
LIMITING NUMERICAL PRECISION OF NEURAL NETWORKS TO ACHIEVE REAL-

TIME VOICE ACTIVITY DETECTION

Jong Hwan Ko*, Josh Fromm†, Matthai Philipose‡, Ivan Tashev‡, and Shuayb Zarar‡

* School of Electrical and Computer Engineering, Georgia Institute of Technology, GA 30332, USA

† Department of Electrical Engineering, University of Washington, WA 98195, USA
‡ Microsoft Research, Redmond, WA 98052, USA

* jonghwan.ko@gatech.edu, †jwfromm@uw.edu, ‡{matthaip, ivantash, shuayb}@microsoft.com

ABSTRACT

Fast and robust voice-activity detection is critical to

efficiently process speech. While deep-learning based

methods to detect voice have shown competitive accuracies,

the best models in the literature incur over a 100 ms latency

on commodity processors. Such delays are unacceptable for

real-time speech processing. In this paper, we study the

impact of lowering the representation precision of the neural-

network weights and neurons on both the accuracy and delay

of voice-activity detection. Based on a design-space

exploration, we not only determine the optimal scaling

strategy but also adjust the network structure to accommodate

the new quantization levels. Through experiments conducted

with real user data, we demonstrate that optimized deep

neural networks with lower bit precisions outperform the

state-of-the-art WebRTC voice-activity detector with 87x

lower delay and 6.8% lower error rate.

Index Terms— Voice-activity detection, VAD,

Precision scaling, Neural networks

1. INTRODUCTION

Voice activity detection (VAD) is a process of identifying the

presence of human speech in an audio sample that contains a

mixture of speech and noise. Thanks to its ability of filtering

out non-speech segments, VAD has become a critical front-

end component of many speech-processing systems such as

automatic speech recognition and speaker identification [1-3].

Conventional VAD algorithms are generally based on

statistical signal processing that make strong assumptions on

the distributions of speech and background noise. One of the

commonly used conventional approaches is ITU-T

Recommendation G.729-Annex B [4]. This method was

improved by Sohn et al. with an addition of speech presence

probability [5]. A hangover scheme with a simple hidden

Markov model (HMM) was added in [6], and further

optimized for better performance as described in [7].

Recently, another VAD algorithm based on the Gaussian

mixture model was developed in line with the WebRTC

project, including an open-source implementation that targets

real-time performance [8]. This algorithm has found wide

adoption and has recently become one of the gold-standards

for delay-sensitive scenarios like web-based interaction.

Despite these algorithmic advances, performance of

conventional algorithms has not yet reached levels that are

routinely expected by modern applications (< 5% error rate).

Their performance limitation is typically attributed to two

factors: (1) difficulty of finding an analytical form of speech-

presence probability [9] and (2) not having enough

parameters that capture global signal distributions [3].

Therefore, these conventional approaches can be either

approximate or computationally expensive [9].

Emerging deep-neural networks (DNNs) implicitly

model data distributions with high-dimensionality. Besides,

they allow us to fuse multiple features and separate speech

from fast-varying non-stationary noises [9][10]. Thus, DNNs

provide a new opportunity to improve the performance of

voice-activity detection [11]. Indeed, recent work has

demonstrated its benefits via simple fully-connected

networks, recurrent networks, and deep-belief networks [9],

[12-14]. However, in most prior work, the improvements

were obtained in cases where the training and test sets had the

same types of noise. Thus, the performance of existing

neural-network models has suffered significantly when

applied to unseen test scenarios [3]. Another limitation of

 WebRTC

[8]

DNN

Baseline

(1729-512-512-512-257)

Optimized

(256-32-257)

W32/N32 [9] W1/N2 [This work]

kOPs/frame - 3073 144 (21x ↓) 1.5 (2048x ↓)

Memory (MB) - 6.0 0.19 (32x ↓) 0.13 (46x ↓)

Processing delay

/sample (ms)
17 138 (8.2x ↑) 4.7 (3.6x ↓) 0.2 (87x ↓)

VAD error rate

(%)
20.88

8.20

(12.68% ↓)

11.34

(9.54% ↓)

14.10

(6.8% ↓)

 Table I. Comparison of the computation/memory demand and

performance of conventional WebRTC and DNN-based VADs.

DNN models include baseline/optimized structures and two

different precisions (Wi/Nj indicates i bits for weights and j bits for

neurons). The reference for the kOPs/frame and memory

comparison is W32/N32 DNN, and the reference for the processing

delay and VAD error rate comparison is the WebRTC.

DNNs is their computational complexity and memory

demand, which increase significantly depending on the depth

and breadth of the networks. For instance, on an Intel CPU,

even a simple 3-layer DNN incurs a processing delay of 138

ms per frame [see Table I]. This is due to the 3073 kOPs of

computation and 6 MB of memory required to evaluate every

frame of audio data. Such overheads are unacceptable in real-

time applications. In this paper, we aim to address both of

these issues by optimizing the neural network architectures.

To lower the computation and memory demands of

DNNs, a number of optimization methods have been

proposed [15][16]. One of the recently proposed methods is

a precision-scaling technique that represents the weights

and/or neurons of the network with reduced number of bits

[17]. While recent studies have effectively applied binarized

(1-bit) networks in image classification tasks [18][19], to the

best of our knowledge, no work has been done to analyze the

effect of various bit-width pairs of weights and neurons on

the processing delay and the detection accuracy of VAD.

In this paper, we investigate the design of efficient DNNs

for VAD by scaling the precision of data representation

within the network. To minimize bit-quantization error, we

use a bit-allocation scheme based on the global distribution

of the values. We determine the optimal pair of

weight/neuron bits by exploring the impact of bit widths on

both the processing performance and delay. We further

reduce the processing delay by optimizing the network

structure. We compare the detection accuracy of the proposed

DNN model with conventional approaches using the test set

with unseen noise scenarios. Our results show that the DNN

with 1-bit weights and 2-bit neurons reduces the processing

delay by 30x with 3.12% increase in accuracy, compared to

the baseline 32-bit DNN. By shrinking the network, it

outperforms the state-of-the-art WebRTC VAD with 87x

lower delay and 6.8% lower error rate.

2. PRECISION SCALING OF NEURAL NETWORKS

One of the most commonly used precision-scaling method is

the rounding scheme with round-to-nearest or stochastic

rounding mode [20]. However, rounding can result in large

quantization error as it does not consider global distribution

of the values. In this work, we use a precision scaling method

based on residual error mean binarization [21], in which each

bit assignment is associated with a corresponding

approximate value that is determined by the distribution of

the original values. Fig. 1 illustrates an example of 2-bit

assignment of 4 values. First representation bit is assigned

based on the sign – positive values are assigned bit 1 and

negative values are assigned bit 0. Then the approximate

value for each bit assignment is computed by

adding/subtracting the average distance from the reference

value (0 in the first bit assignment). For next bit assignment,

each approximate value becomes the reference of each

section of the bit. This process allocates the same number of

values in each bit assignment bin to minimize the

quantization error.

We estimate the ideal inference speedup due to the

reduced bit precision by counting the number of operations in

each bit-precision case [see Fig. 2]. In the regular 32-bit

network, we need two operations (32-bit multiplication and

accumulation) per one pair of input feature and weight

elements to compute the output feature. When the network

has 1-bit neurons and weights, multiplication can be replaced

with XNOR and bit count operations, which can be

performed in sets of 64 operations per CPU cycle. In this case,

we need three operations per 64 elements, which translates to

a 42.7x speedup. When the network has 2 or more bit neurons

and weights, we need to perform the operation for all the

combinations of the bits. Therefore, the ideal speedup is

computed as

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = max (1,
128

3 × 𝑊𝑖 ×𝑁𝑗
)

Fig. 2. Illustration of output feature computation with 32-bit (top)

and 1-bit (bottom) weights and neurons.

1

0

0

1

1

1

0
XNOR

Bit count

01011..

11001..

10111..

00111...

11100..

01000..

00100..

10011..

32-bit

Multiplication

Accumulation
output

output

… …

… …

Feature Weights

Accumulation

One 32-bit

element

64 1-bit elements

Fig. 3. Speedup due to reduced bit precision of neurons and weights.

(a) Ideal and (b) measured speedup. Blue bars indicate speedup>1

and gray bars indicate no speedup.

0

10

20

30

40

50

(a) (b)

Id
e

a
l
s
p

e
e

d
u

p

M
e

a
s
u

re
d

 s
p

e
e

d
u

p

1
2

4
8

16
32

1
2

4
8

16
32

1

2

4
8

16

32

1

2

4
8

16

32

0

10

20

30

40

50

Fig. 1. An example bit assignment using the proposed method. Four

different values (-5, -1, 1, 3) are represented by 2-bit precision with

the approximate values of (-4, -1, 1, 4).

0 1

μ1 = d1 = 2.5

0

μ0= -d1=-2.5

μ00

= -μ0-d2

= -2.5-1.5

=-4

μ01

= -μ0+d2

=-2.5+1.5

=-1

μ11

= μ0+d2

=2.5+1.5

=4

μ10

= μ1-d2

=2.5-1.5

=1

01 111000

Avg. distance

from 0

Avg. distance

from μ0, μ1

x x x x
-5 -1 1 3

Bit assignment

Approx. values

Approx. values

Bit assignment

where Wi and Nj denote i-bit and j-bit representations used

for the weights and the neurons, respectively. Fig. 3(a) shows

that the ideal speedup decreases as we reduce weight/neuron

bit width. When the product of the two bit-precision values is

larger than 42.7, there is no advantage from bit truncation

since XNOR and bit-count operations will take more

computation than regular multiplication. We have

implemented our precision scaling methodology within the

CNTK framework [22], and measured the actual inference

speedup that was attained on an Intel processor [see Fig. 3(b)].

The measured speedup is similar to or even higher than the

ideal values because of the benefits of loading the low-

precision weights, as the bottleneck of the CNTK matrix

multiplication is memory access. The figure also indicates

that reducing weight bits leads to higher speedup than

reducing neuron bits since the weights can be pre-quantized,

making their memory loads very efficient.

3. EXPERIMENTAL FRAMEWORK

3.1. Dataset

We created 750/150/150 files of training/validation/test

datasets by convolving clean speech with room impulse

responses and adding pre-recorded noise at different signal-

to-noise ratios (SNRs) ranging between 0-30 dB and

distances from the microphone ranging between 1-3m. Each

clean speech file included 10 sample utterances that were

collected from voice queries to the Microsoft Windows

Cortana Voice Assistant. Further, our noise files contained 25

types of recordings in the real world from a single-channel

microphone array. Using noise files with different noise

scenarios, we also created 150 files of the test set with unseen

noise.

3.2. Experimental Framework

As Fig. 4 shows, the experiments are performed through

training, inference, and evaluation stages. We utilized noisy

speech spectrogram windows of 16 ms and 50% overlap with

a Hann weighting, along with the corresponding ground-truth

labels for DNN training and inference. For the baseline DNN,

we utilized the model presented in [9]. The input feature to

the DNN was prepared by flattening symmetric 7-frame

windows of the spectrogram. The network had three hidden

layers with 512 neurons each, and an output layer of 257

neurons; one for the speech probability for the entire frame

and the other 256 for frequency bins. At the end of each layer,

we applied the tanh non-linearity function.

The network was trained to minimize the squared error

between the ground-truth and predicted labels. Each training

involved 100 epochs with a batch size of 400. We trained the

network with the reduced bit precision from scratch, instead

of re-training the network after bit quantization. During

inference, we supplied the noisy spectrogram from the test

dataset to the trained network to generate the predicted labels.

The predicted labels were compared with the ground-

truth labels to compute performance metrics including

probability/binary detection error and mean-square error. We

define detection error as the average difference between the

ground-truth labels and probability/binary decision labels for

each frame or frequency bin. Further, we determined the

binary decision by comparing the probability with the fixed

threshold 0.5. For performance comparison with

conventional approaches, we also obtained the performance

metrics of the classic VAD in [7] and WebRTC VAD.

4. EXPERIMENTAL RESULTS

Table II compares the per-frame detection accuracy for the

regular test set and the test set with unseen noise. With the

regular test set, the baseline 32-bit DNN provides much

higher detection accuracy than conventional approaches. It is

important to note that even the DNN with 1-bit weights and

neurons achieved lower detection error than the conventional

methods.

To illustrate the performance advantage, we show the

binary detection output from each method for a sample file

that has similar error rates to the average error rates [Fig. 5].

The DNN approach shows very similar detection output as

the ground truth, even with 1-bit weights and neurons.

However, the classic methods are prone to false positives,

leading to a higher detection error than the DNN models.

Table II indicates that the detection performance of the

conventional methods is not significantly affected by the

dependency of noise types in the training and test set.

However, the DNN gives higher error rates with the unseen

test set since the network is dealing with the noise types

different from the ones used for training. Nevertheless, the

binary detection error of the 1-bit DNN is lower than the

classic approaches even with the unseen test set. As we target

Model Classic WebRTC
DNN

W32/N32 W1/N1

Regular

testset

RMSE 0.411 0.408 0.268 0.389

Probability (%) 24.24 - 5.96 21.63

Binary (%) 24.90 20.46 5.55 14.95

Testset w/

unseen noise

RMSE 0.343 0.389 0.228 0.312

Probability (%) 17.89 - 15.32 24.51

Binary (%) 18.08 20.88 8.20 17.76

Table II. Comparison of voice detection error rates with different

approaches and test sets. Probability error rates of WebRTC are

omitted since it only provides the binary-detection result.

Fig. 4. Experimental framework that we use in this paper.

Feature extractionFeature
extraction

Noisy speech

(test set)

Training stage Inference stage Evaluation stage

Evaluation

framework0 1 1 0 0 …
1 0 0 0 1 …
1 1 1 0 1 ...
… … … … … …

- Per frame

Per bin

Ground-truth label

0.9 0.8 0.9 0.5 0.4 …
0.9 0.2 0.1 0.2 0.7 …
0.8 0.9 0.7 0.3 0.9 ...
… … … … … …

Predicted label

Performance metrics
Per frame and bin

- Probability error (%)

- Binary error (%)

- RMSE

Classic

approaches

Noisy speech

(training set)

Input: 256x7

512

512

512

257Output:

Hidden

…

…
…
…

…

Current
frame

3

7-frame
window

3

DNN

for the practical solution that makes a detection on each frame

under the various noise types, we focus on the frame-level

binary detection error on the unseen test set for the rest of the

analysis.

Fig. 6(a) shows detection error of the DNN model with

different weight/neuron bit precision pairs. As expected, the

detection error increases as lower bit precision is used. One

important observation from this result is that the accuracy is

more sensitive to neuron bit reduction than weight bit

reduction. Thus, to choose the optimal pair of weight/neuron

bit precision we need to consider both detection accuracy and

processing delay. Therefore, we introduce the new metric

computed by multiplying speedup and VAD error, with both

of them normalized to lie in the range [0,1]. As shown in Fig.

6(b), the optimal bit-precision pair is determined as 1-bit

weights and 2-bit neurons (W1/N2).

We measured the average processing delay per file of the

different approaches based on their Python implementation

and an Intel processor. As our implementation of the classic

VAD was based on MATLAB, we focused on the WebRTC

VAD to compare the processing delays. The baseline 32-bit

DNN required 138 ms per file, which was much higher delay

than the WebRTC VAD (17 ms). As we scaled the precision

to W1/N2, which we chose as the optimal precision pair in

the last section, the processing delay reduced by 30x (4.7 ms),

which was 3.6x lower than the WebRTC VAD.

We reduced the processing delay further by optimizing

the network structure such as the number of layers, number

of neurons in each layer, and the input window size. As

shown in Fig. 7, the network size reduction leads to a decrease

in processing delay as well as VAD accuracy. One interesting

conclusion that we can make at this point is that wide and

shallow DNNs provide better accuracy than narrow and deep

DNNs at the same delay (e.g. three 128-neuron vs. one 512-

neuron). By further reducing the network into one 32-neuron

layer and single-frame window, we observe that the W1/N2

DNN outperforms the WebRTC VAD with 87X lower delay

and 6.8% lower error rate.

Lower precision of the weights not only reduces the

computational demand, but also reduces the size of the

weights, which potentially decreases the effective memory

access latency and energy. As the weights of the baseline 32-

bit DNN (6MB) cannot typically be fit into an on-chip cache

of usual mobile devices, we recommend that they be stored

in an off-chip memory such as DRAM, where the system

throughput and energy is dominated by the weight access.

Since the entire set of weights for the W1/N2 DNN (128 KB)

can be stored in the on-chip cache, a significant reduction in

energy and latency is achieved per our expectation.

5. CONCLUSIONS

In this paper, we presented a methodology to efficiently scale

the precision of neural networks for a voice-activity detection

task. Through a careful design-space exploration, we

demonstrated that a DNN model with optimal bit-precision

values reduces the processing delay by 30x with only a slight

increase in the error rate. By further optimizing the network

structure, it outperforms a state-of-the-art VAD from the

literature with 87x lower delay and 6.8% lower error rate. The

results show the promising potential of precision scaling for

optimization of DNNs for a classification task. As part of

future work, we intend to further explore the effect of scaling

the neural-network bit precision for other classification tasks

such as source separation and microphone beam forming as

well as estimation tasks such as acoustic echo cancellation.

Fig. 5. Illustration of voice detection output from different VAD

approaches for a sample noisy speech file. (a) Ground-truth label,

(b) classic VAD, (c) WebRTC VAD, (d) DNN with 32-bit

weights/neurons, and (e) DNN with 1-bit weights/neurons.

(a)

(b)

(c)

(d)

(e)

Frame number Fig. 6. VAD performance of DNN with different pairs of

weight/neuron bit precision. (a) Frame-level binary detection error

and (b) normalized speedup/normalized VAD frame error. A red

bar indicates the optimal pair of bit precision (W1/N2).

0

5

10

15

20

V
A

D
 f

ra
m

e
 e

rr
o

r
(%

)

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

/n
o

rm
a

liz
e

d
 V

A
D

 f
ra

m
e

 e
rr

o
r

1
2

4
8

1

2

4
8

1
2

4
8

1

2

4
8

(a) (b)

0

1

2

3

Fig. 7. Optimization of the DNN model. Processing delay per file

(top) and frame-level binary detection error (bottom). A red bar

indicates the smallest model in the experiments, which shows 87X

lower delay and 6.8% lower VAD error than WebRTC model.

0

1

2

3

4

5

6

3 2 1 3 2 1 3 2 1 3 2 1

P
ro

c
e

s
s
in

g
 d

e
la

y

p
e

r
fi
le

 (
m

s
)

0

5

10

15

20

25

3 2 1 3 2 1 3 2 1 3 2 1

V
A

D
 e

rr
o

r
(%

)

Window size = 7 Window size = 5 Window size = 3 Window size = 1

WebRTC (20.88%)

Classic (18.08%)

Num_layers:

Num_layers:

14.10% (6.8% ↓)

0.2 ms (87X ↓)

512 neurons 128 neurons 32 neurons

6. REFERENCES

[1] J. Ramírez, J. C. Segura, J. M. Górriz, and L. García,

“Improved Voice Activity Detection Using Contextual

Multiple Hypothesis Testing for Robust Speech

Recognition,” IEEE Trans. Audio. Speech. Lang.

Processing, vol. 15, no. 8, 2007.

[2] M. W. Mak and H. B. Yu, “A study of voice activity

detection techniques for NIST speaker recognition

evaluations,” Comput. Speech Lang., vol. 28, no. 1, pp.

295–313, 2014.

[3] X. Zhang and D. Wang, “Boosting Contextual Information

for Deep Neural Network Based Voice Activity Detection,”

IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 24,

no. 2, pp. 252–264, 2016.

[4] “Recommendation G.729 Annex B: a silence compression

scheme for use with G.729 optimized for V.70 digital

simultaneous voice and data applications,” 1997.

[5] J. Sohn and W. Sung, “A voice activity detector employing

soft decision based noise spectrum adaptation,” in IEEE

International Conference on Acoustics, Speech and Signal

Processing, 1998, pp. 365–368.

[6] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-

based voice activity detection,” IEEE Signal Process. Lett.,

vol. 6, no. 1, pp. 1–3, 1999.

[7] I. Tashev, A. Lovitt, and A. Acero, “Unified Framework

for Single Channel Speech Enhancement,” in Proceedings

of the 2009 IEEE Pacific Rim Conference on

Communications, Computers and Signal Processing, 2009,

pp. 883–888.

[8] “WebRTC,” 2017. [Online]. Available: https://webrtc.org/.

[9] I. Tashev and S. Mirsamadi, “DNN-based Causal Voice

Activity Detector,” in Information Theory and Applications

Workshop, 2016.

[10] X.-L. Zhang and J. Wu, “Denoising Deep Neural Networks

Based Voice Activity Detection,” in IEEE International

Conference on Acoustics, Speech and Signal Processing,

2013.

[11] M. W. Hoffman, Z. Li, and D. Khataniar, “GSC-Based

Spatial Voice Activity Detection for Enhanced Speech

Coding in the Presence of Competing Speech,” IEEE Trans.

Speech Audio Process., vol. 4419, no. 1, pp. 1–9, 2001.

[12] F. Eyben, F. Weninger, and S. Squartini, “Real-Life Voice

Activity Detection with LSTM Recurrent Neural Networks

And An Application To Hollywood Movies,” in IEEE

International Conference on Acoustics, Speech and Signal

Processing, 2013, pp. 483–487.

[13] T. Hughes and K. Mierle, “Recurrent Neural Networks for

Voice Activity Detection,” in IEEE International

Conference on Acoustics, Speech and Signal Processing,

2013, pp. 7378–7382.

[14] X. Zhang and J. Wu, “Deep Belief Networks Based Voice

Activity Detection,” IEEE Trans. Audio. Speech. Lang.

Processing, vol. 21, no. 4, pp. 697–710, 2013.

[15] P. Wang and J. Cheng, “Accelerating Convolutional Neural

Networks for Mobile Applications,” in ACM Multimedia

Conference, 2016, pp. 541–545.

[16] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, “C-

brain: a deep learning accelerator that tames the diversity

of CNNs through adaptive data-level parallelization,” in

Design Automation Conference, 2016, p. 123:1-6.

[17] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y.

Bengio, “Quantized Neural Networks: Training Neural

Networks with Low Precision Weights and Activations,” J.

Mach. Learn. Res., vol. 1, pp. 1–48, 2000.

[18] I. Hubara, D. Soudry, and R. El-Yaniv, “Binarized Neural

Networks,” in Advances in Neural Information Processing

Systems, 2016.

[19] M. Courbariaux and Y. Bengio, “BinaryNet: Training Deep

Neural Networks with Weights and Activations

Constrained to +1 or -1,” arXiv:1602.02830, p. 9, 2016.

[20] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P.

Narayanan, “Deep Learning with Limited Numerical

Precision,” in Int.Conf. Machine Learning, 2015.

[21] W. Tang, G. Hua, and L. Wang, “How to Train a Compact

Binary Neural Network with High Accuracy ?,” in AAAI

Conference on Artificial Intelligence, 2016, pp. 2625–2631.

[22] D. Yu et al., “An introduction to computational networks

and the computational network toolkit,” Tech. Rep.,

Microsoft MSR-TR-2014-112, 2014.

