Query and Resource Optimization:
Bridging the Gap

Lalitha Viswanathan, Alekh Jindal, Konstantinos Karanasos

Microsoft

Abstract—Modern big data systems run on cloud environments
where resources are shared among several users and applications.
As a result, declarative user queries need to be optimized
and executed over resources that constantly change and are
provisioned on demand for each job. This requires us to rethink
traditional query optimization designed for systems that run on
dedicated resources. In this paper, we show evidence that the
choice of query plans depends heavily on the resources that the
plan will be executed on. The current practice of determining
query plans without accounting for resources could lead to
significant performance loss in popular big data systems, such
as Hive and SparkSQL. Therefore, we make a case for Query
and Resource Optimization (or QROP), i.e., choosing both the
query plan and the resource configuration at the same time, and
present a research agenda towards this direction.

I. INTRODUCTION

Traditional SQL systems typically rely on query optimizers
that determine execution plans assuming a dedicated set of
resources or hardware. However, today’s cloud computing
environments [1], [2] offer a shared pool of resources where
per-job resources are provisioned dynamically and on demand,
via resource managers, such as YARN [3]] and Kubernetes [4].
As a result, SQL-like systems running on these environments,
such as Hive [3]], SparkSQL [6]], and SCOPE [7], need to
pick resources in addition to the query plan. As an example,
Microsoft’s Azure Data Lake [8] offers analytics-as-a-service,
allowing users to submit their declarative queries without them
having to optimize or provision resources for these jobs.

The current practice is to use a two-step approach. First,
a query plan is chosen via a query optimizer [9]], [6], [7].
Then, the right resource plan, i.e., the resource configuration,
is determined through user guesstimates, simple heuristics, or
a resource optimizer [10], [11].

Employing this approach means that the query and the
resource optimizer are not aware of each other, even when
the query and the resource plans heavily depend on each
other (e.g., when determining the memory size and the join
implementation for join processing). Furthermore, the query
plans are picked without considering the current cluster con-
ditions, which are constantly changing in shared environments.
This can result in picking suboptimal combinations of query
and resource plans, thereby leading to significant loss in
performance or cost.

4000 B Query & Resource Opt.

M Query & Resource Opt.

[} )
E & 3000 Default Opt. E % 1500 Default Opt.
g g g8
S g 2000 Ss
58 58
o (5] 2
@ £ 1000 ol
X X
w w
0
3 200 W Query & Resource Opt. 3 140 M Query & Resource Opt.
g ,g 150 Default Opt. g ,g 105 Default Opt.
S o 8o
8+ 100 8. 2
Sm Sm
gk 50 Sk 35
T i
0 0

Resource Configurations

(a) Hive

Resource Configurations

(b) SparkSQL

Fig. 1. Potential gains of query and resource optimization.

To illustrate the potential gains in case of joint query and
resource optimization, we run a join query on the TPC-H
dataset on a 10-node YARN cluster, using both Hive and
SparkSQL. We experiment with different join implementations
(broadcast and shuffle join) and resource configurations (e.g.,
memory per container, number of containers). Figure [T reports
the execution time and the total resources used for each run.
The total resources are measured as the product of the total
memory and the total execution time. Our results show that the
default optimizer picks the optimal plan for very few resource
configurations. In particular, the plans chosen are up to twice
slower than those chosen by picking the best plan for the
given set of resources. Moreover, they use up to twice more
resources, which directly impacts monetary cost.

In this work, we propose a redesign of the optimization
stack in big data systems. We show evidence that the current
practice of choosing query plans prior to resource config-
urations leads to significant performance loss and resource
wastage (Section III)). Therefore, we argue for a more holistic
approach, in which the optimizer jointly determines the query
and the resource plan, while taking into account the current

cluster condition (Section TV). We term this approach Query

and Resource Optimization, and introduce several related open
research problems (Section V).
II. BACKGROUND

Below we describe a few key trends that can be observed
in the evolution of big data systems over the past decade.

High-level languages. To avoid writing low-level platform-
specific code (such as MapReduce [12], [13]), most systems



provide users with SQL-like declarative language abstrac-
tions [5], [6], [7], which get translated to an intermediate
DAG representation and share the same execution engine.
Consequently, efficiently translating the declarative queries to
the underlying DAGs, via a query optimizer, becomes crucial.

Query optimization. Early systems optimized jobs at the
dataflow level, using black-box optimizations coupled to the
specific dataflow engine [14]]. More recently, big data systems
use query optimizers, resembling traditional relational opti-
mizers, to translate a given SQL query to an efficient DAG
of operators supported by the underlying dataflow engine. For
instance, Hive queries get translated to Tez DAGs [15] and
SparkSQL queries to Spark DAGs [16l], using either rule- or
cost-based approaches [6]], [7]], [9].

Resource optimization. Clusters are now being shared be-
tween multiple applications and users, both on-premises and
in public clouds, in order to improve resource utilization and
application interoperability. This led the resource management
layer to get abstracted out of the big data systems [3], [4].
Therefore, along with the translation from SQL query to
execution DAGs, the dataflow engine now has to choose the
resources to request from the resource manager for each DAG
vertex, which is the focus of resource optimization.

As an example, YARN, similar to other resource man-
agers, allows applications to request resources in the form
of containers, which are resource units comprised of a fixed
amount of memory and CPU (or other resources). Resource
optimization in YARN involves determining the container size
(resources per container), the maximum number of concurrent
containers (actual degree of parallelism), and the total number
of containers per DAG vertexﬂ (total tasks per vertex).

Most systems rely on user configurations (e.g., container
size in Hive or degree of parallelism in Spark) or simple
heuristics for making such decisions. Early works in resource
tuning studied the problem of provisioning Hadoop work-
loads [17], but their applicability is limited to MapReduce
systems. Also, they do not consider dynamically changing
resources. Recently, Ernest [11] and PerfOrator [10] focused
on the resource optimization problem, relying on executing the
job over samples of the input to pick resource configuration.

Lack of joint optimization. Note that all existing resource
optimizers take as input a fixed execution DAG, produced by
a previously-performed query optimization step. Furthermore,
they do not take into account the per-operator resources nor
the current condition of the cluster.

III. COST OF IGNORING RESOURCES

In this section, we study the impact of ignoring resources
during query optimization, in particular when choosing oper-
ator implementations and join orders.

Setup. For our analysis we deploy Apache Hive (version 2.0.1)
on a 10-node YARN (version 2.7.2) cluster. Hive queries get

'In systems like Spark-on-YARN that reuse containers, following
the executor model, this is not applicable, although applications still
need to determine the number of tasks.

& SMJ BHJ ® SMJ BHJ

1800 1500

)

1500 1250

n
=]
S

1000

©
=]
]

600 500

Execution Time (sec
Execution Time (sec

300 250

0

0
2 4 6 8 10 12 5 10 15 20 25 30 35 40 45

Container Size (GB) Number of Containers

(a) Varying Container Size (b) Varying #Containers

Fig. 2. Comparing BHJ and SMJ over varying resources.

translated to Tez (version 0.9.0) DAGs. Each cluster node has
4 cores at 2.2 GHz, 16 GB of RAM, and a 3 TB data drive.
Nodes are connected through a 10 Gbps network. We ran the
same experiments on SparkSQL and observed similar trends,
but focus on our Hive results here due to space limitations.

We use the TPC-H dataset [18] with scale factor 100, and
create Hive tables in ORC format. We measure execution
times, excluding the overhead of materializing the join output,
and report an average of three runs.

We consider the following resource configurations: (i) con-
tainer size, and (ii) maximum number of concurrent containers.
To simplify our analysis, we consider container sizes in terms
of memory, but other resources can be used instead. Finally,
in the presented results we use a split size of 256 MB to
determine the number of mappers, and enable Hive’s feature
that automatically determines the number of reducers, since
those gave us close to optimal performance.

A. Physical Operators

We look into two commonly-used join implementations
in Hive, namely the shuffle sort merge join (SMJ) and the
broadcast hash join (BHJ)"| Unlike SMJ that shuffles both join
relations, BHJ broadcasts only the smaller of the two. BHJ
is picked by the optimizer if the size of the smaller relation
is below a threshold (determined through a parameter). The
default threshold is 10 MB.

We use the following query: select x from orders,
lineitem where o_orderkey = 1_orderkey. It is
based on TPC-H query 12, from which we removed the
aggregates and additional filters to focus on the join behavior.
In our experiments below, we adjusted the smaller orders
table sizeE] proportionally to the resources we used each time.

Fixed data, varying resources. First, we study the impact
of resource configurations on execution time using the two
join implementations. Figure [2(a)| shows the results for our
single-join query (with a 5.1 GB orders table), using 10
YARN containers of varying sizes. SMJ outperforms BHJ for
container sizes up to 7 GB, while BHJ is better for bigger
container sizes. This shows that BHJ benefits from larger

2After contacting contributors at Hive, we decided to omit our
results for Hive’s shuffle hash join, as it is not yet stable.

3To select a portion of the orders table on demand, we used a
uniform sampling filter on o_orderkey.



3000 2000

5 ® SMJ (3GB) & SMJ (10 cont.)
c 5 2500 BHJ(3GB) £ 1600 - BHJ (10 cont)
S @ 2000 S @
322 1500 ER e—o—o——o—0
[0] e e [0}
2 £ 1000 e g 80
W= 500 W= 400
0 0
3000
e smy(cB) 2000 5" Sy (40 cont.)
g BHJ (9GB) c G 1600 BHJ (40 cont.)
S 8 2000 S
52 o0 £ & 1200
] o—o—o—0—0—F 82 goo
£ £ 1000 £ E o oo —0
W 500 W= 400
0 0
0 2 4 6 8 10 12 o 1 2 3 4 5
Smaller Table Size (GB) Smaller Table Size (GB)
(a) Container Size (b) #Containers
Fig. 3. Comparing BHJ and SMJ switch points over varying data size.
1400 1200
@ Plan1 e Plan1
S 1200 Plan 2 S 1000 Plan 2
3 &
2 ~
2 1000 > 800
£ 800 E
= 2 600
5 o0 5
5 5 400
& 400 3
d 200 a 200
0 0
4 5 6 7 8 9 10 11 12 5 10 15 20 25 30 35 40 45

Container Size (GB) Number of Containers
(a) Container Size

Fig. 4.

(b) #Containers

Join order decisions over varying resources.

memory, whereas the performance of SMJ remains relatively
stable. Note that below 5 GB containers, BHJ is not an option
as it runs out of memory with the default Hive settings.

Figure shows the impact of the number of concurrent
containers on the execution times, while keeping the size of
each container fixed at 3 GB (using a 3.4 GB orders table).
We see that while BHJ is better than SMJ for less than 20
containers, SMJ benefits more from increased parallelism and
is twice as fast as BHJ for 40 containers.

Varying data and resources. So far we saw that there is
a switch point for choosing operator implementation when
varying resources. But can these switch points be statically
determined and hard-coded into the execution engine or are
they dynamic? To this end, we also vary the the input sizes.

Figure [3(a)| shows the execution times when varying the size
of the smaller relation (orders) for two container sizes (3
GB and 9 GB). While the switch point between BHJ and SMJ
with 3 GB containers is at orders size of 3.4 GB (BHJ runs
out of memory after that), the switch point shifts to 6.4 GB
with 9 GB containers. Figure [3(b)] shows the execution times
with different number of concurrent containers, keeping the
container size fixed. Again, we observe that the switch point
between BHJ and SMJ shifts from an orders size of 2.1 GB
for 10 containers to 3.8 GB for 40 containers.

To recap, the current practice of deciding operator imple-
mentations without accounting for the resources that will be
used can result in significant loss of performance.

B. Join Ordering

We now turn to queries comprising multiple operators
to study the impact of resources on different execution

Declarative System
e.g., SCOPE, Hive, SparkSQL
[Query Optimization]

{ Dataflow/Runtime J
e.g., Dryad, Tez, Spark

e.g., SCOPE, HiveQL, SparkSQL

[Declarative Language}

‘ Query & Resource Optimizer ’

Dataflow/Runtime
e.g., Dryad, Tez, Spark

Resource Manager

Resource Manager
e.g., YARN, Kubernetes

e.g., YARN, Kubernetes

Physical Resources
e.g., Azure, EC2, GoogleCompute

{ Physical Resources ]
€. e

.g., Azure, EC2, GoogleComputs

(a) Current Stack (b) QROP Vision

Fig. 5. Current big data system stack with separate query and resource
optimization (left), and our QROP vision (right).

plans. We use the following two-way join query, which is
a simplified version of TPC-H query 3: select » from
customer, orders, lineitem where c_custkey
= o_custkey and 1_orderkey = o_orderkey.
We use part of orders (850 MB in the first experiment
below, 425 MB in the second), so that more BHJs can
be used, and make the plan choice more interesting. We
compare two plans: (i) plan I first performs a BHJ between
lineitem and orders, and then a BHJ with customer;
(ii) plan 2 performs first a BHJ between orders with
customer and then a SMJ with lineitem.

Figure [4(a)| depicts the execution times for both plans, using
10 concurrent containers and different container sizes, while
Figure [A(b)] depicts the execution times using 3 GB containers
with a varying number of concurrent containers. As shown
in the figures, container size does not affect execution times
significantly and plan 1 performs better across the board.
However, for containers smaller than 6 GB, plan 1 cannot be
used as it runs out of memory. On the other hand, the number
of concurrent containers does have an impact on execution
times. Interestingly, when more containers are available, plan
2 starts outperforming plan 1, with 32 containers being the
switch point between the two plans.

IV. THE QROP ARCHITECTURE

Figure [5(a)] depicts the current practice in big data systems.
First, the query optimizer produces a physical plan for a
given query. Then, the resources are picked for executing
the selected physical plan and the resource manager (RM) is
invoked for acquiring these resources. However, as we saw
in [Section III| ignoring resources leads to suboptimal plan
decisions. Therefore, we propose an alternative architecture
that combines Query and Resource Optimization (QROP) into
a single layer. Figure illustrates this new architecture.

The key features of our approach are: (i) we propose a
combined optimization for picking both the query plan and
the resources at the same time; (ii) the new architecture takes
into account the dynamically changing condition of the cluster;
(iii) there is a tighter coupling between the optimizer and the
resource manager, which enables, for instance, to adapt query
plans in case of changing cluster conditions; (iv) given that the



execution time e and the monetary cost ¢ are functions of the
emitted query plan p and resource plan r, the optimizer can
tune the execution time and the monetary cost that the query
will yield when run on the cluster.

The QROP architecture enables several interesting use-
cases. We enumerate a few below:

o In case of constrained resources, e.g., due to restricted
quota per tenant, we can pick the best plan for a given
resource budget: 1 = p.

o If a user is satisfied with a given performance, e.g.,
it meets their SLAs, then they can still optimize their
resources for lower monetary cost: p = (r, ¢).

o« We can optimize for performance by picking the best
query and resource plan combination (p, ). This is useful
when there are abundant or even dedicated resources.

« We can pick the resources that yield the best performance
for a constraint on the monetary cost: ¢ = (p,r).

Overall, the QROP architecture opens up new ways of
optimizing big data systems, which are more relevant to shared
cloud environments and end user needs.

V. RESEARCH LANDSCAPE

We now present several open research problems related to
our QROP vision.

Query/resource space exploration. Jointly optimizing query
and resource plans further increases the search space that the
optimizer has to explore. Efficient ways for exploring this
space have to be devised.

QROP on complex queries. Generalizing our approach to
arbitrary DAGs brings both challenges and opportunities:
(i) with multiple operators the possible query/resource plans
grow exponentially, (ii) the operators may interact (e.g., via
sort orders) and the resource plans may interact too, (iii) if
resources between operators do not change, containers can be
reused, creating a trade-off between picking best resources per
operator and resources that minimize resource allocation cost.

Adaptive QROP. From the moment a query gets optimized
until its execution begins, the cluster condition might change.
Hence, we might need to adapt/re-optimize the query, instead
of waiting for resources to free up. Alternatively, QROP could
pick plans that are more resilient to cluster conditions.

Interaction with DAG scheduler. With QROP, the submitted
jobs now have precise resource requests. This raises new
questions for the scheduler in case the exact resources are not
available: should it delay the job, should it fail it, or should it
consider multiple query/resource plan alternatives and pick the
most appropriate at runtime? Moreover, should the scheduling
of tasks to resources adapt based on the selected plan (which
could for instance affect the DAG’s critical path)?

Interface with resource manager (RM). A restricted
optimizer-RM API gives less opportunities for optimizations,
while, at the other extreme, exposing all the RM details to
the optimizer raises security concerns, especially in a public
cloud environment.

QROP and pricing. So far we focused mostly the impact of
QROP on execution times. Studying the impact on monetary
costs is crucial, and can even lead to new pricing models for
cloud environments.

Beyond SQL. QROP can be applied to any system that needs
to make query and resource optimization decisions, such as
streaming or machine learning systems.

Bridging two communities. Overall, this is an initiative to
combine efforts being done separately by the database and the
systems community. As the different layers of modern big data
systems need to increasingly collaborate with each other, so
do the corresponding communities.

Redefining the user’s role. Finally, we need to reconsider
the user’s role in a system that supports QROP. Will the user
simply provide the declarative queries and let the system run
on autopilot? Are there still control knobs they need to handle?
What about troubleshooting and debugging? How will the
“explain” command look in such systems?

To conclude, this paper opens the book for combining query
and resource optimization in big data systems. This is a major
departure from current systems that treat query optimization as
an upfront process, while resource optimization is a dynamic
runtime activity. We argue that there is a strong interplay
between query plans and resource configurations and that
the former cannot be chosen independently from the latter.
Consequently, the query optimizer, the runtime engine and the
resource manager need to be aware of each other in order to
produce efficient query plans and avoid wastage of resources.

REFERENCES

[1] “Amazon Web Services,” http://aws.amazon.com.

[2] “Microsoft Azure,” http://azure.microsoft.com.

[3] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
0. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet Another Resource Negotiator,” in SoCC, 2013.

[4] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Commun. ACM, 2016.

[5] “Apache Hive,” http://hive.apache.org.

[6] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
SQL: relational data processing in spark,” in SIGMOD, 2015.

[71 J. Zhou, N. Bruno, M.-C. Wu, P-A. Larson, R. Chaiken, and D. Shakib,
“SCOPE: parallel databases meet MapReduce,” VLDB J., 2012.

[8] “Microsoft Azure Data Lake,” http://azure.com/datalakel

[9] “Apache Calcite,” http://calcite.apache.org.

[10] K. Rajan, D. Kakadia, C. Curino, and S. Krishnan, ‘“PerfOrator: eloquent
performance models for resource optimization,” in SoCC, 2016.

S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large scale advanced ana-
lytics,” 2016.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” in OSDI, 2004.

“Apache Hadoop,” http://hadoop.apache.org/.

H. Lim, H. Herodotou, and S. Babu, “Stubby: A Transformation-based
Optimizer for MapReduce Workflows,” PVLDB, 2012.

“Apache Tez,” http://tez.apache.org.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in HotCloud, 2010.

V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
“Bridging the tenant-provider gap in cloud services,” in SoCC, 2012.
“TPC-H Benchmark,” http://www.tpc.org/tpch.

(11]

(12]

[13]
[14]

[15]
(16]

(17]

[18]


http://aws.amazon.com
http://azure.microsoft.com
http://hive.apache.org
http://azure.com/datalake
http://calcite.apache.org
http://hadoop.apache.org/
http://tez.apache.org

	Introduction
	Background
	Cost of Ignoring Resources
	Physical Operators
	Join Ordering

	The QROP Architecture
	Research Landscape
	References

