

of the jobs achieving their individual optimal task place-
ment due to the inter-job contention for resources. (2)
Furthermore, an optimal scheduling order of the jobs is a
complex interaction between the available slots, available
network bandwidths, and data distribution.

3 Compute/Network-Aware Task Placement

Our scheduling decisions happen upon the arrivals of
new jobs, or when occupied resources are released, e.g.,
completion of jobs. We first describe our compute- and
network-aware task placement, then integrate it with job
scheduling in §4.

Task placement decisions essentially determine the
following: (1) at which site should a task be placed, and
(2) from which site should a task read data. Moreover,
tasks in a stage often run across multiple waves as the
compute slots are insufficient for launching all tasks at
once. Therefore, the decisions should also include the
ordering of the tasks. Considering task placement and
ordering together is, however, challenging even for a
single stage. The formulation is a mixed integer linear
program with Omn variables where m is the number of
tasks and n is the number of sites, and is inefficient to
solve in the time scales (of seconds) required for cluster
schedulers.

Our approach is to solve task placement first based on a
linear program under heterogeneous resource constraints,
for each stage independently — map-stage (§3.1) and
reduce-stage (§3.2). We then address task ordering within
each stage in §3.3, and address sub-optimalities due to
solving each stage independently (§3.4).

3.1 Map-Task Placement

In placing the map-tasks, we can view our problem as
determining what fraction of the job’s tasks (mn, y) should
run at site y with corresponding data residing at site x.

y=x My y denotes the fraction of tasks that are not placed
at site x but need to read data from site x. The amount of
data to be transferred out of site x is then /77" “yx My y,
where [iPu = ["P" i the total volume of input data.

. . N .
Therefore, the upload transfer time at site x is ——35—*
X

given site x’s upload bandwidth By”. Similarly, the frac-
tion of map-tasks that are placed at site x but need to read
data from the other sites y # x iS yx, my.x, so the download

. . L TPy
transfer time at site x is —5

The number of map-tasks at site x can be denoted by
Minap * y My x, ASSUMING 7,4 18 the total number of map-
tasks. Given that site x has S, slots, it takes %
waves to finish all the map-tasks at site x. Hence, the
computation time at site X is #nqp - %’f"”, assuming
each map-task’s duration is #,,,, at the ease of presenta-
tion; we deal with variances in task durations in §5.

Based on the principled guidelines provided above, we
can then formulate the map-task placement problem into
the following Linear Program (LP) to minimize the job’s
remaining processing time at map-stage.

LP: map-task placement

min Taggr + Tmap (1)
[inpu/_ o My y
s.t. Togar > %,V}c 2)
X
Iinputv Ty
y#x My, x
Taggr Z Bc)gown 7V'x (3)
Mmap 'y My, x
Tmup > bmap * S ,Vx)
[in]mt

Myy > 0,ymy, = T xyMyy = Lvx,y (5)

Here, our goal (Eq. 1) is to minimize the map-stage’s total
processing time which consists of both the time it takes to
move input data across sites (7,e-) and the computation
time of all map tasks (Tmap).4 The constraints in Egs. 2
and 3 reflect the aggregation time, i.e., time to transfer
the input data to where the map tasks are placed. Since
the network transfer time is dominated by the bottleneck
site, Tyqer 1s at least as large as the upload and download
duration at each site. Eq. 4 reflects that the map-stage’s
computation time 75,4, is dominated by the maximum
computation time across all the sites.

Note that, to obtain an LP formulation above (rather
than a MILP), we focus on the fraction (rather than the
number) of tasks to be run at each site x. Of course, the
number of tasks at each site x needs to be integral; hence,
we round the solution. With a sufficiently large number of
tasks per job, this approximation should not significantly
affect performance.

Solving the above LP gives us the following: (a) The
minimum remaining processing time (T' = Tyg0r + Tinap)

“#In data analytics frameworks, the aggregation and map stages do not
overlap because it is hard to track when the map data is ready.

for the map-stage. (b) The fraction of map-tasks to place

at each site y that needs input data from x (m,,); in

essence, this provides the list of tasks at each site. (c) The

needed slot allocation (D = {dy = minS,, y 1y x - Nynap, VX}),
which is used in job scheduling decisions (§4) Note that

this formulation is deterministic in nature, i.e., it relies on

averages and as such does not reflect the variance in task

duration that may occur due to data skew and availability

of network capacity (when reading from remote sites).

We discuss how to handle the variance in §5.

3.2 Reduce-Task Placement

Different from the map-stage, each reduce-task reads
data from the output of all map-tasks. Hence, in placing
reduce-tasks, we only need to identify the fraction of
reduce-tasks r, to be placed at each site x.

Since site x has r, fraction of the reduce-tasks, it needs
to process ry fraction of total intermediate data for reduce-
stage: the volume of data to be transferred out of site x is
I;h"f L= 1y, and the volume of data to be transferred to
site X I8 yzy I;h“f ! r,. Therefore the upload and download
shufl shuf1

. . L™ 1—r yexly
duration at site x are *—p— and Bdown

™ respec-
tively. The number of redﬁce—tasks at site X 1S Mypq - Iy
assuming 7,,4 is the number of reduce-tasks, and it takes
"’%X'rx waves to finish all the reduce-tasks. Therefore, the
computation time at site x is #,,4 - %’X”, similar in §3.1,
we assume constant task duration t,,,.

LP: reduce-task placement

min Tghufi + Trea (6)
IShuﬂ-l—rx

st Topyp 2> TNX (7N
yEx B

T:S'hufl Z B’(xgown 7V'x (8)

Tred > lred % ’ Vx (9)

e >0,y =1,Vx (10)

Our goal (Eq. 6) is to minimize job’s remaining process-
ing time in the reduce-stage, i.e., the sum of the network
shuffle time (7, 1) and reduce computation time (Z5q).

Eq. 7 and Eq. 8 bound the shuffle time T, s; by the
network transfer duration at each site: Ty, ¢/ is dominated
by the maximum of upload and download duration across
all the sites. Eq. 9 reflects that the computation time of the
reduce-stage is dominated by the maximum computation
time across all the sites. Note that our formulation for
the reduce stage is similar to the model proposed in
[47]. The key difference is that we extend the model to
jointly minimize the time spent in network transfer and
in computation time.

The outcome of solving this LP gives us the follow-
ing: (a) The optimized remaining processing time (T =
Tshugi + Treq) Tor the reduce-stage. (b) The fraction of

reduce-tasks to place at each site x (ry). (c) The needed
slot allocation (D = {d, = minSy, ry - yeq, VX }).

As in the case of map tasks, the LP formulation pro-
duces a fraction of reduce tasks to place at each site,
which (using similar rationale) is rounded to obtain an
integral number of reduce tasks to place at each site x.

Our task placement model extends the model proposed
in Iridium [47]. Iridium assumes there are sufficient com-
pute slots and all tasks can start at once without queuing
delay; hence Iridium focuses on minimizing network
delay only. Our model targets on the general setting in
which both computation and network transfer contribute
the overall delay: hence our model focus on minimizing
the sum of network and computation delay, where the
computation delay is estimated on multi-wave model. In
addition, we propose a task placement model for map
stage, which has different data transfer pattern and is
not addressed by Iridium. We compare our solution with
Iridium in Evaluation Section (§6).

3.3 Task Ordering

When the compute slots are constrained, it may take sev-
eral waves to finish all a job’s tasks. Therefore, selecting
the set of tasks to run in each scheduling instance is
critical for completing their associated jobs quickly.

With tasks of varying durations, the key principle for
minimizing the associated job’s response time is to start
the tasks with long duration first to avoid having long-
duration tasks delay job response time [38]. For map-
stages, since the tasks that read data from remote sites
take significantly longer to complete compared to the
tasks that run locally with the data, we start the remote
tasks first before the local tasks. Specifically, we first se-
lect the tasks that takes longest time to fetch its input data,
i.e., the tasks that read data from the site with the most
constrained upload bandwidth, as each map-task gener-
ally processes the same size input partition and the only
factor in different input fetching time is the bandwidth
between the two sites. We further reduce the network con-
tention by spreading the remote tasks launching across
different sites, as opposed to launching all the remote
tasks reading data from the most constrained site at once.

For reduce-stages, we also start with the longest-duration
tasks based on their network transfer time. Note that the
LP formulation in Section §3.2 assumes each reduce-
task processes the same volume of intermediate data; in
practice, each reduce task may have different amount of
data because the intermediate data may not be equally
partitioned across the keys. Therefore, we order the tasks
based on their size of input data: the larger the task’s
input data size, the earlier it gets launched.

We verify in §6 that our task ordering design does
reduces a job’s response time; we further describe how

we adapt this design to deal with dynamic slot arrivals in

§5.
3.4 Mismatch between Map and Reduce

The intermediate data distribution depends on task place-
ment decisions made for the map-stage. Tetrium’s stage-
by-stage approach falls short of addressing such a depen-
dency as we place map-tasks by optimizing map-stage’s
duration (7,ger + Tinap), Without considering the conse-
quences for the reduce-tasks. This could (potentially)
result in a longer reduce-stage (g f1 + Treq). A better
approach could be to decide the placement of the tasks
of map and reduce stages jointly. Without specifying the
details, such alternative leads to job duration of 44.875
in our previous example in §2, as opposed to 50.88 by
Tetrium.

Scheduling a job’s end-to-end tasks based on its full
DAG description has been an open (and hard) problem
in the literature, with previous efforts often resorting to a
stage-by-stage approach [47, 48]. Here we investigate to
what extent Tetrium’s particular stage-by-stage approach
is handicapped by not considering a full DAG-based for-
mulation. We use an unrealistic alternative by assuming
having full information about all tasks (map and reduce)
upfront, and design a heuristic that produces a more favor-
able (to the reduce-stage) intermediate data distribution.
Instead of Tetrium’s approach that starts with map-stage
placement (termed forward here), the alternative (termed
reverse) starts with the reduce-stage as follows: (i) assign
reduce-tasks to each site in proportion to the slot distribu-
tion (r, = XS—S‘X); (ii) using this placement, solve the reduce
task placement LP (from §3.2), but with the intermediate
data fraction at each site now being our decision vari-
ables, giving us a desired intermediate data distribution
(" at each site x; (iii) solve the map task placement

LP (from §3.1) but with an additional constraint of the
Is/mfl

intermediate data distribution, namely: ym, ; = W

In our evaluations (§6) we compute both, forwiayrd and
reverse solutions, and choose the better of the two. The
results illustrate that we can obtain occasional benefits
from this approach, but the overall improvements are
marginal as compared to Tetrium. Given the small loss in
performance and the fact that Tetrium’s forward approach
is easier to implement — it does not require upfront in-
formation about all stages and potentially incurs less
overhead — our prototype implementation and simula-
tions are focused on the originally proposed solutions (in
§3.1 and §3.2).

4 Job Scheduling

Resource allocation among jobs is critical in reducing
response time as illustrated in §2, however, the problem

of scheduling jobs with parallel tasks to minimize re-
sponse time is NP-hard [24, 52]. We develop an efficient
job scheduling heuristic for reducing the average job re-
sponse time (§4.1) by incorporating the task placement
and ordering approach mentioned earlier; we discuss the
optimality of the solution in §8. We also provide flexibil-
ity to incorporate other important metrics (WAN usage
in §4.3, fairness in §4.4) using simple knobs.

4.1 Minimizing Average Job Response Time

When it comes to reducing average job response time,
it is intuitive to apply the the Shortest Remaining Pro-
cessing Time (SRPT) philosophy due to its well-studied
behavior. A key component in SRPT is the estimation
of remaining time for each job, and previous works
often resort to the number of remaining tasks as an
approximation[48]. In geo-distributed clusters, however,
the response time of a job is determined by not only its
remaining tasks, but also how the tasks are distributed
across the sites based on resource availability as high-
lighted by our illustrative examples (§2). We propose the
following heuristic for estimating the remaining time for
a geo-distributed job:

Remaining duration for jobs with stage-dependency
Conventional jobs can be modeled as a DAG of tasks,
in which there is stage dependency. Note that previous
works [47, 48] often handle the DAG by treating each
stage separately; yet this has the undesirable property of
mistakenly allocating slots to quickly finish a stage with
a lot of subsequent stages, while there could be stages
from other jobs that are close to their overall completion.

Ideally, we should schedule the jobs based on their
remaining time across all the stages. However, estimating
such information across all the stages is inefficient to
compute because we need to sequentially estimate each
stage’s processing time (by invoking the optimizer from
§3) based on the output of the parent stages and sum
them up.

Our simple heuristic first chooses the job’s remain-
ing number of stages (G/) as a proxy for j’s remaining
workloads, then uses the current stage’s remaining pro-
cessing time (/) to break ties if there are multiple jobs
with the same DAG progress. Once we identify job k
with the shortest remaining time based on G/ and 7/,
we allocate slots DF = {d*} to job k based on the task
placement described in §3 and schedule it to run.The
algorithm continues the above steps until there is no re-
maining slot to be allocated, or all the jobs have been
scheduled, whichever comes first.

4.2 Dealing with Resource Dynamics

Resource capacity at a site may suddenly drop due to
various reasons: the compute slots at a site may be allo-
cated to other non-analytics jobs with higher priority, and
available bandwidth between the sites could degrade due
to temporal link failure in WAN. The reduced resources
at a site result in longer finish time for its assigned tasks,
which could prolong the job’s response time. Therefore,
the global manager should adjust the workloads assign-
ment, e.g., by offloading workloads from the site with
resource drop, and update all the site managers. However,
updating the assignment at all of the sites incurs signifi-
cant overhead in communication. It is hence desirable to
update only a subset of the sites, while still optimizing
for job response time.

We extend our solution to address such resource dy-
namics. Let f; denote the number of tasks of a job as-
signed to site i according to the last scheduling deci-
sion. When the global manger is notified of significant
resource drop changes at a site by the site manager, it
triggers the scheduling computation based on the new
resource condition, and obtains the new assignment f;*
for all sites. Assume the global manager is set to only
update k sites; when k equals to the total number of sites,
it gets the optimal assignment f;* for all site. Say after
re-assignment, each site now has fi’ tasks, and we cal-
culate a distance metric Q between this assignment and
the ideal assignment: Q = \/v; f{ — f;>. The objective
is to adjust the assignment in only £ sites and find the
new assignment with the minimum Q value. We design
a heuristic towards this goal. We first focus on the sites
that want to offload some of their tasks to other sits, i.e.,
f¥— f: <0 onsite z, and sort the sites based on |f — f:|
in descending order. We start moving tasks out of the
first site to the other sites until f, = f. We exhaustively
search through all possible assignments and update based
on the one with the minimum Q value. In §6.3.2 we eval-
uate the performance of this approach under different k
values.

4.3 Considering WAN Usage

WAN usage across the sites is critical for operational cost
in global data analytics [55], and is often charged based
on the volume of data transferred over WAN [2]. Limiting
the amount of data sent across the sites, however, may
increase a job’s response time, because it restricts the job
from transferring the data to a site with high resource
capacity that can process the data faster.

Tetrium offers a knob, p, that incorporates budget-
ing WAN usage with reducing job response time. Dur-
ing each scheduling instance, Tetrium calculates WAN
budget W/ = W/, + pWia — W/, for each job, where
Winax and W,/ are the maximum and minimum possible

WAN usage for the job, respectively. When p — 1, a job
has maximum WAN budget, and Tetrium is completely
geared toward reducing the job’s response time. On the
other hand, as p — 0, WAN usage is minimized for each
job.

We set Wjx to be the sum of input data in the job’s
current stage, as the amount of data this job could sent
across WAN is no more than its input data. W,ﬁlin value
varies depending on the stage type: in a map stage, W/, =
0 as a job achieves zero data transfer when it leaves all
input data in-place, while in a reduce stage, W/, can be
calculated by the following LP model:

min wl. (11)
st W= "1, (12)
re >0,y =1,Vx (13)

, where the sum of upload data is constrained by Wnﬁm.s

Given the WAN budget calculated above, an additional
constraint for data upload/download is then added in
task placement model described in Section §3. In map
stage, this constraint is written as , "% Cypx Mgy < Wi,
in reduce stage, it is ("' -1 —r, < W/. The revised
models limit the amount of a job’s data sent across sites
when placing its tasks in each scheduling decision, and
the rest follows Tetrium’s original design.

4.4 Incorporating Fairness

Reducing average job response time based on SRPT may
starve large jobs. Here we define fairness as: each job is
allocated a number of slots in proportion to the number
of its remaining tasks, i.e., job i with f; remaining tasks
gets S* - L} slots, where there are S* available slots.

We pr(l)\;ide some flexibility between reducing average
job response time and achieving fairness: our system
achieves e-fairness if each job receives at least 1 —&-5* -
% slots in each scheduling instance. The system achieves
complete fairness as € — 0, while it reverts to the original
design (geared towards performance) as € — 1.

Specifically, we first calculate the minimum slots that
should be reserved for each job i as p; = S*- l’% Next,
instead of allocating the selected job k all its desired
slots D¥ based on task placement, we limit the number of
slots allowed for job & to g = xSy — jcj.izk Pi- We scale

down job k’s slot allocation by d)’j . % if gx < xd)’(‘. After

capping job k’s slots based on mingy, , d¥, the rest follows
our original design.

5The sum of download data is equivalent to the sum of upload data, so
specifying one of them is sufficient.

5 Prototype Implementation

We implement Tetrium on top of Spark [5] by overrid-
ing Spark’s cluster scheduler to make our scheduling
decisions, containing 950 LoC in Scala. In addition, our
Spark implementation calls out Gurobi solver [6] to solve
the models described in §3. The optimization model solv-
ing part contains roughly 300 LoC in Python. We discuss
several implementation details as follows.

Batching of Slots: Since we make task placement and
scheduling decisions based on currently available slots at
one scheduling instance, the scheduling quality depends
on whether the current set of available slots is sufficiently
representative of future slot arrivals. We can make better
placement decisions if we delay a bit so that more slots
become available and more placement options can be
covered, yet we do not want to waste resources by leaving
them too long. In our implementation, we batch the slots
according to the average duration of the recently finished
tasks, which provides the system with a rich set of slots
across sites so that the scheduler does not make biased
decisions based on one (or a few) available slots.
Handling Dynamic Slot Arrivals: Slot distribution varies
across scheduling instances in practice (even when batch-
ing is employed), either due to variance in last wave’s
task durations, or due to some slots being allocated to
another jobs with higher priority. With such dynamic
slot availability, our task ordering solution (§3.3) that
schedules remote tasks prior to local tasks may force
local tasks to run on remote sites given insufficient lo-
cal slots in the end, which not only prolong the tasks’
durations but also decreases slot utilization. To address
dynamic slots availability in practice, Tetrium reserves
a small fraction of the current slots for running local
tasks, while leverages the remaining portion of the slots
in accordance to the original task ordering method.
Estimation of Available Bandwidth: Given EC2 band-
width is relatively stable at minutes level, similar to [47],
we run measurements of available bandwidth at each site
every few minutes. We do not apply specific bandwidth
reservation method and assume that available bandwidth
is fairly shared among all concurrent flows at a site.
Estimation of Task Duration: Our implementation es-
timates the tasks’ duration according to the finished tasks
in the same stage. Previous work [15] showed this ap-
proach is effective because tasks in the same stage per-
form the same functions over similar amounts of data.

6 Evaluation

We evaluate Tetrium with a geo-distributed EC2 deploy-
ment (§6.2) and extended trace-driven simulations (§6.3).

M Baseline: Iridium 2 Baseline: In-Place

=
o

o O

N B O
o o

o

Response Time (%)

o

Reduction in Average

TPC-DS, Big-Data, TPC-DS, Big-Data,

8-site 8-site 30-site 30-site

Figure 5: Reduction in Average Response Time.

(Tetrium’s average response time is 75 sec.)

W Baseline: Iridium 7 Baseline: In-Place

00
o

N B
o o

Slowdown (%)
o

o

Reduction in Average

TPC-DS, Big-Data, TPC-DS, Big-Data,

8-site 8-site 30-site 30-site

Figure 6: Reduction in Average Slowdown.

6.1 Settings

EC2 Deployment: We deploy Tetrium in EC2 using
geo-distributed instances from 8 regions: Oregon (US),
Virginia (US), Sao Paulo, Frankfurt, Ireland, Tokyo, Syd-
ney and Singapore [2]. Our cluster allocates one EC2
instance in each region, and has heterogeneous compute
capacities across the regions: the maximum slot number
is 16 (c4.4xlarge), and the minimum is 4 (c4.xlarge);
the bandwidth ranges from 100Mbps to 1Gbps between
the instances. We also mimic a 30-site deployment by
allocating 30 instances within one region.

Trace-driven Simulator: We evaluate Tetrium in large-
scale settings and extended experiment duration using
trace-driven simulations. The trace is derived from a
production cluster with information including job ar-
rivals, jobs’ number of tasks and corresponding DAG,
input/output data sizes for each task, the distribution of
input data, straggler tasks and fail-over [13, 16]. We sim-
ulate a 50-site setting: the number of slots at each site
ranges from 25 to 5000, for a mix of powerful datacenters
and small edge clusters, with bandwidth ranging from
100Mbps to 2Gbps.

Baselines: We use two baselines: (a) In-Place Approach:
This is the default Spark [5] that runs tasks locally along
with their input data (site-locality). It applies fair schedul-
ing among the jobs and delay scheduling [56] for launch-
ing tasks within a job. (b) Iridium [47]: This is a re-
cent work that improves Spark through shuffle-optimized
reduce-tasks placement for geo-distributed jobs. Addi-
tional baselines are included as appropriate.

10

10000
8000
6000
4000
2000

Time (msec)

©

Scheduler Running

25 50 100 200
Number of Jobs

400

Figure 7: Running Time of Scheduling Decisions.

Performance Metrics: The primary performance met-
ric in our evaluation is average job response time, and
we report the results based on the reduction in response
time as compared to different baselines. In some results
we also report the reduction in slowdown. Slowdown is
defined as the job’s response time divided by its service
time when running in isolation, and indicates how jobs
are prioritized compared to their size.

The results are obtained in settings where p (WAN
budget) and € (fairness) are set to 1, i.e., only focusing
on reducing response time, if not explicitly specified.

6.2 Evaluation with EC2 Deployment

Workloads: We run two workloads to evaluate Tetrium
in the EC2 deployment. (a) TPC-DS [8]: a set of SQL
queries for evaluating decision support solutions, includ-
ing Big Data systems. The queries in this benchmark
are characterized by high CPU and I/O workloads, and
typically contain long sequences of dependent stages
(6 ~ 16). (b) BigData [3]: a mix of scan, join, and aggre-
gation queries over the data provided in [46]; the queries
in this benchmark have fewer sequences of stages (2 ~ 5).

Performance Gains: Figure 5 shows that Tetrium im-
proves job average response time, as compared to In-
Place and Iridium, by up to 78% and 55%, respectively,
as a result of efficient task placement that jointly consid-
ers both network and compute resources. Tetrium’s gains
are also due to being able to schedule the jobs finishing
faster so that they are not substantially delayed by longer
jobs.

The performance gains are more significant under
TPC-DS workloads than under Big Data Benchmark,
and we believe this attributes to the job characteristics in
these benchmarks: TPC-DS jobs have longer sequence
of stages, which requires more task placement decisions
and provides opportunity for larger gains. Gains under
30-site setting are more significant than in 8-site set-
ting because Tetrium benefits more from the flexibility
in placement options. Yet, Tetrium’s gains compared to
Iridium in “TPC-DS 30-site” are smaller than that in 8-
site setting, because Iridium’s network-centric approach
also gains some benefits from the increased placement
flexibility, especially in the TPC-DS workloads that incur
lots of intermediate data shuffle during job execution.

100
80
60
40
20

Tetrium

+FS
+|-task s
+|-data

CDF

Reduction in Average
Response Time (%)
D
o

0 L=
0 10203040506070

Reduction in

In-Place Centralized Response Time (%)

(a) Average Response Time (b) CDF of Response Time

Figure 8: Response Time Reduction Compared to Base-
lines

Figure 6 shows Tetrium achieves up to 45% and 16%
reduction in slowdown compared to In-Place and Iridium,
respectively. Tetrium has the best slowdown, as it not only
reduces a job’s response time by efficient task placement,
but also prioritizes small jobs (to finish quickly) with-
out being delayed by large jobs. As expected, In-Place
has the worst slowdown, as it essentially allocates slots
based on fair sharing among jobs. Tetrium has less gains
compared to Iridium as Iridium achieves better slow-
down (compared to In-Place) by reducing response time
through better (network-centric) task placement.

Scheduling Overhead: Figure 7 shows Tetrium’s sched-
uling overhead scales well as the number of jobs in-
creases: Tetrium’s scheduling decisions complete within
= 950ms for 50 concurrent jobs and = 8s for 400 jobs.
The majority of scheduling time is spent on task place-
ment decisions, which takes an average of 100ms for
each decision for a job. Although the number of jobs in
the system might be large, Tetrium effectively selects a
few high-priority jobs (by focusing on the jobs with fewer
remaining stages) and eliminates the needs for solving
optimization problems for lower priority jobs. This leads
to a significant reduction in scheduling overhead and
hence the scalability of the proposed scheduling algo-
rithm. In practice, solving task placement model for each
job can run in parallel and further reduces the scheduler’s
running time.

6.3 Evaluation with Trace-driven Simulations

Our simulations employ an additional baseline (Central-
ized Approach) that (upfront) aggregates all input data at
a powerful datacenter, to quantify the benefits in running
tasks of the jobs across the site.

6.3.1 Performance Gains and Design Choices Reduc-
ing Response Time: In Figure 8(a), Tetrium achieves
429% and 50% improvements as compared to In-Place and
Centralized, respectively. The gains are higher against
Centralized because most jobs have less intermediate
data than input data, which undermines the benefits in
pre-aggregating input data upfront. Next, we tease apart

11

Map Remote-Spread Remote-Spread Local-First Local-First
Random
29%

Local-First
32%

Random
38%

Local-First
42%

Reduce
Gains

Figure 9: Gains in Response Time Under Different Com-
binations of Task Ordering Strategies (Baseline: In-Place)

Tetrium’s gains by quantifying the contributions of the
task placement and job scheduling strategies using: (a)
Tetrium with Fair Scheduler (Tetrium+FS) which replaces
Tetrium’s job scheduling method by fair scheduling. (b)
Tetrium with Iridium’s task placement (+1-task) which
replaces Tetrium’s task placement method by that of Irid-
ium’s. (c) Tetrium with Iridium’s data placement (+I-
data) that applies Iridium’s data placement method to
original Tetrium. Tetrium+FS also provides significant
gains (of 26% and 35%), which verifies that Tetrium’s
task placement solution is effective even without the aid
of the job scheduling solution. Also note that moving
data in advance (Tetrium+I-data) does not help Tetrium
as it is difficult to predict the resource availability in
future scheduling instances. Although not included in
the figure, Tetrium also improves Tetris [28] by 33% (in
average) and 47% (at 90’h-percentile) because Tetrium
does not rely on pre-determined resource requirement
of jobs as in Tetris and can speed up a job’s response
time by allocating more bandwidth if beneficial. Figure
8(b) plots the CDF of reduction of jobs’ response times
against In-Place and Centralized. Tetrium does not slow
down any jobs compared to both baselines despite its
greedy heuristic.

Task Ordering Strategy: We evaluate different task or-
dering strategies. For map-stage: (a) Remote-First (Spread):
launching remote tasks first while spreading them across
different sites to reduce network contention, as proposed
in §3.3, and (b) Local-First: launching local tasks first,
i.e., those that read data from the site corresponding to
the available slot. For reduce-stage: (a) Longest-First:
first launching the reduce-task with the longest network
transfer time, as proposed in §3.3, and (b) Random: arbi-
trarily selecting a reduce-task to run. Figure 9 presents
the average gains for the 4 combinations of the strategies,
as compared to In-Place baseline. The results verify that
our proposed task ordering methods result in the best
combination, as remote tasks are indeed the bottleneck
among the tasks associated with the same stage. There-
fore starting the remote tasks first rather than leaving
them in the end delaying the completion time reduces
the response time. We also notice that most of the gains
are attributed to the map-task ordering method. This is
because reduce tasks need to read data from many (po-
tentially all) sites, its completion depend more on how
reduce tasks are placed than their ordering.

0 10 20 30 40 50

Reduction in Average
Response Time (%)

(a) Baseline: In-Place

10 20 30 40 50 60

Reduction in Average
Response Time (%)

L %0 cS 25 50
o 90 o g vs. In-Place —w—t
52 40 s> go 40
=3 =98 <E
3O 30 S3 TF 30
= o= c &
gz 20 0=1 £% g X
= own
= 10 = ég 10
o

(b) Baseline: Centralized

0
0 02040608 1
Control Knob (g) Values

(c) Baseline: In-Place

Figure 10: Balancing Response Time And Other Performance Goals: (a)(b) Reducing Response Time With Budget Of

WAN Usage. (c) Recuing Response Time vs. Achieving Fairness.

22 35 37 38 39 39
18 29 33 34 35 35
16 25 26 26 32 34
9 19 23 25 26 30
6 15 18 20 21 24

Figure 11: Gains in Response Time Under Different Re-
source Dynamics Scenarios (Baseline: In-Place)

Stage-By-Stage Approach: We investigate the effec-
tiveness of Tetrium’s solution to address the mismatch
between map and reduce task placement (§3.4). We quan-
tify this limitation by comparing Tetrium’s (forward)
stage-by-stage approach against a method that selects
the best out of forward and reverse, while the latter is
guaranteed to be better (or at least as good as) Tetrium’s
approach. Our results show that Tetrium achieves 42%
improvements against In-Place baseline, while the mixed
method achieves 45%. Because (i) the difference is mar-
ginal and (ii) forward is more practical to implement
in most systems while incurring less overhead (e.g., it
does not require upfront information about all stages),
we adopt forward stage-by-stage as in Tetrium. Another
subtle point is that, in most data analytics jobs, the vol-
ume of intermediate data quickly drops in the subsequent
stages, which mitigates the impacts of stage-by-stage’s
non-optimal placement in the later stages.

6.3.2 Addressing Resource Dynamics We next eval-
uate the our proposed method for addressing resource
dynamics (§4.2). In this experiment there are 50 sites,
and during the job running we degrade both the compute
and network resources of 5 randomly selected sites by
a certain percentage. Figure 11 presents the gains com-
pared to In-Place baseline under various resource drops
(%) as well as the number of sites allowed for updates (k).
For example, when the resource drops by 30% and the
system is allowed to update 7 sites, the proposed method
achieves 26% reduction in job response time.

12

Gains increase when the system is allowed to update
more sites. On the other hand, when the resources drop by
a larger percentage, the gains decrease. Under a setting
of 50 sites, setting k = 5 or 7 provide most of the gains,
while setting k£ beyond 10 does not improve further.

6.3.3 Incorporating WAN Usage Budget Figure 10
presents the reduction in response time and WAN usage,
compared to In-Place © and Centralized baselines, under
various knob p values. As p increases, more WAN bud-
get is allowed, and hence the reduction in response time
significantly increases. Tetrium saves more WAN usage
compared to Centralized than In-Place. This is because
In-Place does save some WAN usage by not transfer-
ring any data in map-stage, while Centralized aggregates
all input data upfront. Tetrium saves 53% WAN usage
given the tightest WAN budget (p = 0), and achieves at
least 14% reduction even when fully geared toward re-
ducing response time (p = 1). In general, WAN budget
has a linear impact on reduction in response time. We
believe this is because restricting to less WAN usage
forces more tasks to run locally, and the running time
is roughly linear to the amount of workloads required.
The results also suggest a sweet spot at p = 0.75, where
Tetrium achieves 40% reduction in response time while
reducing 25% WAN usage.

In our experiments, 36% of data transfer across sites
come from the map-stages, while the other 64% come
from reduce-stages. We also notice that the majority of
data transfer take place during the first few stages, in
which multiple tables of data are retrieved and joined in
this process, while the volume quickly decreases after
then because the size of intermediate data usually drops
quickly in data analytics jobs.

6.3.4 Balancing Response Time and Fairness Fig-
ure 10(c) shows gains (i.e., reduction in response time)

®Note that In-Place does incur network transfer in intermediate stages
(e.g., reduce) although it processed all input data locally in map-stage.

Zg Queries(%) T gg Queries(%)
a5 Gains(%) == a5 Gains(%,

1.0-
2.0

Skew (Coefficient of Variation)

>2.0

<0.2 0.2-
0.5

Intermediate/Input Data Ratio

0.5-
1.0

>1.0 <0.5 0.5-

1.0

(a) Ratio of Intermediate/Input Size (b) Input Data Skew

(¢) Intermediate Data Skew

Queries(%) ——
Gains(%) ==

Queries(%) ——
Gains(%) ==

<0.5 0.5-
1.0

Skew (Coefficient of Variation)

1.0-
2.0

>2.0

<10%

10% 25%
-25% -50%

Estimation Error

>50%

(d) Task Estimation Error

Figure 12: Distribution of The Gains under Various Categories.

under various fairness knob’s (€) values. Under complete
fairness (¢ = 0), Tetrium achieves similar performance
as In-Place which adopts fair sharing among the jobs.
Although Tetrium assigns slots according to each job’s
desired placement distribution, the number of slots al-
located under complete fairness is not enough for each
job to take the advantage of efficient placement deci-
sions. As the knob is turned towards € = 1 (i.e., response
time oriented design), gains increase quickly because —
in addition to providing each job some minimum num-
ber of slots — Tetrium allocates slots in proportional to
each job’s desired distribution, thereby achieving a good
match between available resources and demand. Evalu-
ation with our workloads suggests a sweet spot around
€ = 0.6, where Tetrium reserves 40% slots in proportional
to jobs’ sizes while achieving 38% reduction in response
time.

6.4 Distribution of The Performance Gains

We further study Tetrium’s gains (compared to the In-
place baseline) by characterizing the gains distribution.
Intermediate-Input Ratio: Figure 12(a) shows the gains
based on intermediate-input ratio of the jobs: the higher
the ratio, the more improvements (up to 50%) Tetrium
achieves. At the high end (reduce-heavy), more interme-
diate data is generated than input data, which incurs more
data shuffle across the network. Therefore Tetrium bene-
fits more from effective resource allocation. At the low
end (map-heavy), Tetrium also improves by at least 31%;
this attributes to effective map-task placement, which
also highlights how site-locality falls short.

Data Skew: Tetrium’s gains depend on the skews in data
distribution — Coefficient of Variation (CV) — across sites.
Up to CV < 2.0 in Figure 12(b), higher data skews in in-
put data benefit greatly from better decisions by Tetrium
in balancing computation and network resources. How-
ever, when the input data is extremely skewed (CV >
2.0), it resides on only a few site (one site at the extreme),
and In-Place benefits from reduced network transfer time
for later stages through site-locality. Figure 12(c) depicts
effects of intermediate data skew, where gains are highest
(as high as 56%) at the most skewed data distributions.

13

Task Estimation Error: Figure 12(d) shows that Tetrium
achieves the highest gains with accurate estimation in
task duration. Although the gains drops when estimation
error increases, only a small percentage of the tasks have
high estimation error in our implementation.
Heterogeneity of Resources: We evaluate the impact of
skew of slots and bandwidth by setting it based on Zipf
distribution: the higher the exponent e value, the more
skewed the resources to a few sites. Settings with more
skewed resources provide more gains, as such scenarios
calls for wiser task placements by balancing the work-
loads according to resource availability. Results suggest
that the compute slot skew has more impact than the
bandwidth skew: from slot skew e = 0 to 1.6, the gain
increases by 51%, while from BW skew 0 to 1.6, the
gain increase by 37%. This is because the number of
slots directly determines the compute duration once the
placement is set.

7 Related Work

Multi-resource Scheduling: Previous works [26, 27]
achieve fairness by allocating only compute resources
(CPU and memory). However, for geo-distributed jobs,
network resource is also critical for performance.

Other works [28-30] pack multiple resources (CPU,
memory, bandwidth) for the tasks based on pre-configured
resource requirement to avoid resource fragmentation.
In heterogeneous geo-distributed data analytics, the net-
work transfer time portion of a job’s duration depends
on how the tasks are distributed across sites, as well as
the bottleneck, given the heterogeneous nature of band-
width. Pre-configuring a static bandwidth requirement
for each task upfront as in those works does not capture
such nature of the heterogeneous geo-distributed clusters
because network bandwidth is inherently a fungible re-
source. Specifically, a task should be able to use whatever
available bandwidth at the time as opposed to use only an
isolated fraction. Tetrium, on the other hand, schedules
tasks based on equal-sized computation resources (i.e.,
static combination of CPU and memory) while allows
tasks to utilize as much network bandwidth at the time
as possible.

Geo-distributed Jobs: Many works [31, 39, 47, 54,
55] focus on reducing network transfer delay of geo-
distributed jobs, while SWAG [32] focuses on allocat-
ing compute slots through coordinated job scheduling.
Tetrium considers both network and computation resources,
and is the first to address the inter-dependency of task
placement and job scheduling in the geo-distributed set-
ting where resources are heterogeneous and constrained.

Intra-cluster Jobs: Prior work on reducing network
delay of tasks focus on data locality [34, 56] or constrain-
ing the tasks to a few racks [36].There also exist many
works [20-23] for reducing the response time of coflows,
i.e., a set of flows that belong to the same job. None of
these, however, consider the resource heterogeneity and
data skew across sites. Our work is the first to address
multi-resource allocation in geo-distributed analytics.
Improving performance by optimizing job/query exe-
cution plan has been an active research area [11, 50, 51,
54]. Those works computes the structure of the job (e.g.,
order of join or partition strategy) and generate the job
execution plan (i.e., DAG). Tetrium takes the job execu-
tion plans generated by those mechanisms as input, then
places tasks and schedules jobs according to Tetrium’s
scheduling heuristic to reduce jobs’ response times.

Job Scheduling: Theoretical work in concurrent open
shops [25, 43, 49] propose approximations for allocating
compute slots among jobs across machines. Other theory
works [19, 33, 44] focus on scheduling compute slots for
(and placing) tasks with precedence constraints within a
job. Those theory works require certain assumptions (e.g.,
knowing exact task duration) that can not work in prac-
tice. In addition, network transfer time depends on how
all the concurrent tasks are placed across the sites in prac-
tice, instead of a fixed delay for each source-destination
pair as modeled in [44]. To the best of our knowledge,
addressing both job scheduling and task placement with
multi-resource consideration has not been well studied
yet.

8 Discussion

Theoretical Performance Guarantee. This paper ad-
dresses a new challenge of resource scheduling in geo-
distributed settings.In this work we focus on the system
perspectives of the problem by proposing an efficient
heuristic and addressing several practical issues in real-
world deployment to make it more robust. We acknowl-
edge that our proposed heuristic is based on intuitive
design principles and modeling with simplified assump-
tions, which has no theoretical guarantee in performance.
Understanding the optimality of our heuristic, along with
developing approximation with performance guarantee,
is a promising direction of the future work.

14

Joint-Stage Task Placement. Scheduling the tasks by
considering the job’s full DAG has been an open prob-
lem, and previous works treat the tasks of each stage
separately[39, 47, 48]. While we acknowledge that our
proposed solution is built based on the simplified prob-
lem as previous works do (i.e., stage-by-stage planning),
we made a complimentary attempt for improving our pro-
posed stage-by-stage approach (Section §3.4), and our
evaluation shows that such improvement is marginal. The
dynamics of available resources and concurrent work-
loads in the systems can be one of the reasons that joint-
stage task placement might not get significant perfor-
mance improvement as expected. Designing a more so-
phisticated solution based on joint-stage task placement
based on the above mentioned factors is a challenging
future work.

Incorporating Other Scheduling Decisions. In addi-
tion to the challenges addressed in this paper (i.e., task
placement and ordering, job scheduling), there exist other
important factors that can be incorporated into our re-
source scheduling decisions: (a) Our solution is based
on the assumption that there is only single primary item
for each data. Our task placement model (Section §3)
can be extended to consider the selection from multiple
data replica by introducing additional variables and con-
straints. (b) Stragglers are common in large-scale data-
parallel jobs. Launching redundant copies of stragglers is
the mainstream approach of mitigating the performance
degradation [48, 57], and is orthogonal to our solution.
One can trade off launching original tasks for redundant
copies associated with the same job or even across the
jobs, while placing the redundant copies across the sites
using the proposed heuristic in this paper.

9 Conclusions

As cloud providers deploy datacenters around the world,
support for fast geo-distributed data analytics is becom-
ing critical. We design and build Tetrium, a system for

multi-resource allocation in geo-distributed clusters, that

takes the first stab at jointly scheduling the network

and computation resources for improving geo-distributed

jobs’ response times, while it incorporates other metrics

(e.g., WAN usage, fairness or makespan) with simple

knobs. In our evaluations with a geo-distributed EC2 de-
ployment and large-scale trace-driven simulations, Tetrium
greatly improves the average job response time compared

to common practices and recent approaches.

Acknowledge

We would like to thank the anonymous reviewers and our
shepherd, Dejan Kostic, for their thoughtful suggestions.
This work is supported in part by the Zumberge Research
Award.

References

[1]

[2]
[3]
[4]
[5]
[6]
[7]

[8

[t}

[9]
[10]

(11]

[12]

[13]

[14]

[15

[16

(17]

[18

[19]

[20]

[21]

Cloud Vs edge in an IoT world.
https://iotworldnews.com/2016/04/cloud-vs-edge-in-an-iot-
world/.
http://aws.amazon.com/about-aws/global-infrastructure/. Ama-
zonn Global Infrastructure.
https://amplab.cs.berkeley.edu/benchmark/. AMPLab Big Data
Benchmark.
https://ipp.mit.edu/sites/default/files/documents/congestion-
handout-final.pdf, 2014. Measureing Internet Congestion: A
preliminary report.

http://spark.apache.org/. Spark Cluster Computing System.
http://www.gurobi.com/. Gurobi Optimization.
http://www.microsoft.com/en-us/server-cloud/cloud-os/global-
datacenters.aspx. Microsoft Cloud Platform.
http://www.tpc.org/tpcds/. TPC Benchmark Standard for Decision
Support Solutions Including Big Data.

Key azure storsimple features. https://www.microsoft.com/en-
us/server-cloud/products/storsimple/Features.aspx.

Private conversation with datacenter operators of one of the largest
public cloud providers; anonymized. 2016.

F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce
environment. In Proceedings of the 13th International Conference
on Extending Database Technology (EDBT), 2010.

G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg,
I. Stoica, D. Harlan, and E. Harris. Scarlett: Coping with skewed
content popularity in mapreduce clusters. In Proceedings of the
Sixth Conference on Computer Systems (EuroSys), 2011.

G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Ef-
fective straggler mitigation: Attack of the clones. In Proceedings
of the USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2013.

G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kan-
dula, S. Shenker, and I. Stoica. Pacman: Coordinated memory
caching for parallel jobs. In Proceedings of the USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI),
2012.

G. Ananthanarayanan, C.-C. Hung, X. Ren, I. Stoica, A. Wierman,
and M. Yu. Grass: trimming stragglers in approximation analytics.
In Proceedings of the USENIX Conference on Networked Systems
Design and Implementation (NSDI), 2014.

G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in map-
reduce clusters using mantri. In Proceedings of the USENIX
Conference on Operating Systems Design and Implementation
(0SDI), 2010.

B. G. K. K. Ashish Vulimiri, Carlo Curino and G. Varghese.
Wanalytics: Analytics for a geo-distributed data-intensive world.
In CIDR, 2015.

M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and
R. Govindan. Mapping the expansion of google’s serving in-
frastructure. In Proceedings of the 2013 Conference on Internet
Measurement Conference (IMC), 2013.

C. Chekuri and M. Bender. An efficient approximation algorithm
for minimizing makespan on uniformly related machines. Journal
of Algorithms, 2001.

M. Chowdhury and I. Stoica. Efficient coflow scheduling without
prior knowledge. In Proceedings of the ACM Conference on
Special Interest Group on Data Communication (SIGCOMM),
2015.

M. Chowdhury, M. Zaharia, J. Ma, M. 1. Jordan, and I. Stoica.
Managing data transfers in computer clusters with orchestra. In
Proceedings of the ACM Conference on Special Interest Group

15

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

(36]

(37]

on Data Communication (SIGCOMM), 2011.

M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow schedul-
ing with varys. In Proceedings of the ACM Conference on Special
Interest Group on Data Communication (SIGCOMM), 2014.

F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. De-
centralized task-aware scheduling for data center networks. In
Proceedings of the ACM Conference on Special Interest Group
on Data Communication (SIGCOMM), 2014.

J. Du and J. Y.-T. Leung. Complexity of scheduling parallel task
systems. SIAM J. Discret. Math., 1989.

N. Garg, A. Kumar, and V. Pandit. Order scheduling models:
hardness and algorithms. In FSTTCS 2007: Foundations of Soft-
ware Technology and Theoretical Computer Science. Springer,
2007.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica. Dominant resource fairness: Fair allocation of mul-
tiple resource types. In Proceedings of the USENIX Conference
on Networked Systems Design and Implementation (NSDI), 2011.
A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Choosy: Max-
min fair sharing for datacenter jobs with constraints. In Proceed-
ings of the 8th ACM European Conference on Computer Systems
(EuroSys), 2013.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella. Multi-resource packing for cluster schedulers. In
Proceedings of the ACM Conference on Special Interest Group
on Data Communication (SIGCOMM), 2014.

R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan.
Altruistic scheduling in multi-resource clusters. In Proceedings
of the USENIX Conference on Operating Systems Design and
Implementation (OSDI), 2016.

R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni.
Graphene: Packing and dependency-aware scheduling for data-
parallel clusters. In Proceedings of the USENIX Conference on
Operating Systems Design and Implementation (OSDI), 2016.
K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu. Gaia: Geo-distributed machine
learning approaching lan speeds. In Proceedings of the USENIX
Conference on Operating Systems Design and Implementation
(NSDI), 2017.

C.-C. Hung, L. Golubchik, and M. Yu. Scheduling jobs across
geo-distributed datacenters. In Proceedings of the Sixth ACM
Symposium on Cloud Computing (SoCC), 2015.

J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee. Scheduling
precedence graphs in systems with interprocessor communication
times. SIAM Journal of Computing, 1989.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg. Quincy: Fair scheduling for distributed computing
clusters. In ACM Symposium on Operating Systems Principles
(SOSP), 2009.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experience
with a globally-deployed software defined wan. In Proceedings
of the ACM Conference on Special Interest Group on Data Com-
munication (SIGCOMM), 2013.

V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and
M. Caesar. Network-aware scheduling for data-parallel jobs: Plan
when you can. In Proceedings of the ACM Conference on Special
Interest Group on Data Communication (SIGCOMM), 2015.

J. Jiang, R. Das, G. Ananthanarayanan, P. A. Chou, V. Padman-
abhan, V. Sekar, E. Dominique, M. Goliszewski, D. Kukoleca,
R. Vafin, and H. Zhang. Via: Improving internet telephony call
quality using predictive relay selection. In Proceedings of the

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

(501

[51]

[52]

[53]

[54]

[55]

ACM Conference on Special Interest Group on Data Communica-
tion (SIGCOMM), 2016.

J. Kleinberg and E. Tardos. Algorithm Design. Addison-Wesley
Longman Publishing Co., Inc., 2005.

K. Kloudas, M. Mamede, N. Preguica, and R. Rodrigues. Pixida:
Optimizing Data Parallel Jobs in Wide-Area Data Analytics. In
International Conference on Very Large Data Bases (VLDB),
2015.

P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries.
In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), 2011.

Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: mit-
igating skew in mapreduce applications. In Proceedings of the
ACM International Conference on Management of Data (SIG-
MOD), 2012.

H. H. Liu, R. Viswanathan, M. Calder, A. Akella, R. Mahajan,
J. Padhye, and M. Zhang. Efficiently delivering online services
over integrated infrastructure. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2016.

M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and
N. A. Uhan. Minimizing the sum of weighted completion times
in a concurrent open shop. Operation Research Letter, 2010.

B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlés. On scheduling
in map-reduce and flow-shops. In Proceedings of ACM Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA),
2011.

K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin,
S. Ratnasamy, S. Shenker, and I. Stoica. The case for tiny tasks
in compute clusters. In Presented as part of the 14th Workshop
on Hot Topics in Operating Systems (HotOS), 2013.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Mad-
den, and M. Stonebraker. A comparison of approaches to large-
scale data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, 2009.

Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica. Low latency geo-distributed data analytics.
In Proceedings of the ACM Conference on Special Interest Group
on Data Communication (SIGCOMM), 2015.

X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu. Hopper:
Decentralized speculation-aware cluster scheduling at scale. In
Proceedings of the ACM Conference on Special Interest Group
on Data Communication (SIGCOMM), 2015.

T. A. Roemer. A note on the complexity of the concurrent open
shop problem. Springer, 2006.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and
extensible algorithms for multi query optimization. In ACM
SIGMOD Record, 2000.

T. Sellis and S. Ghosh. On the multiple-query optimization prob-
lem. IEEE Transactions on Knowledge and Data Engineering,
1990.

J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms sched-
uling parallelizable tasks. In Proceedings of the Fourth Annual
ACM Symposium on Parallel Algorithms and Architectures, 1992.
S. Venkataraman, A. Panda, G. Ananthanarayanan, M. Franklin,
and 1. Stoica. The Power of Choice in Data-Aware Cluster Sched-
uling. In Proceedings of the USENIX Conference on Operating
Systems Design and Implementation (OSDI), 2014.

R. Viswanathan, G. Ananthanarayanan, and A. Akella. Clarinet:
Wan-aware optimization for analytics queries. In Proceedings
of the USENIX Conference on Operating Systems Design and
Implementation (OSDI), 2016.

A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye,
and G. Varghese. Global analytics in the face of bandwidth and

16

[56]

[57]

regulatory constraints. In Proceedings of the USENIX Conference
on Networked Systems Design and Implementation (NSDI), 2015.
M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and L. Stoica. Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling. In ACM EuroSys, 2010.
M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Sto-
ica. Improving mapreduce performance in heterogeneous envi-
ronments. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2008.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Geo-distributed data analytics
	2.2 Illustrative Examples

	3 Compute/Network-Aware Task Placement
	3.1 Map-Task Placement
	3.2 Reduce-Task Placement
	3.3 Task Ordering
	3.4 Mismatch between Map and Reduce

	4 Job Scheduling
	4.1 Minimizing Average Job Response Time
	4.2 Dealing with Resource Dynamics
	4.3 Considering WAN Usage
	4.4 Incorporating Fairness

	5 Prototype Implementation
	6 Evaluation
	6.1 Settings
	6.2 Evaluation with EC2 Deployment
	6.3 Evaluation with Trace-driven Simulations
	6.4 Distribution of The Performance Gains

	7 Related Work
	8 Discussion
	9 Conclusions
	References

