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ABSTRACT 
 

Recently, the acoustic-to-word model based on the 

Connectionist Temporal Classification (CTC) criterion was 

shown as a natural end-to-end model directly targeting words 

as output units. However, this type of word-based CTC model 

suffers from the out-of-vocabulary (OOV) issue as it can only 

model limited number of words in the output layer and maps 

all the remaining words into an OOV output node. Therefore, 

such word-based CTC model can only recognize the frequent 

words modeled by the network output nodes. It also cannot 

easily handle the hot-words which emerge after the model is 

trained. In this study, we improve the acoustic-to-word model 

with a hybrid CTC model which can predict both words and 

characters at the same time. With a shared-hidden-layer 

structure and modular design, the alignments of words 

generated from the word-based CTC and the character-based 

CTC are synchronized. Whenever the acoustic-to-word 

model emits an OOV token, we back off that OOV segment 

to the word output generated from the character-based CTC, 

hence solving the OOV or hot-words issue. Evaluated on a 

Microsoft Cortana voice assistant task, the proposed model 

can reduce the errors introduced by the OOV output token in 

the acoustic-to-word model by 30%. 
 

Index Terms— CTC, OOV, acoustic-to-word, hybrid, 

LSTM 

1. INTRODUCTION 

Recently, significant progress has been made in automatic 

speech recognition (ASR) when switching the acoustic model 

from deep neural networks (DNNs) to long short-term 

memory (LSTM) [1][2] recurrent neural networks (RNNs) 

which can better model the speech sequence [3][4][5][6][7] 

[8][9][10]. Like DNNs, LSTM-RNNs are usually trained 

with the cross entropy (CE) criterion, and then may be further 

optimized with the sequence discriminative training criterion 

[11][12][13][14].  Note that ASR is a sequence-to-sequence 

task, which maps the input speech waveform to a final word 

sequence or an intermediate phoneme sequence. What the 

acoustic modeling cares is the output of word or phoneme 

sequence, instead of the frame-by-frame labeling which the 

traditional CE training criterion optimizes. Hence, the 

Connectionist Temporal Classification (CTC) approach [15] 

[16][17][18] was introduced to map the speech input frames 

into an output label sequence. The building network is still a 

LSTM-RNN, but the training objective function is changed 

from CE to CTC.  

The most attractive characteristics of CTC is that it 

provides a path to end-to-end optimization of acoustic 

models. In the deep speech [19][20] and EESEN [21][22] 

work, the end-to-end speech recognition system was explored 

to directly predict characters instead of phonemes, hence 

removing the need of using lexicons and decision trees which 

are the building blocks in [17][18]. This is one step toward 

removing expert knowledge when building an ASR system. 

As the goal of ASR is to generate a word sequence from the 

speech acoustic, word unit is the most natural output unit for 

network modeling. In [17], the CTC with up to 27 thousand 

(k) word output targets was explored but the ASR accuracy is 

not very good, partially due to the high out-of-vocabulary 

(OOV) rate when using only around 3k hours training data. 

In [23], it was shown that by using 100k words as the output 

targets and by training the model with 125k hours of data, the 

word-based CTC, a.k.a. acoustic-to-word CTC, can beat the 

CTC system with phoneme unit. In [24], the training strategy 

of word-based CTC was explored with better initialization. 

The ASR task of CTC with word-based output is very simple: 

the output word sequence is constructed by taking the words 

with the maximum posterior spikes in the sequence and 

reducing repeated words into one if there is no blank between 

them. No language model or complex decoding process is 

involved. Therefore, the word-based CTC is a very good end-

to-end ASR model. In addition to CTC, attention-based 

models [25][26][27] and RNN-transducers [28][29][30] are 

also end-to-end ASR models. Their effectiveness has been 

demonstrated when working with character output units. To 

our best knowledge, there is no report of using word output 

units in attention-based models and RNN-transducers. In this 

study, we focus on how to improve the CTC with word output 

units.  

There are two challenges to the word-based CTC. The 

first one is the OOV issue. In [17][23][24], only frequent 

words in the training set are used as the targets and the 

remaining words are just tagged as the OOV. All these OOV 

words cannot be modeled by the LSTM-RNN and cannot be 

recognized during evaluation.  The second issue of the word-

based CTC is that it cannot handle hot-words which emerge 

and become popular after the network has been built. It is 

impossible to get satisfactory performance by directly adding 

output nodes in the network with the specified hot-words 

without retraining the network.   



 

 

Inspired by the open vocabulary neural machine 

translation work [31], we propose an acoustic-to-word model 

without OOV by first building a word-based CTC in which 

the output vocabulary contains the frequent words in the 

training set together with an OOV token which all the 

infrequent words are mapped to. Then we train a character-

based CTC by sharing most hidden layers of the word-based 

CTC. During recognition, the word-based CTC generates a 

word sequence, and the character-based CTC is only 

consulted at the OOV segments. Evaluated on a Microsoft 

internal Cortana voice assistant task, the proposed method 

can reduce the errors introduced by OOV output token in the 

acoustic-to-word model by 30%.  

Although the proposed work shares the same concept of 

open vocabulary neural translation in [31], our work is very 

different from [31] as the fundament framework in our work 

is CTC-based speech recognition while [31] uses attention-

based framework for translation. Hence, the detailed 

implementations are very different in these two works. There 

are also many works in the traditional systems which handle 

OOV problem for open vocabulary ASR task. Some works 

[32][33] only detect OOV words and recognize their phonetic 

transcriptions. Some studies [34][35] go further to identify 

the character sequence of OOV words by first recognizing the 

OOV word as a phoneme sequence and then using phoneme-

to-character conversion to generate the character sequence. In 

contrast, the auxiliary character-based CTC in this study 

provides a much easier way to handle the OOV issue in the 

word-based CTC.  

 

The rest of the paper is organized as follows. In Section 

2, we briefly introduce CTC modeling and then we present 

the proposed acoustic-to-word model without OOV. 

Experimental evaluation of the algorithm is provided in 

Section 3. We summarize our study and draw conclusions in 

Section 4. 

2. ACOUSTIC-TO-WORD CTC WITHOUT OOV  

In this section, we first briefly overview the CTC modeling 

technology and describe the OOV issue in the acoustic-to-

word CTC. Then, we propose the hybrid CTC model that can 

solve the OOV issue by consulting an auxiliary character-

based CTC to generate candidate words. Last, we discuss 

how to improve the character-based CTC for better 

prediction.  

2.1 CTC modeling 

The CTC criterion [15] was introduced to map the speech 

input frames into an output label sequence [16][17][18]. To 

deal with the issue that the number of output labels is smaller 

than that of input speech frames, CTC introduces a special 

blank label and allows the repetition of labels to map the label 

sequence into a CTC path, which forces the output and input 

sequences to have the same length.  

Denote 𝒙 as the speech input sequence, 𝒍 as the original 

label sequence, and B−1(𝒍)  represents all the CTC paths 

mapped from 𝒍. The CTC loss function is defined as the sum 

of negative log probabilities of all the CTC paths mapped 

from the correct label sequence as 

𝐿𝐶𝑇𝐶 = − ln𝑃(𝒍|𝒙) 
where 

𝑃(𝒍|𝒙) = ∑ 𝑃(𝒛|𝒙)

𝒛∈B−1(𝒍)

 

where 𝒛 is one CTC path. With the conditional independent 

assumption, 𝑃(𝒛|𝒙)  can be decomposed into a product of 

posterior from each frame as 

𝑃(𝒛|𝒙) =∏𝑃(𝑧𝑡|𝒙)

𝑇

𝑡=1

 

The calculation of 𝑃(𝑧𝑡|𝒙) is done via the forward-backward 

process in [15]. 

The CTC output labels can be phonemes [16][17][18], 

characters [19][20][21][22] [36] or even words [17][23][24]. 

As the goal of ASR is to generate a word sequence from the 

speech waveform, word unit is the most natural output unit 

for network modeling. The recently proposed acoustic-to-

word models [23][24], a.k.a. word-based CTC models, build 

multiple layer LSTM networks and use words as the network 

output units, optimized with the CTC training criterion. It is 

very simple to generate the word sequence with this word-

based CTC model: pick the words corresponding to posterior 

spikes to form the output word sequence. There is neither 

language model nor complex decoding process involved.  

However, when training the word-based CTC model, only 

frequent words in the training set are used as the targets and 

the remaining words are just tagged as the OOV. All these 

OOV words cannot be modeled by the network and cannot be 

recognized during evaluation.  In next section, we proposed a 

hybrid CTC model to address the OOV issue and the hot-

words issue discussed in the introduction.  

2.2 Acoustic-to-word CTC without OOV 

The proposed acoustic-to-word CTC without OOV model is 

a hybrid model which uses a word-based CTC as the primary 

model and a character-based CTC as the auxiliary model. The 

word-based CTC model emits a word sequence, and the 

output of the character-based CTC is only consulted at the 

segment where the word-based CTC emits an OOV token.  

Figure 1 gives an example of the hybrid CTC model. The 

hybrid model has four shared hidden LSTM layers, on top of 

which the word-based CTC and the character-based CTC 

have individual one hidden LSTM layer and one softmax 

layer. The word-based CTC generates a sequence “play artist 

OOV” while the word sequence from the character-based 

CTC is “play artist ratatat”. “ratatat” from the character-based 

CTC is the segment overlapped with the OOV token most, 

and is then used to replace the OOV token to form the final 

ASR output of the hybrid CTC as “play artist ratatat”.   
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Figure 1: An example of how the hybrid CTC solves the OOV 

issue of the acoustic-to-word CTC.  

 

The detailed steps for building the hybrid CTC model are 

described as follows 

1. Build a multi-layer LSTM-CTC model with words 

as its output units. Map all the words occurring less 

than N times in the training data as the OOV token. 

The output units in this LSTM-CTC model are all 

the words occurring at least N times in the training 

data, together with OOV, blank, and silence tokens. 

2. Freeze the bottom 𝐿 − 1 hidden layers of the word-

CTC, add one LSTM hidden layer and one softmax 

layer to build a new LSTM-CTC model with 

characters as its output units.  

3. During testing 

a. Generate the word output sequence by 

taking the words corresponding to 

maximum posterior spikes and reducing 

repeated words into one if there is no blank 

between them. 

b. If the output word sequence in 3.a doesn’t 

contain any OOV token, then use that word 

sequence as the ASR result. Otherwise, 

proceed to the next step.  

c. Generate another word output sequence 

from the character-based CTC. 

d. The final ASR result is obtained by 

replacing the OOV token generated from 

the word-based CTC with the word 

generated from the character-based CTC 

that has the largest time overlap with the 

OOV token.  

There are two ways to generate the word output sequence 

from the character-based CTC in step 3.c. The first way is to 

directly take the characters with maximum posteriors and 

collapse them into words. We refer this as the max output 

decoding. However, the character-based CTC without any 

decoding constraint usually gives very high WER as shown 

in [29]. The second way is to constrain the character-based 

CTC to generate only valid words (e.g., only the words in 

training set) using a character graph as in [36]. In this way, 

we avoid the character-based CTC generating invalid words. 

Furthermore, since the character graph includes all the words 

in training data, the rare words that are mapped into OOV in 

word-based CTC can be recognized by the character-based 

CTC. The character graph also allows us to handle the hot-

words that emerge after the model is trained by adding the 

hot-words into the valid words list and reconstructing the 

character graph. 

To measure the overlap in step 3.d, we need to define what 

is the segment corresponding to an output token. As blank 

dominates most of the time in CTC, it is not suitable to use 

only the frames corresponding to the token spike as the 

segment, which will be very short. Instead, we treat the spike 

frames as well as all the immediate preceding blank frames 

as the segment of the token. To get the segment 

corresponding to an OOV token in word-based CTC is very 

straightforward from the above definition. To get the segment 

corresponding to a word in character-based CTC, we need to 

first get the segment of each character with the above 

definition, and then concatenate all the character segments to 

form the word segment. 

This hybrid CTC model is guaranteed to improve the 

accuracy of the word-based CTC because it only replaces the 

OOV tokens generated from the word-based CTC without 

changing any other word outputs. With the shared-hidden-

layer structure, the alignments of words from the word-based 

CTC and the character-based CTC are well synchronized. 

Because the character-based CTC inside the hybrid CTC can 

generate any word without revisiting the model training, the 

hot-words issue can also be solved.  

2.3 Improve Character-based CTC 

The baseline character-based CTC has 28 outputs: ‘a’-‘z’, 

space, blank. We refer it as the “28-character set”. We need 

to generate word sequences from the output of character-

based CTC.  A word is generated by first reducing repeated 

characters into one and then combining all the characters 

except blank between two spaces. The word cannot be right 

if any character gets wrong. Using the context information 

should make the prediction of the characters better. 

Therefore, we add a row-convolution layer on top of the last 

LSTM layer as 

𝒉̂𝑡 = ∑ 𝑾𝑐𝒉𝑡+𝑐

𝐶

𝑐=−𝐶

 

where 𝒉𝑡  is the activation vector of the last hidden LSTM 

layer,  𝑾𝑐 is the row convolution matrix associate with the c-

th context hidden vector, and 2C+1 is the total number of 

context hidden vectors. 𝒉̂𝑡  is then connected to the last 



 

 

softmax layer to predict characters. Different from the row 

convolution layer in [20] which only uses future hidden 

vectors, we use both history and future (left and right) hidden 

vectors to introduce more context information. 

Following [36], we also construct a new character set by 

adding additional characters on top of the 28-character set. 

These additional characters include capital letters used in the 

word-initial position, double-letter units representing 

repeated characters like ll, apostrophes followed by letters 

such as ‘d, ‘re etc.  Please refer to [36] for more details. 

Altogether such a large unit inventory has 83 characters, and 

we refer it as the “83-character set”. 

3. EXPERIMENTS 

In this section, we use a Microsoft Cortana voice assistant 

task to evaluate the proposed method. The training data 

consists of 3400 hours of transcribed US-English Cortana 

audio. The test set consists of 3 hours of data from the same 

Cortana task. The audio data is 16k HZ sampled, recorded in 

mobile environments. All experiments were conducted using 

the computational network toolkit (CNTK) [37], which 

allows us to build and evaluate various network structures 

efficiently without deriving and implementing complicated 

training algorithms.  

We first built a LSTM model trained with the CE 

criterion. The input consists of 80-dimensional log Mel-filter-

bank features. It has 5 LSTM hidden layers: each has 1024 

memory units and the output size of each LSTM layer is 

reduced to 512 using a linear projection layer [5]. There is no 

frame stacking, and the output HMM state label is delayed by 

5 frames as in [5]. There are totally 5980 tied HMM states. 

This model is denoted as LSTM-CE in Table 1, with 10.05% 

word error rate (WER). Because of the latency restriction, we 

always use uni-directional models in our work. 

Then, we built a phoneme-based LSTM model trained 

with the CTC criterion, modeling around 6000 tied context-

dependent phonemes.  It has the same 5-layer LSTM structure 

with projection layer as the previous LSTM-CE model. Eight 

frames of 80-dim log Mel-filter-bank features are stacked 

together as the input, and the time step shift is three frames as 

in [17]. Without mentioning explicitly, all the CTC models in 

this study use the same structure as this model. This model is 

denoted as LSTM-CTC (phoneme) in Table 1, with 9.87 % 

WER. Both the LSTM-CE model and LSTM-CTC 

(phoneme) model use a strong 5-gram language model (LM) 

for decoding. The gap between the LSTM-CE model and the 

LSTM-CTC (phoneme) model is not large, consistent with 

the recent report [38].  

Next, we built an acoustic-to-word CTC model by 

modeling around 27k most frequent words in the training 

data. These frequent words occurred at least 10 times in the 

training data. All other infrequent words are mapped to an 

OOV output token. This model, LSTM-CTC (word), gets 

13.59% WER, among which the OOV token contributes 

1.70% WER. In other words, if every OOV token can be 

converted to the right word, the WER will be reduced to 

11.89%.  Note that the WER gap between the phoneme-based 

CTC and the word-based CTC is not small because the word-

based CTC doesn’t use any LM while the phoneme-based 

CTC uses a very strong LM trained from much larger amount 

of text than the 3400hr speech transcription. The WER gap is 

consistent with what has been observed in [17][24]. All the 

CTC models except the phoneme-based CTC model in this 

study purely rely on the network score to generate outputs 

without using LM.  

 

Table 1: WER comparison of baseline LSTM-CE, LSTM-

CTC (phoneme), and LSTM-CTC (word) 

Model WER (%) 

LSTM-CE 10.05 

LSTM-CTC (phoneme)  9.87 

LSTM-CTC (word)  13.59 

 

We use the structure in Figure 1 to build hybrid CTC 

models. The first step is to build character-based CTC models 

by sharing 4 hidden LSTM layers of the word-based CTC 

model. On top of the shared hidden layers, we add a new 

LSTM hidden layer and a softmax layer to model character 

outputs. The output units of the character-based CTC can be 

from either the 28-character set or the 83-character set 

described in Section 2. When training the character-based 

CTC model, only the added LSTM hidden layer and softmax 

layer are updated. The bottom 4 hidden LSTM layers are not 

updated because they are shared with the word-based CTC. 

Next, the character-based CTC model is improved with row 

convolution described in Section 2.3. The row convolution 

operates on 9 frame hidden vectors from the last LSTM layer, 

with 4 history frames, a central frame, and 4 future frames. 

 

Table 2: WER comparison of character -based CTC models 

Model WER (%) 

CTC (28-character, max output)  33.79 

CTC (28-character) 23.87 

CTC (28-character + row convolution) 20.83 

CTC (83-character) 20.25 

CTC (83-character + row convolution) 18.91 

 

Table 2 gives the WER of different character-based CTC 

models. The baseline CTC with the 28-character set has 

33.79% WER when just using the max output decoding 

which picks the characters with maximum posteriors and then 

collapses to words. Such a high WER is consistent with what 

has been observed in other sites [29]. Adding the constraint 

that only valid words from training set can be generated, the 

WER is reduced by 10% absolute to 23.87% WER. In the 

following, the default decoding setup of the character-based 

CTC is with character-graph decoding with the valid word list 

constraint. Clearly, the vanilla character-based CTC is far 

behind the word-based CTC, and hence can only be used as 

an auxiliary model. By taking 9-frame hidden vector context 

with row convolution, the character-based CTC can be 

improved to 20.83% WER.  Then, the CTC with the 83-



 

 

character set improves its counterpart with the 28-character 

set from 23.87% WER to 20.25% WER. Finally, the CTC 

model with the 83-character set and row convolution gets 

18.91% WER, still 5% absolute higher than the WER from 

the word-based CTC. 

The row convolution method can get 12.74% relative 

WER reduction (from 23.87% WER to 20.83% WER) with 

the 28-character set, but only gets 6.62% relative WER 

reduction (from 20.25% WER to 18.91% WER) with the 83-

character set. One reason is that the 83-character set also 

somehow handles the context information (e.g., with double 

letters), which is also handled by the row convolution 

method.  

Table 3 gives several examples showing how the row 

convolution method helps to improve the WER of the CTC 

with the 28-character set. Without consulting context frames, 

the CTC model sometimes misses several characters while 

the row convolution model can emit the right words out based 

on its context. 

 

Table 3: Examples that the CTC with row convolution gets 

the right recognition result.  

CTC (28-character) CTC (28-character + row 

convolution) 

how much one how much money 

wake me up in a hour wake me up in an hour 

tell me good joke tell me a good joke 

 

Table 4 shows how the CTC with the 83-character set is 

better than the CTC with the 28-character set with several 

examples. Modeling the double letters helps to win these 

examples.  

 

Table 4: Examples that the CTC with the 83-character set 

gets the right recognition result.  

CTC (28-character + row 

convolution) 

CTC (83-character + row 

convolution) 

my wife is ten my my wife is tammy 

okay jail okay jill 

kellogs kellogg's 

 

Table 5 gives the WERs of hybrid CTC models. When 

the CTC with 28 characters is used with max output 

decoding, the hybrid CTC only slightly improves the baseline 

word-based CTC because such a character-based CTC setup 

cannot give too much helps due to high WER as shown in 

Table 2. When decoding with character graph constrained by 

valid words, the hybrid CTC obtains around 13.09% WER, 

with 0.5% absolute WER reduction from the word-based 

CTC. Because the OOV token brings 1.7% absolute WER to 

the word-based CTC model, this means the hybrid CTC can 

recover 30% errors introduced by the OOV token. It is 

somehow surprising that although both the row convolution 

CTC modeling and the CTC with the 83-character set have 

better WER than the CTC with the 28-character set, neither 

setup can help the final WER of the hybrid CTC.  

Table 5: WER comparison of hybrid CTC models 

Model WER (%) 

CTC (word) 13.59 

CTC (word) + CTC (28-character, max 

output) 

13.42 

CTC (word) + CTC (28-character) 13.09 

CTC (word) + CTC (28-character + row 

convolution) 

13.10 

CTC (word) + CTC (83-character + row 

convolution) 

13.08 

 

In Table 6, we show how the hybrid CTC model 

performs with some examples. The first three are the 

examples that the hybrid CTC can recover the right words 

from the OOV token. “azusa”, “ratatat”, and “wanna”, all 

these addresses and names, are the words not in the frequent 

words in the training set, and haven’t been modeled by any 

output node in the word-based CTC model. However, they 

can be successfully recovered by the character-based CTC. 

The last three rows in Table 6 are the examples that the 

hybrid CTC still fails to recover the right words from the 

OOV token. “margera” is recognized as “marger” by the 

character-based CTC.  Such error happens with one character 

missing, revealing the weakness of character-based CTC. 

“purr” is recognized as “per”, and “kristi" is recognized as 

“christi" by the character-based CTC. These errors are 

homophone errors, which cannot be handled by character-

based CTC unless high level information is blended into the 

decision.  

 

Table 6: Examples of the outputs of word-based CTC and 

hybrid CTC models (CTC (word) + CTC (28-character)) 

Reference Word-based 

CTC 

Hybrid CTC 

costco azusa costco OOV costco azusa 

play artist 

ratatat 

play artist OOV      play artist 

ratatat 

text mara wanna text mara OOV text mara wanna 

april margera april oov    april marger   

why does my 

kitty purr 

why does my 

kitty OOV   

why does my 

kitty per   

all kristi 

matthews 

call OOV    

matthews 

call christi  

matthews 

 

In Table 5, it is a little disappointing that neither row 

convolution nor 83-character set modeling improves the final 

WER of the hybrid CTC. We also examined the results and 

found that most of times these two methods help to improve 

the recognition results that the word-based CTC succeeds. 

For the failed cases in Table 6, they cannot help too much. 

For example, “margera” is recognized as “marger” by the 

CTC with the 28-character set, and recognized as “marera” 

by the CTC with the 83-character set and row convolution. 

They also cannot help the homophone error cases. Even with 

better modeling, it is sometimes still very challenging for the 



 

 

character-based CTC to get words right for the cases that the 

word-based CTC fails. 

4. CONCLUSIONS AND FUTURE WORKS 

In this paper, we have presented a hybrid CTC model that 

solves the OOV issue and the hot-words issue presented in 

the acoustic-to-word CTC models, a.k.a. the word-based 

CTC, by using the output from the word-based CTC as the 

primary ASR result and consulting the character-based CTC 

at the segment where the word-based CTC emits an OOV 

token. By only replacing the OOV tokens with the words 

generated from the character-based CTC, the proposed 

method is guaranteed to improve the accuracy of the acoustic-

to-word CTC. The shared hidden layer structure helps to align 

the word segments between the word-based CTC and the 

character-based CTC so that the OOV token lookup 

algorithm can work. Evaluated on a Microsoft Cortana voice 

assistant task in which the word-based CTC has 1.7% WER 

introduced by the OOV token, the hybrid CTC model can 

reduce 0.5% absolute WER, representing a recovery of 30% 

errors caused by the OOV token.  

 

Several research issues will be addressed in the future to 

further increase the effectiveness of the algorithm presented 

in this paper. First, a better character unit set should be 

considered to improve the accuracy of the character-based 

CTC model. Recently, gram-CTC [39] was proposed to 

automatically learn the most suitable decomposition of target 

sequences, which not only boosts the modeling flexibility but 

also improves the final ASR accuracy. We are now trying to 

incorporate the gram-CTC into our system. Second, the 

character-based CTC has very high WER (around 33%) when 

using the maximum output decoding. We add valid word 

constraint when generating words from the character-based 

CTC and bring down its WER to 23% so that the words used 

to replace OOV tokens are useful. However, a character-

based CTC model with decoding constraint is not a clean end-

to-end model as it still involves expert knowledge. We are 

now pursuing more advanced method which can improve the 

character-based WER to as low as 18% with the maximum 

output decoding [40]. Last, with thousand hours of training 

data, the word-based CTC still has an accuracy gap from the 

phoneme-based CTC, which has been observed from various 

sites. We found that the word-based CTC can significantly 

improve the accuracy of the phoneme-based CTC by 

combining them together, given very different error patterns 

from these CTC models. Therefore, it is meaningful to invest 

on the word-based CTC even from the production point of 

view. At the same time, we are working on improving the 

modeling of word-based CTC so that we can deploy such an 

end-to-end acoustic-to-word model to production.  
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