

ACOUSTIC-TO-WORD MODEL WITHOUT OOV

Jinyu Li, Guoli Ye, Rui Zhao, Jasha Droppo and Yifan Gong

Microsoft AI and Research, One Microsoft Way, Redmond, WA 98052

{jinyli, guoye, ruzhao, jdroppo, ygong}@microsoft.com

ABSTRACT

Recently, the acoustic-to-word model based on the

Connectionist Temporal Classification (CTC) criterion was

shown as a natural end-to-end model directly targeting words

as output units. However, this type of word-based CTC model

suffers from the out-of-vocabulary (OOV) issue as it can only

model limited number of words in the output layer and maps

all the remaining words into an OOV output node. Therefore,

such word-based CTC model can only recognize the frequent

words modeled by the network output nodes. It also cannot

easily handle the hot-words which emerge after the model is

trained. In this study, we improve the acoustic-to-word model

with a hybrid CTC model which can predict both words and

characters at the same time. With a shared-hidden-layer

structure and modular design, the alignments of words

generated from the word-based CTC and the character-based

CTC are synchronized. Whenever the acoustic-to-word

model emits an OOV token, we back off that OOV segment

to the word output generated from the character-based CTC,

hence solving the OOV or hot-words issue. Evaluated on a

Microsoft Cortana voice assistant task, the proposed model

can reduce the errors introduced by the OOV output token in

the acoustic-to-word model by 30%.

Index Terms— CTC, OOV, acoustic-to-word, hybrid,

LSTM

1. INTRODUCTION

Recently, significant progress has been made in automatic

speech recognition (ASR) when switching the acoustic model

from deep neural networks (DNNs) to long short-term

memory (LSTM) [1][2] recurrent neural networks (RNNs)

which can better model the speech sequence [3][4][5][6][7]

[8][9][10]. Like DNNs, LSTM-RNNs are usually trained

with the cross entropy (CE) criterion, and then may be further

optimized with the sequence discriminative training criterion

[11][12][13][14]. Note that ASR is a sequence-to-sequence

task, which maps the input speech waveform to a final word

sequence or an intermediate phoneme sequence. What the

acoustic modeling cares is the output of word or phoneme

sequence, instead of the frame-by-frame labeling which the

traditional CE training criterion optimizes. Hence, the

Connectionist Temporal Classification (CTC) approach [15]

[16][17][18] was introduced to map the speech input frames

into an output label sequence. The building network is still a

LSTM-RNN, but the training objective function is changed

from CE to CTC.

The most attractive characteristics of CTC is that it

provides a path to end-to-end optimization of acoustic

models. In the deep speech [19][20] and EESEN [21][22]

work, the end-to-end speech recognition system was explored

to directly predict characters instead of phonemes, hence

removing the need of using lexicons and decision trees which

are the building blocks in [17][18]. This is one step toward

removing expert knowledge when building an ASR system.

As the goal of ASR is to generate a word sequence from the

speech acoustic, word unit is the most natural output unit for

network modeling. In [17], the CTC with up to 27 thousand

(k) word output targets was explored but the ASR accuracy is

not very good, partially due to the high out-of-vocabulary

(OOV) rate when using only around 3k hours training data.

In [23], it was shown that by using 100k words as the output

targets and by training the model with 125k hours of data, the

word-based CTC, a.k.a. acoustic-to-word CTC, can beat the

CTC system with phoneme unit. In [24], the training strategy

of word-based CTC was explored with better initialization.

The ASR task of CTC with word-based output is very simple:

the output word sequence is constructed by taking the words

with the maximum posterior spikes in the sequence and

reducing repeated words into one if there is no blank between

them. No language model or complex decoding process is

involved. Therefore, the word-based CTC is a very good end-

to-end ASR model. In addition to CTC, attention-based

models [25][26][27] and RNN-transducers [28][29][30] are

also end-to-end ASR models. Their effectiveness has been

demonstrated when working with character output units. To

our best knowledge, there is no report of using word output

units in attention-based models and RNN-transducers. In this

study, we focus on how to improve the CTC with word output

units.

There are two challenges to the word-based CTC. The

first one is the OOV issue. In [17][23][24], only frequent

words in the training set are used as the targets and the

remaining words are just tagged as the OOV. All these OOV

words cannot be modeled by the LSTM-RNN and cannot be

recognized during evaluation. The second issue of the word-

based CTC is that it cannot handle hot-words which emerge

and become popular after the network has been built. It is

impossible to get satisfactory performance by directly adding

output nodes in the network with the specified hot-words

without retraining the network.

Inspired by the open vocabulary neural machine

translation work [31], we propose an acoustic-to-word model

without OOV by first building a word-based CTC in which

the output vocabulary contains the frequent words in the

training set together with an OOV token which all the

infrequent words are mapped to. Then we train a character-

based CTC by sharing most hidden layers of the word-based

CTC. During recognition, the word-based CTC generates a

word sequence, and the character-based CTC is only

consulted at the OOV segments. Evaluated on a Microsoft

internal Cortana voice assistant task, the proposed method

can reduce the errors introduced by OOV output token in the

acoustic-to-word model by 30%.

Although the proposed work shares the same concept of

open vocabulary neural translation in [31], our work is very

different from [31] as the fundament framework in our work

is CTC-based speech recognition while [31] uses attention-

based framework for translation. Hence, the detailed

implementations are very different in these two works. There

are also many works in the traditional systems which handle

OOV problem for open vocabulary ASR task. Some works

[32][33] only detect OOV words and recognize their phonetic

transcriptions. Some studies [34][35] go further to identify

the character sequence of OOV words by first recognizing the

OOV word as a phoneme sequence and then using phoneme-

to-character conversion to generate the character sequence. In

contrast, the auxiliary character-based CTC in this study

provides a much easier way to handle the OOV issue in the

word-based CTC.

The rest of the paper is organized as follows. In Section

2, we briefly introduce CTC modeling and then we present

the proposed acoustic-to-word model without OOV.

Experimental evaluation of the algorithm is provided in

Section 3. We summarize our study and draw conclusions in

Section 4.

2. ACOUSTIC-TO-WORD CTC WITHOUT OOV

In this section, we first briefly overview the CTC modeling

technology and describe the OOV issue in the acoustic-to-

word CTC. Then, we propose the hybrid CTC model that can

solve the OOV issue by consulting an auxiliary character-

based CTC to generate candidate words. Last, we discuss

how to improve the character-based CTC for better

prediction.

2.1 CTC modeling

The CTC criterion [15] was introduced to map the speech

input frames into an output label sequence [16][17][18]. To

deal with the issue that the number of output labels is smaller

than that of input speech frames, CTC introduces a special

blank label and allows the repetition of labels to map the label

sequence into a CTC path, which forces the output and input

sequences to have the same length.

Denote 𝒙 as the speech input sequence, 𝒍 as the original

label sequence, and B−1(𝒍) represents all the CTC paths

mapped from 𝒍. The CTC loss function is defined as the sum

of negative log probabilities of all the CTC paths mapped

from the correct label sequence as

𝐿𝐶𝑇𝐶 = − ln𝑃(𝒍|𝒙)
where

𝑃(𝒍|𝒙) = ∑ 𝑃(𝒛|𝒙)

𝒛∈B−1(𝒍)

where 𝒛 is one CTC path. With the conditional independent

assumption, 𝑃(𝒛|𝒙) can be decomposed into a product of

posterior from each frame as

𝑃(𝒛|𝒙) =∏𝑃(𝑧𝑡|𝒙)

𝑇

𝑡=1

The calculation of 𝑃(𝑧𝑡|𝒙) is done via the forward-backward

process in [15].

The CTC output labels can be phonemes [16][17][18],

characters [19][20][21][22] [36] or even words [17][23][24].

As the goal of ASR is to generate a word sequence from the

speech waveform, word unit is the most natural output unit

for network modeling. The recently proposed acoustic-to-

word models [23][24], a.k.a. word-based CTC models, build

multiple layer LSTM networks and use words as the network

output units, optimized with the CTC training criterion. It is

very simple to generate the word sequence with this word-

based CTC model: pick the words corresponding to posterior

spikes to form the output word sequence. There is neither

language model nor complex decoding process involved.

However, when training the word-based CTC model, only

frequent words in the training set are used as the targets and

the remaining words are just tagged as the OOV. All these

OOV words cannot be modeled by the network and cannot be

recognized during evaluation. In next section, we proposed a

hybrid CTC model to address the OOV issue and the hot-

words issue discussed in the introduction.

2.2 Acoustic-to-word CTC without OOV

The proposed acoustic-to-word CTC without OOV model is

a hybrid model which uses a word-based CTC as the primary

model and a character-based CTC as the auxiliary model. The

word-based CTC model emits a word sequence, and the

output of the character-based CTC is only consulted at the

segment where the word-based CTC emits an OOV token.

Figure 1 gives an example of the hybrid CTC model. The

hybrid model has four shared hidden LSTM layers, on top of

which the word-based CTC and the character-based CTC

have individual one hidden LSTM layer and one softmax

layer. The word-based CTC generates a sequence “play artist

OOV” while the word sequence from the character-based

CTC is “play artist ratatat”. “ratatat” from the character-based

CTC is the segment overlapped with the OOV token most,

and is then used to replace the OOV token to form the final

ASR output of the hybrid CTC as “play artist ratatat”.

Shared
Hidden
Layers

Hybrid decision area

character sequence

word sequence

LSTM layer for
character output

LSTM layer for
word output

Figure 1: An example of how the hybrid CTC solves the OOV

issue of the acoustic-to-word CTC.

The detailed steps for building the hybrid CTC model are

described as follows

1. Build a multi-layer LSTM-CTC model with words

as its output units. Map all the words occurring less

than N times in the training data as the OOV token.

The output units in this LSTM-CTC model are all

the words occurring at least N times in the training

data, together with OOV, blank, and silence tokens.

2. Freeze the bottom 𝐿 − 1 hidden layers of the word-

CTC, add one LSTM hidden layer and one softmax

layer to build a new LSTM-CTC model with

characters as its output units.

3. During testing

a. Generate the word output sequence by

taking the words corresponding to

maximum posterior spikes and reducing

repeated words into one if there is no blank

between them.

b. If the output word sequence in 3.a doesn’t

contain any OOV token, then use that word

sequence as the ASR result. Otherwise,

proceed to the next step.

c. Generate another word output sequence

from the character-based CTC.

d. The final ASR result is obtained by

replacing the OOV token generated from

the word-based CTC with the word

generated from the character-based CTC

that has the largest time overlap with the

OOV token.

There are two ways to generate the word output sequence

from the character-based CTC in step 3.c. The first way is to

directly take the characters with maximum posteriors and

collapse them into words. We refer this as the max output

decoding. However, the character-based CTC without any

decoding constraint usually gives very high WER as shown

in [29]. The second way is to constrain the character-based

CTC to generate only valid words (e.g., only the words in

training set) using a character graph as in [36]. In this way,

we avoid the character-based CTC generating invalid words.

Furthermore, since the character graph includes all the words

in training data, the rare words that are mapped into OOV in

word-based CTC can be recognized by the character-based

CTC. The character graph also allows us to handle the hot-

words that emerge after the model is trained by adding the

hot-words into the valid words list and reconstructing the

character graph.

To measure the overlap in step 3.d, we need to define what

is the segment corresponding to an output token. As blank

dominates most of the time in CTC, it is not suitable to use

only the frames corresponding to the token spike as the

segment, which will be very short. Instead, we treat the spike

frames as well as all the immediate preceding blank frames

as the segment of the token. To get the segment

corresponding to an OOV token in word-based CTC is very

straightforward from the above definition. To get the segment

corresponding to a word in character-based CTC, we need to

first get the segment of each character with the above

definition, and then concatenate all the character segments to

form the word segment.

This hybrid CTC model is guaranteed to improve the

accuracy of the word-based CTC because it only replaces the

OOV tokens generated from the word-based CTC without

changing any other word outputs. With the shared-hidden-

layer structure, the alignments of words from the word-based

CTC and the character-based CTC are well synchronized.

Because the character-based CTC inside the hybrid CTC can

generate any word without revisiting the model training, the

hot-words issue can also be solved.

2.3 Improve Character-based CTC

The baseline character-based CTC has 28 outputs: ‘a’-‘z’,

space, blank. We refer it as the “28-character set”. We need

to generate word sequences from the output of character-

based CTC. A word is generated by first reducing repeated

characters into one and then combining all the characters

except blank between two spaces. The word cannot be right

if any character gets wrong. Using the context information

should make the prediction of the characters better.

Therefore, we add a row-convolution layer on top of the last

LSTM layer as

𝒉̂𝑡 = ∑ 𝑾𝑐𝒉𝑡+𝑐

𝐶

𝑐=−𝐶

where 𝒉𝑡 is the activation vector of the last hidden LSTM

layer, 𝑾𝑐 is the row convolution matrix associate with the c-

th context hidden vector, and 2C+1 is the total number of

context hidden vectors. 𝒉̂𝑡 is then connected to the last

softmax layer to predict characters. Different from the row

convolution layer in [20] which only uses future hidden

vectors, we use both history and future (left and right) hidden

vectors to introduce more context information.

Following [36], we also construct a new character set by

adding additional characters on top of the 28-character set.

These additional characters include capital letters used in the

word-initial position, double-letter units representing

repeated characters like ll, apostrophes followed by letters

such as ‘d, ‘re etc. Please refer to [36] for more details.

Altogether such a large unit inventory has 83 characters, and

we refer it as the “83-character set”.

3. EXPERIMENTS

In this section, we use a Microsoft Cortana voice assistant

task to evaluate the proposed method. The training data

consists of 3400 hours of transcribed US-English Cortana

audio. The test set consists of 3 hours of data from the same

Cortana task. The audio data is 16k HZ sampled, recorded in

mobile environments. All experiments were conducted using

the computational network toolkit (CNTK) [37], which

allows us to build and evaluate various network structures

efficiently without deriving and implementing complicated

training algorithms.

We first built a LSTM model trained with the CE

criterion. The input consists of 80-dimensional log Mel-filter-

bank features. It has 5 LSTM hidden layers: each has 1024

memory units and the output size of each LSTM layer is

reduced to 512 using a linear projection layer [5]. There is no

frame stacking, and the output HMM state label is delayed by

5 frames as in [5]. There are totally 5980 tied HMM states.

This model is denoted as LSTM-CE in Table 1, with 10.05%

word error rate (WER). Because of the latency restriction, we

always use uni-directional models in our work.

Then, we built a phoneme-based LSTM model trained

with the CTC criterion, modeling around 6000 tied context-

dependent phonemes. It has the same 5-layer LSTM structure

with projection layer as the previous LSTM-CE model. Eight

frames of 80-dim log Mel-filter-bank features are stacked

together as the input, and the time step shift is three frames as

in [17]. Without mentioning explicitly, all the CTC models in

this study use the same structure as this model. This model is

denoted as LSTM-CTC (phoneme) in Table 1, with 9.87 %

WER. Both the LSTM-CE model and LSTM-CTC

(phoneme) model use a strong 5-gram language model (LM)

for decoding. The gap between the LSTM-CE model and the

LSTM-CTC (phoneme) model is not large, consistent with

the recent report [38].

Next, we built an acoustic-to-word CTC model by

modeling around 27k most frequent words in the training

data. These frequent words occurred at least 10 times in the

training data. All other infrequent words are mapped to an

OOV output token. This model, LSTM-CTC (word), gets

13.59% WER, among which the OOV token contributes

1.70% WER. In other words, if every OOV token can be

converted to the right word, the WER will be reduced to

11.89%. Note that the WER gap between the phoneme-based

CTC and the word-based CTC is not small because the word-

based CTC doesn’t use any LM while the phoneme-based

CTC uses a very strong LM trained from much larger amount

of text than the 3400hr speech transcription. The WER gap is

consistent with what has been observed in [17][24]. All the

CTC models except the phoneme-based CTC model in this

study purely rely on the network score to generate outputs

without using LM.

Table 1: WER comparison of baseline LSTM-CE, LSTM-

CTC (phoneme), and LSTM-CTC (word)

Model WER (%)

LSTM-CE 10.05

LSTM-CTC (phoneme) 9.87

LSTM-CTC (word) 13.59

We use the structure in Figure 1 to build hybrid CTC

models. The first step is to build character-based CTC models

by sharing 4 hidden LSTM layers of the word-based CTC

model. On top of the shared hidden layers, we add a new

LSTM hidden layer and a softmax layer to model character

outputs. The output units of the character-based CTC can be

from either the 28-character set or the 83-character set

described in Section 2. When training the character-based

CTC model, only the added LSTM hidden layer and softmax

layer are updated. The bottom 4 hidden LSTM layers are not

updated because they are shared with the word-based CTC.

Next, the character-based CTC model is improved with row

convolution described in Section 2.3. The row convolution

operates on 9 frame hidden vectors from the last LSTM layer,

with 4 history frames, a central frame, and 4 future frames.

Table 2: WER comparison of character -based CTC models

Model WER (%)

CTC (28-character, max output) 33.79

CTC (28-character) 23.87

CTC (28-character + row convolution) 20.83

CTC (83-character) 20.25

CTC (83-character + row convolution) 18.91

Table 2 gives the WER of different character-based CTC

models. The baseline CTC with the 28-character set has

33.79% WER when just using the max output decoding

which picks the characters with maximum posteriors and then

collapses to words. Such a high WER is consistent with what

has been observed in other sites [29]. Adding the constraint

that only valid words from training set can be generated, the

WER is reduced by 10% absolute to 23.87% WER. In the

following, the default decoding setup of the character-based

CTC is with character-graph decoding with the valid word list

constraint. Clearly, the vanilla character-based CTC is far

behind the word-based CTC, and hence can only be used as

an auxiliary model. By taking 9-frame hidden vector context

with row convolution, the character-based CTC can be

improved to 20.83% WER. Then, the CTC with the 83-

character set improves its counterpart with the 28-character

set from 23.87% WER to 20.25% WER. Finally, the CTC

model with the 83-character set and row convolution gets

18.91% WER, still 5% absolute higher than the WER from

the word-based CTC.

The row convolution method can get 12.74% relative

WER reduction (from 23.87% WER to 20.83% WER) with

the 28-character set, but only gets 6.62% relative WER

reduction (from 20.25% WER to 18.91% WER) with the 83-

character set. One reason is that the 83-character set also

somehow handles the context information (e.g., with double

letters), which is also handled by the row convolution

method.

Table 3 gives several examples showing how the row

convolution method helps to improve the WER of the CTC

with the 28-character set. Without consulting context frames,

the CTC model sometimes misses several characters while

the row convolution model can emit the right words out based

on its context.

Table 3: Examples that the CTC with row convolution gets

the right recognition result.

CTC (28-character) CTC (28-character + row

convolution)

how much one how much money

wake me up in a hour wake me up in an hour

tell me good joke tell me a good joke

Table 4 shows how the CTC with the 83-character set is

better than the CTC with the 28-character set with several

examples. Modeling the double letters helps to win these

examples.

Table 4: Examples that the CTC with the 83-character set

gets the right recognition result.

CTC (28-character + row

convolution)

CTC (83-character + row

convolution)

my wife is ten my my wife is tammy

okay jail okay jill

kellogs kellogg's

Table 5 gives the WERs of hybrid CTC models. When

the CTC with 28 characters is used with max output

decoding, the hybrid CTC only slightly improves the baseline

word-based CTC because such a character-based CTC setup

cannot give too much helps due to high WER as shown in

Table 2. When decoding with character graph constrained by

valid words, the hybrid CTC obtains around 13.09% WER,

with 0.5% absolute WER reduction from the word-based

CTC. Because the OOV token brings 1.7% absolute WER to

the word-based CTC model, this means the hybrid CTC can

recover 30% errors introduced by the OOV token. It is

somehow surprising that although both the row convolution

CTC modeling and the CTC with the 83-character set have

better WER than the CTC with the 28-character set, neither

setup can help the final WER of the hybrid CTC.

Table 5: WER comparison of hybrid CTC models

Model WER (%)

CTC (word) 13.59

CTC (word) + CTC (28-character, max

output)

13.42

CTC (word) + CTC (28-character) 13.09

CTC (word) + CTC (28-character + row

convolution)

13.10

CTC (word) + CTC (83-character + row

convolution)

13.08

In Table 6, we show how the hybrid CTC model

performs with some examples. The first three are the

examples that the hybrid CTC can recover the right words

from the OOV token. “azusa”, “ratatat”, and “wanna”, all

these addresses and names, are the words not in the frequent

words in the training set, and haven’t been modeled by any

output node in the word-based CTC model. However, they

can be successfully recovered by the character-based CTC.

The last three rows in Table 6 are the examples that the

hybrid CTC still fails to recover the right words from the

OOV token. “margera” is recognized as “marger” by the

character-based CTC. Such error happens with one character

missing, revealing the weakness of character-based CTC.

“purr” is recognized as “per”, and “kristi" is recognized as

“christi" by the character-based CTC. These errors are

homophone errors, which cannot be handled by character-

based CTC unless high level information is blended into the

decision.

Table 6: Examples of the outputs of word-based CTC and

hybrid CTC models (CTC (word) + CTC (28-character))

Reference Word-based

CTC

Hybrid CTC

costco azusa costco OOV costco azusa

play artist

ratatat

play artist OOV play artist

ratatat

text mara wanna text mara OOV text mara wanna

april margera april oov april marger

why does my

kitty purr

why does my

kitty OOV

why does my

kitty per

all kristi

matthews

call OOV

matthews

call christi

matthews

In Table 5, it is a little disappointing that neither row

convolution nor 83-character set modeling improves the final

WER of the hybrid CTC. We also examined the results and

found that most of times these two methods help to improve

the recognition results that the word-based CTC succeeds.

For the failed cases in Table 6, they cannot help too much.

For example, “margera” is recognized as “marger” by the

CTC with the 28-character set, and recognized as “marera”

by the CTC with the 83-character set and row convolution.

They also cannot help the homophone error cases. Even with

better modeling, it is sometimes still very challenging for the

character-based CTC to get words right for the cases that the

word-based CTC fails.

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a hybrid CTC model that

solves the OOV issue and the hot-words issue presented in

the acoustic-to-word CTC models, a.k.a. the word-based

CTC, by using the output from the word-based CTC as the

primary ASR result and consulting the character-based CTC

at the segment where the word-based CTC emits an OOV

token. By only replacing the OOV tokens with the words

generated from the character-based CTC, the proposed

method is guaranteed to improve the accuracy of the acoustic-

to-word CTC. The shared hidden layer structure helps to align

the word segments between the word-based CTC and the

character-based CTC so that the OOV token lookup

algorithm can work. Evaluated on a Microsoft Cortana voice

assistant task in which the word-based CTC has 1.7% WER

introduced by the OOV token, the hybrid CTC model can

reduce 0.5% absolute WER, representing a recovery of 30%

errors caused by the OOV token.

Several research issues will be addressed in the future to

further increase the effectiveness of the algorithm presented

in this paper. First, a better character unit set should be

considered to improve the accuracy of the character-based

CTC model. Recently, gram-CTC [39] was proposed to

automatically learn the most suitable decomposition of target

sequences, which not only boosts the modeling flexibility but

also improves the final ASR accuracy. We are now trying to

incorporate the gram-CTC into our system. Second, the

character-based CTC has very high WER (around 33%) when

using the maximum output decoding. We add valid word

constraint when generating words from the character-based

CTC and bring down its WER to 23% so that the words used

to replace OOV tokens are useful. However, a character-

based CTC model with decoding constraint is not a clean end-

to-end model as it still involves expert knowledge. We are

now pursuing more advanced method which can improve the

character-based WER to as low as 18% with the maximum

output decoding [40]. Last, with thousand hours of training

data, the word-based CTC still has an accuracy gap from the

phoneme-based CTC, which has been observed from various

sites. We found that the word-based CTC can significantly

improve the accuracy of the phoneme-based CTC by

combining them together, given very different error patterns

from these CTC models. Therefore, it is meaningful to invest

on the word-based CTC even from the production point of

view. At the same time, we are working on improving the

modeling of word-based CTC so that we can deploy such an

end-to-end acoustic-to-word model to production.

REFERENCES

[1] S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780,

1997.

[2] A. Gers, J. Schmidhuber, and F. Cummins. “Learning to

forget: Continual prediction with LSTM,” Neural

Computation, vol. 12, no. 10, pp. 2451-2471, 2000.

[3] A. Graves, A. Mohamed, G. Hinton. “Speech recognition with

deep recurrent neural networks,” in Proc. ICASSP, 2013.

[4] A. Graves, N. Jaitly, A. Mohamed. “Hybrid speech

recognition with deep bidirectional LSTM,” in Proc. ASRU,

2013.

[5] H. Sak, A. Senior, F. Beaufays, "Long short-term memory

recurrent neural network architectures for large scale acoustic

modeling," in Proc. Interspeech, 2014.

[6] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R.

Monga, M. Mao, "Sequence discriminative distributed

training of long short-term memory recurrent neural

networks," in Proc. Interspeech, 2014.

[7] X. Li and X. Wu, “Constructing long short-term memory

based deep recurrent neural networks for large vocabulary

speech recognition,” in Proc. ICASSP, 2015.

[8] T. N. Sainath, O. Vinyals, A. Senior and H. Sak,

"Convolutional, long short-term memory, fully connected

deep neural networks," in Proc. ICASSP, 2015.

[9] Y. Miao, J. Li, Y. Wang, S.X. Zhang, and Y Gong,

"Simplifying long short-term memory acoustic models for fast

training and decoding," in Proc. ICASSP, 2016.

[10] D. Yu and J. Li, “Recent progresses in deep learning based

acoustic models,” IEEE/CAA Journal of Automatica Sinica,

4(3), pp.396-409, 2017.

[11] B. Kingsbury, T.N. Sainath, and H. Soltau, “Scalable

minimum Bayes risk training of deep neural network acoustic

models using distributed Hessian-free optimization,” In Proc.

Interspeech, 2012.

[12] K. Veselý, A. Ghoshal, L. Burget, and D. Povey, “Sequence-

discriminative training of deep neural networks,” In Proc.

Interspeech, pp. 2345-2349, 2013.

[13] H. Su, G. Li, D. Yu, and F. Seide, “Error back propagation for

sequence training of context-dependent deep networks for

conversational speech transcription”. In Proc. ICASSP, pp.

6664-6668, 2013.

[14] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R.

Monga, and M. Mao, “Sequence discriminative distributed

training of long short-term memory recurrent neural

networks,” In Proc. Interspeech, 2014.

[15] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber,

“Connectionist temporal classification: labelling unsegmented

sequence data with recurrent neural networks,” in Proc. the

23rd Int. Conf. Machine Learning, 2006, pp. 369-376.

[16] H. Sak, A. Senior, K. Rao, O. Irsoy, A. Graves, F. Beaufays,

and J. Schalkwyk, “Learning acoustic frame labeling for

speech recognition with recurrent neural networks,” in Proc.

ICASSP, pp. 4280–4284, 2015.

[17] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate

recurrent neural network acoustic models for speech

recognition,” in Proc. INTERSPEECH, 2015.

[18] A. Senior, H. Sak, F. de Chaumont Quitry, T. Sainath, and K.

Rao, “Acoustic modelling with CD-CTC-SMBR LSTM

RNNs,” in Proc. ASRU, pp. 604–609, 2015.

[19] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E.

Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al.,

“Deep speech: Scaling up end-to-end speech recognition,”

arXiv:1412.5567, 2014.

[20] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B.

Catanzaro, J. Chen, M. Chrzanowski, A. Coates, G. Diamos et

al., “Deep speech 2: End-to-end speech recognition in English

and Mandarin,” arXiv:1512.02595, 2015.

[21] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end

speech recognition using deep RNN models and WFST-based

decoding,” in Proc. ASRU, pp. 167–174, 2015.

[22] Y. Miao, M. Gowayyed, X. Na, T. Ko, F. Metze, and A.

Waibel, “An empirical exploration of ctc acoustic models,” in

Proc. ICASSP, pp. 2623–2627, 2016.

[23] H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer:

Acoustic-to-word LSTM model for large vocabulary speech

recognition,” arXiv:1610.09975, 2016.

[24] K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, and D.

Nahamoo, “Direct acoustics-to-word models for English

conversational speech recognition,” arXiv preprint

arXiv:1703.07754, 2017.

[25] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend

and spell,” CoRR, vol. abs/1508.01211, 2015.

[26] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y.

Bengio, “Attention-based models for speech recognition,” in

Proc.NIPS, 2015.

[27] Y. Zhang, W. Chan, and N. Jaitly, "Very deep convolutional

networks for end-to-end speech recognition," In Proc.

ICASSP, pp. 4845-4849, 2017.

[28] A. Graves, “Sequence transduction with recurrent neural

networks,” CoRR, vol. abs/1211.3711, 2012.

[29] R. Prabhavalkar, K. Rao, T.N. Sainath, B. Li, L. Johnson and

N. Jaitly, “A comparison of sequence-to-sequence models for

speech recognition,” in Proc. Interspeech, pp.939-943, 2017.

[30] E. Battenberg, et al. "Exploring neural transducers for end-to-

end speech recognition." arXiv preprint arXiv:1707.07413,

2017.

[31] M.T. Luong and C.D. Manning, “Achieving open vocabulary

neural machine translation with hybrid word-character

models,” arXiv preprint arXiv:1604.00788, 2016.

[32] B. Issam, “Modelling out-of-vocabulary words for robust

speech recognition,” Diss. Massachusetts Institute of

Technology, 2002.

[33] D. Bart, J. Duchateau, W. Daelemans, and P. Wambacq,

"Transcription of out-of-vocabulary words in large vocabulary

speech recognition based on phoneme-to-grapheme

conversion," In Proc. ICASSP, Vol. 1, pp. I-861, 2002.

[34] B. Maximilian, and H. Ney, “Open vocabulary speech

recognition with flat hybrid models,” in Proc. Interspeech,

pp.725-728, 2005.

[35] Y. Ali, and M. Saraclar. "Hybrid language models for out of

vocabulary word detection in large vocabulary conversational

speech recognition," In Proc. ICASSP, Vol. 1, pp. I-745, 2004.

[36] G. Zweig, C. Z. Yu, J. Droppo, and A. Stolcke, “Advances in

all-neural speech recognition,” in Proc. ICASSP, 2017.

[37] D. Yu, A. Eversole, M. Seltzer, et. al., "An introduction to

computational networks and the computational network

toolkit," Microsoft Technical Report MSR-TR-2014-112,

2014.

[38] G. Pundak and T. N. Sainath, “Lower frame rate neural

network acoustic models,” in Proc. Interspeech, pp. 22-26,

2016.

[39] H. R. Liu, Z. Y. Zhu, X. G. Li, and S. Satheesh, “Gram-CTC:

Automatic unit selection and target decomposition for

sequence labelling,” arXiv:1703.00096, 2017.

[40] A. Das, J. Li, R. Zhao, and Y. Gong, “Advancing CTC with

attention modeling,” submitted to ICASSP, 2018.

