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Abstract 

High accuracy speech recognition requires a large amount of 

transcribed data for supervised training. In the absence of such 

data, domain adaptation of a well-trained acoustic model can 

be performed, but even here, high accuracy usually requires 

significant labeled data from the target domain. In this work, 

we propose an approach to domain adaptation that does not 

require transcriptions but instead uses a corpus of unlabeled 

parallel data, consisting of pairs of samples from the source 

domain of the well-trained model and the desired target 

domain. To perform adaptation, we employ teacher/student 

(T/S) learning, in which the posterior probabilities generated 

by the source-domain model can be used in lieu of labels to 

train the target-domain model. We evaluate the proposed 

approach in two scenarios, adapting a clean acoustic model to 

noisy speech and adapting an adults’ speech acoustic model to 

children’s speech. Significant improvements in accuracy are 

obtained, with reductions in word error rate of up to 44% over 

the original source model without the need for transcribed data 

in the target domain. Moreover, we show that increasing the 

amount of unlabeled data results in additional model 

robustness, which is particularly beneficial when using 

simulated training data in the target-domain. 

Index Terms: teacher-student learning, parallel unlabeled data 

1. Introduction 

The success of deep neural networks [1][2][3][4][5] relies on 

the availability of a large amount of transcribed data to train 

millions of model parameters. However, deep models still 

suffer reduced performance when exposed to test data from a 

new domain. Because it is typically very time-consuming or 

expensive to transcribe large amounts of data for a new 

domain, domain-adaptation approaches have been proposed to 

bootstrap the training of a new system from an existing well-

trained model [6][7][8][9]. These supervised methods still 

require transcribed data from the new domain and thus their 

effectiveness is limited by the amount of transcribed data 

available in the new domain. Although unsupervised 

adaptation methods can be used by generating labels from a 

decoder, the performance gap between supervised and 

unsupervised adaptation is large [7].  

In this work, we propose an approach to domain 

adaptation that does not require transcriptions but instead uses 

a corpus of unlabeled parallel data, consisting of pairs of 

samples from the source domain of the well-trained source 

model and the target domain. There are many important 

scenarios in which collecting a virtually unlimited amount of 

parallel data is relatively simple. For example, to collect noisy 

or reverberant data from a particular set of environments, 

speech can be captured simultaneously using a close-talking 

microphone and a microphone located at a distance from the 

user. Such a collection effort can also be simulated by 

acoustically replaying a pre-existing corpus of high signal-to-

noise ratio speech files in the target environment or by 

digitally simulating the target environment offline [10][11].  

To perform adaptation without the use of transcriptions, 

we propose to use teacher/student (T/S) learning. In T/S 

learning, the data from the source domain are processed by the 

source-domain model (teacher) to generate the corresponding 

posterior probabilities or soft labels. These posterior 

probabilities are used in lieu of the usual hard labels derived 

from the transcriptions to train the target (student) model with 

the parallel data from the target domain. With this approach, 

the network can be trained on a potentially enormous amount 

of training data and the challenge of adapting a large-scale 

system shifts from transcribing thousands of hours of audio to 

the potentially much simpler and lower-cost task of designing 

a scheme to generate the appropriate parallel data.   

The proposed approach is closely related to other 

approaches for adaptation or retraining that employ knowledge 

distillation [12]. In these approaches, the soft labels generated 

by a teacher model are used as a regularization term to train a 

student model with conventional hard labels. Knowledge 

distillation was used to train a system on the Aurora 2 digit 

recognition task [13], using the clean and noisy training sets 

[14]. In [15] it was shown that for the multi-channel CHiME-4 

task [16], soft labels could be derived using enhanced features 

generated by a beamformer then processed through a network 

trained with conventional multi-style training [17]. However, 

it is unclear whether this approach is superior to simply using 

the enhanced features for the recognition at test time as well.  

Knowledge distillation was also used to adapt an acoustic 

model to new dialects using a small adaptation corpus [18].  In 

all cases, the soft labels provided by the teacher network 

regularized the conventional training of the student network 

using hard labels derived from transcriptions. Thus, the use of 

additional unlabeled training data was not possible.  

In contrast, the proposed approach forgoes the need for 

hard labels from the data in the new domain entirely and relies 

solely on the soft labels provided by the parallel corpus and 

well-trained source model. This allows the use of a 

significantly larger set of adaptation data which adds 

robustness to the resulting model. In this work, for example, 

the unlabeled training data represents an order of magnitude 

more acoustic data than was used to create the well-trained 

source model.  We evaluate the proposed approach in two 

scenarios, adapting a clean acoustic model to noisy speech and 

adapting an adults’ speech acoustic model to children’s 

speech. We show that the resulting noisy speech model can 

obtain performance significantly better than multi-condition 

training with far better robustness to unseen noise conditions. 

Significant reduction in word error rate (WER) is obtained on 

children’s speech when no children’s speech is present in the 

original source model.  



2. T/S learning for domain adaptation 

In this section, we present T/S learning as a general 

framework for domain adaptation using unlabeled data. We 

propose to directly minimize the Kullback–Leibler (KL) 

divergence between the output distribution of the student 

network and the teacher network by leveraging large amounts 

of unlabeled parallel data as shown in Figure 1. We denote the 

posterior distribution of the teacher and student networks as 

𝑃𝑇(𝑠|𝑥𝑠𝑟𝑐) and 𝑃𝑆(𝑠|𝑥𝑡𝑔𝑡), respectively. 𝑥𝑠𝑟𝑐 and 𝑥𝑡𝑔𝑡 are the 

source and target inputs to the teacher and student networks, 

respectively. The KL divergence between these two 

distributions is 

∑ ∑ 𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓)𝑙𝑜𝑔 (
𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓)

𝑃𝑆(𝑠𝑖|𝑥𝑡𝑔𝑡,𝑓)
)

𝑖𝑓

, (1) 

where s indicates senone, i is the senone index and f is the 

frame index. This formulation takes both the source data 𝑥𝑠𝑟𝑐 

and the target data 𝑥𝑡𝑔𝑡 , differing from the original T/S 

formulation in [19] which takes the same data for teacher and 

student networks. 

...

...

...

...

...

...

Source Domain Data

Text

... ...

Forward propagation to 
calculate posterior

Calculate error signal

Back propagation to update 
network parameters

Teacher 
network

Student 
network

...

...

...

...

...

...Text

Target Domain Data

Figure 1: The flow chart of teacher-student learning using 

parallel data for domain adaptation 

To learn a student network that approximates the given 

teacher network, only the parameters of the student network 

needs to be optimized. Minimizing the above KL divergence 

is equivalent to minimizing  

− ∑ ∑ 𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓)𝑙𝑜𝑔𝑃𝑆(𝑠𝑖|𝑥𝑡𝑔𝑡,𝑓)

𝑖𝑓

 (2) 

because 𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓)𝑙𝑜𝑔𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓) has no impact to the 

student network parameter optimization. The training steps of 

a student network guided by a teacher network which is well-

trained with source-domain transcribed data are: 

1. Clone the student network from the teacher network. 

2. Use parallel unlabeled source data 𝑥𝑠𝑟𝑐 and target data 

𝑥𝑡𝑔𝑡 to train the student network with the following steps. 

a. For each mini-batch, do forward propagation of 

teacher network using 𝑥𝑠𝑟𝑐 and student network using 

𝑥𝑡𝑔𝑡 to calculate 𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓) and 𝑃𝑆(𝑠𝑖|𝑥𝑡𝑔𝑡,𝑓). 

b. Calculate the error signal of Eq. (2), and then do back 

propagation for the student network. 

c. Repeat Step 2.a & 2.b until convergence. 

The advantage of the proposed method is that training of 

the student network doesn’t need any transcription as long as 

we have parallel data because its supervision signal 

𝑃𝑇(𝑠𝑖|𝑥𝑠𝑟𝑐,𝑓) is obtained by passing the source data through 

the teacher network. Thus, the student network trained 

optimizing Eq. (2) can exploit unlimited parallel training data. 

Increased training data provides better coverage of the 

acoustic space, such that the student network in the target 

domain behaves very similarly to the well-trained teacher 

network in the source domain. 

3. Parallel corpus generation 

T/S learning for domain adaptation relies on the availability of 

a parallel corpus of source and target data, which consists of 

unlabeled real or the simulated training pairs from the source 

and target domains, respectively. In this study, we explore two 

domain-adaptation scenarios: 1) adapting from clean to noisy 

environments; 2) adapting from adults to children speech.  

It is quite straightforward to collect a parallel corpus of 

clean and noisy speech. Real paired examples can be obtained 

by replaying clean speech in a noisy environment. Simulated 

examples can be obtained by digitally mixing the clean speech 

with noise. Then, Eq. (2) can be re-written as  

− ∑ ∑ 𝑃𝑇(𝑠𝑖|𝑥𝑐𝑙𝑒𝑎𝑛,𝑓)𝑙𝑜𝑔𝑃𝑆(𝑠𝑖|𝑥𝑛𝑜𝑖𝑠𝑦,𝑓)𝑖𝑓 .  

Obtaining a parallel corpus of adult and child speech is 

more challenging. It is very hard to synchronize natural speech 

from the adults and children so that the resulting samples are 

synchronized.  We opt for a voice transformation approach to 

simulate children’s speech, using formant-based frequency 

warping. We adopt bilinear frequency warping on the adults 

speech spectrum and reconstruct the signal with higher pitch. 

The bilinear transform [20][21] produces the frequency 

transformation as 𝜔𝑛𝑒𝑤 = 𝜔 + 2 arctan [
−𝛼 sin(𝜔)

1+𝛼 cos(𝜔)
], where 𝜔 

denotes the frequency and the parameter 𝛼 decides the 

warping factor. For general voice conversion, there is typically 

a mapping from source to target speech which can be used to 

calculate the 𝛼 value from vowel segments. In this work, we 

simply select a warping factor of 0.1 which moves the format 

frequencies higher. Thus, we are not performing voice 

conversion per se since there is not a specific voice target. In 

this scenario, Eq. (2) can be re-written as   

− ∑ ∑ 𝑃𝑇(𝑠𝑖|𝑥𝑎𝑑𝑢𝑙𝑡𝑠,𝑓)𝑙𝑜𝑔𝑃𝑆(𝑠𝑖|𝑥𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛,𝑓)𝑖𝑓 .  

4. Experimental evaluation 

The proposed methods are evaluated using several tasks. The 

baseline acoustic model for all experiments is a 4-layer 

LSTM-RNN [22] with 5976 senones trained with the cross-

entropy criterion. LSTM-RNNs have been shown to be 

superior than the feed-forward DNNs [22][23]. Each LSTM 

layer has 1024 hidden units and the output size of each LSTM 

layer is reduced to 512 using a linear projection layer. There is 

no frame stacking, and the output HMM state label is delayed 

by 5 frames as in [22]. The input feature is the 80-dimension 

log-filter-bank feature. The transcribed data used to train the 

baseline acoustic model comes from 375 hours of US-English 

Cortana audio.  

4.1 Noisy Cortana task 

In this series of experiments, we investigate adaptation of a 

clean acoustic model to noisy speech [24][25]. We consider 



the original Cortana data in the source domain as the clean 

source data. While this data is not noise-free, Table 2 shows 

that about 80% of the data is at SNRs higher than 20 dB. The 

target domain is a simulated noisy Cortana task which is 

obtained by digitally adding the ETSI noise [26] to the 

original Cortana data with SNRs from 5 to 20 dB. The noise-

adding process assumes the Cortana data is clean, i.e. noise-

free. The test set is extracted from Cortana live traffic from 

mobile phones, containing around 72,000 words, which 

guarantees the statistical significance of reported 

improvement. A trigram language model is used for decoding 

with around 8 million n-grams.  

Table 1: WERs (%) on Cortana test sets. The first column 

indicates the training set for the teacher model. The second 

column describes the unlabeled training set for the student 

model. If none, the teacher model is used for evaluation. The 

third column shows the environment, either original or noisy.   

Train Teacher 

(transcribed) 
Train Student 

(unlabeled pairs) 

Cortana evaluation 

condition 

original noisy 

original 375h none 15.62 18.80 

noisy 375h none 16.58 17.34 

original 375h original-noisy 375h 15.32 16.66 

original 375h original-noisy 

3400h 
15.17 16.11 

 

Table 2: WER (%) breakdown for original Cortana condition  

 SNR <5 db [5, 20]db [20,35]db >35db 

Word Count 155 15568 31652 25015 

Baseline 23.87 15.71 15.46 14.7 

T/S 3400h 20.65 15.31 14.9 14.44 

Table 1 shows the WER for different systems. The original 

evaluation is with the original Cortana test data, and the noisy 

evaluation is with the noise-added Cortana data.  The baseline 

LSTM obtained 15.62% WER in the original source condition 

and increases to 18.80% in the noisy target condition. We then 

add noise to the baseline 375h of training data to train a 

standard multi-condition LSTM model. This model improves 

the WER in noisy condition to 17.34% WER but degrades the 

WER in original condition to 16.58%. We next evaluate the 

proposed T/S framework using the parallel corpus of 375 

hours without using the transcription, with the original and 

noisy data as the inputs to the teacher and student networks, 

respectively. In this case, the student network obtains a WER 

of 16.66%, significantly outperforming the standard multi-

condition model. If we increase the size of the parallel training 

data to 3400 hours the WER further improves to 16.11%, 

showing the advantage of exploiting a large amount of 

unlabeled data. The 16.11% WER obtained in the target 

domain is very close to the 15.62% WER obtained by the 

source (teacher) model on the original Cortana task. This 

indicates that the T/S learning is effective in that the behavior 

of the student network in the target domain is approaching that 

of the teacher network in the source domain. Note that we did 

not see any improvement using knowledge distillation with the 

hard labels derived from transcriptions. This is consistent with 

the findings reported in [15][27]. 

At first glance, it is surprising that the student models 

trained from 375h and 3400h parallel data outperform the 

teacher model on the original source condition. To understand 

this behavior, we broke down the WERs of the original test set 

into different SNR levels by running an automatic SNR 

detector on every utterance. The resulting WERs are shown in 

Table 2, for the baseline source model and the adapted T/S 

model. Note that few utterances failed to generate SNR 

results, and hence the weighted average WER in Table 2 is 

slightly different from the WER in Table 1. As the table 

indicates, some of the original Cortana utterances are already 

noisy. The student model clearly wins for SNR levels below 

35dB most likely because the simulated noisy utterances for 

the parallel training have [5, 20]dB SNRs and the soft-target 

learning may extrapolate well beyond that SNR range. It is 

still worth investigating why the student model even wins for 

SNRs larger than 35dB although the gap is small.  

4.2 CHiME-3 task 

We next investigated how the models learned in Section 3.1 

behave in a highly-mismatched test environment. The 

mismatched task we choose is CHiME-3 [28],  which contains 

the Wall Street Journal (WSJ) utterances recorded in real 

noisy environments. The single-channel far-field noisy speech 

(the 5th microphone channel) is used for evaluation. WSJ 5K 

word 3-gram language model is used for decoding. The 

CHiME-3 test set and the Cortana parallel training data are 

mismatched in terms of task, speaking style, microphone, 

environment etc. Also, the noisy speech in the Cortana parallel 

data is simulated while the CHiME-3 test set is real speech.  

Table 3 compares WERs from different models. The 

baseline model trained on 375h of Cortana data obtains a 

WER of 23.16%. Because of the significant mismatch 

between Cortana and CHiME-3, both the model trained with 

375h of noisy transcribed data and the student model trained 

with parallel 375h original-noisy data fail to improve 

performance. However, the student model trained with parallel 

3400h of parallel original/noisy Cortana data improves the 

WER to 19.89%, a 14% relative WER reduction. This gain 

results from significantly increasing the amount of parallel 

training data which helps the student model cover much more 

of the acoustic space. 

Although the essence of T/S learning is using very large 

amount of unlabeled data so that the student’s behavior in the 

target domain can approach the teacher’s behavior in the 

source domain, we also want to evaluate the performance of 

T/S learning when only limited parallel data is available. To 

that end, we used the parallel data from CHiME-3 training set 

to adapt the baseline 375h Cortana model. Now, the source 

data comes from the clean CHiME-3 data, while the noisy 

target data comes from different sources by combining the real 

and simulated data from one or more microphones as shown in 

Table 4. The numbers of real and simulated utterances in each 

channel are around 2k and 7k, respectively. The T/S learning 

using either the 2k parallel clean-real channel 5 or the 7k 

clean-simulated channel 5 utterances can reduce the WER 

from 23.16% to just under 16%. The results show that using 

the real data is most effective, but if the real data is 

unavailable more simulated data can be used. By combining 

both the real and simulated channel 5 data as the input to the 

student network, T/S learning can further reduce the WER to 

13.77%. Then, with more data from the other microphones, 

T/S learning can get further improvement. The final student 

model which was trained with the real and simulated data 

from all channels get the 12.99% WER, about 44% relative 

WER reduction over the original source model. This 

improvement is much larger than what can be obtained from 

the traditional feature mapping [29][30] and mask learning 

[31][32] methods. In [33], we proposed advanced models to 

improve the feature mapping and mask learning methods, but 



can only obtain 25% relative WER reduction, far below the 

improvement obtained from the T/S learning in this work.   

Table 3: WERs (%) on Chime 3 test sets using Cortana data. 

The columns have the same meaning as in Table 1.  

Train Teacher 

(transcribed) 
Train Student 

(unlabeled pair) 

WER  

original 375h None 23.16 

noisy 375h None 24.51 

original 375h original- noisy 375h 23.67 

original 375h original- noisy 3400h 19.89 

 

Table 4: WERs (%) on Chime 3 test sets using Chime 3 data. 

The source data is the clean data. The target data comes from 

different noisy sources.  

The noisy target data in the pair comes from   

 

WER 

Real 

channel 5  

Simulated 

channel 5 

Other 

real 

channels 

Simulated 

other 

channels 

Y N N N 15.88 

N Y N N 15.73 

Y Y N N 13.77 

Y Y Y Y 12.99 

4.3 Children’s speech 

In this section, we explore the T/S learning method for 

children’s speech recognition which is important to home 

entertainment applications [34][35]. We first run a DNN 

gender classifier to determine the percentage of the male 

adults, female adults, and children in the 375h transcribed data 

as: 70.5%, 25.3%, and 4.2%, respectively. We remove both 

children and female adults’ data from the training set, as some 

female adults’ data and children are acoustically similar. We 

then train a baseline LSTM model from only the adult male 

data, with the same structure as the baseline LSTM model in 

Section 3.1. Table 5 gives the model evaluation results on 

children’s utterances, recorded from boys and girls. This adult 

male LSTM model preforms very poorly, with 39.05% and 

34.16% WER, on the girls and boys test sets, respectively.   

Then, we use the bilinear transform described in Section 

2.2 to transform adult speech into simulated children’s speech. 

The quality of the transformation seems to be an issue as the 

DNN gender classifier only labels 6.8% of the transformed 

utterances as children’s speech. Thus, we only use those 6.8% 

of the transformed utterances as the target data, with the 

corresponding adult utterances as the source data. After T/S 

learning, the student model significantly improves the WER of 

girls’ speech to 25.03%, and moderately improves the WER of 

boys’ speech to 32.32%. The student model gets further 

improvement by extending the training set to the 3400h 

training set and selecting the portion of data that DNN gender 

classifier labels as children’s speech. With this additional 

parallel data, the student model achieves a WER of 21.19% 

and 31.89% on the girls’ and boys’ test sets, respectively. 

Finally, we evaluate whether the LSTM trained with all 

data (adults and children) can still benefit from T/S learning. 

Table 6 shows this baseline LSTM model has 18.38% and 

22.98% WER on the girls and boys test sets, respectively. 

Therefore, this LSTM model is much better in handling 

children’s speech. Using the gender DNN trusted transformed 

utterances from 375h data, the student model cannot improve 

anymore. But using the gender DNN trusted transformed 

utterances from 3400h data can improve the girls’ speech to 

16.65% WER, but still significantly degrades the WER of 

boys’ speech. 

Table 5: WERs (%) of models initiated from Male LSTM on 

children’s speech tasks.  

Model girls  boys  

Adult male data from 375h transcribed  39.05 34.16 

Target data: transformed children from 

375h unlabeled 25.03 32.32 

Target data: transformed children from 

3400h unlabeled 

21.19 31.89 

Table 6: WERs (%) of models initiated from LSTM trained 

with male, female, children data on children’s speech tasks. 

Model girls  boys  

All data (male, female, children) from 

375h transcribed  18.38 22.98 

Target data: transformed children from 

375h unlabeled 18.86 30.24 

Target data: transformed children from 

3400h unlabeled 

16.65 29.20 

Both Tables 5 & 6 show the advantage of using a large 

amount of data. More parallel data means that the student 

model can explore more of the acoustic space, resulting in 

good adaptation performance. In Table 5, the target domain 

data (children’s speech) is not observed in the source domain 

(adult male speech). Therefore, it is very easy to observe a 

gain. However, in Table 6, the target domain data is already 

well modeled by the source model, and hence it is more 

challenging to get improvement with simple voice conversion 

approaches. We have listened to the transformed utterances 

and found that it is relatively easy to obtain girls’ speech via 

voice transformation but harder to create accurate examples of 

boys’ speech. Therefore, the student models perform poorly 

when evaluated on boys’ speech. We expect further 

improvements with a better voice transformation process. 

5. Conclusions 

In this study, we explore the large-scale domain adaptation 

using the T/S learning framework. To learn a deep network in 

a target domain without labeled data, we minimize the KL 

divergence of the output distribution between the source 

domain model with source data and the target domain model 

with target data. Different from the distillation framework 

which needs transcribed data, the T/S learning method relies 

on parallel unlabeled data which is easier to obtain. By 

increasing the size of the unlabeled parallel training data, the 

behavior of student network in the target domain is very close 

to that of teacher network in the source domain.  

Evaluated with the noisy Cortana task, the T/S learning 

student model can achieve a 16.11% WER, very close to the 

15.62% WER obtained by the source model on the original 

Cortana task. On the CHiME-3 task, the student model gets up 

to 44% relative WER reduction over the source model.  On the 

children’s speech recognition task, the student model 

improves the WER of girls’ speech significantly, but it is very 

challenging to improve the WER of boys’ speech due to the 

limitations of the voice conversion method we employed. All 

experiments demonstrated that increasing the amount of 

unlabeled data results in additional model robustness, which is 

particularly beneficial when using simulated data in the target-

domain. 
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