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ABSTRACT 

 
Fast and robust voice-activity detection is critical to 

efficiently process speech. While deep-learning based 

methods to detect voice have shown competitive accuracies, 

the best models in the literature incur over a 100 ms latency 

on commodity processors. Such delays are unacceptable for 

real-time speech processing. In this paper, we study the 

impact of lowering the representation precision of the neural-

network weights and neurons on both the accuracy and delay 

of voice-activity detection. Based on a design-space 

exploration, we not only determine the optimal scaling 

strategy but also adjust the network structure to accommodate 

the new quantization levels. Through experiments conducted 

with real user data, we demonstrate that optimized deep 

neural networks with lower bit precisions outperform the 

state-of-the-art WebRTC voice-activity detector with 87x 

lower delay and 6.8% lower error rate. 

 

Index Terms— Voice-activity detection, VAD, 

Precision scaling, Neural networks 

 

1. INTRODUCTION 

 

Voice activity detection (VAD) is a process of identifying the 

presence of human speech in an audio sample that contains a 

mixture of speech and noise. Thanks to its ability of filtering 

out non-speech segments, VAD has become a critical front-

end component of many speech-processing systems such as 

automatic speech recognition and speaker identification [1-3].  

Conventional VAD algorithms are generally based on 

statistical signal processing that make strong assumptions on 

the distributions of speech and background noise. One of the 

commonly used conventional approaches is ITU-T 

Recommendation G.729-Annex B [4]. This method was 

improved by Sohn et al. with an addition of speech presence 

probability [5]. A hangover scheme with a simple hidden 

Markov model (HMM) was added in [6], and further 

optimized for better performance as described in [7]. 

Recently, another VAD algorithm based on the Gaussian 

mixture model was developed in line with the WebRTC 

project, including an open-source implementation that targets 

real-time performance [8]. This algorithm has found wide 

adoption and has recently become one of the gold-standards 

for delay-sensitive scenarios like web-based interaction. 

Despite these algorithmic advances, performance of 

conventional algorithms has not yet reached levels that are 

routinely expected by modern applications (< 5% error rate). 

Their performance limitation is typically attributed to two 

factors: (1) difficulty of finding an analytical form of speech-

presence probability [9] and (2) not having enough 

parameters that capture global signal distributions [3]. 

Therefore, these conventional approaches can be either 

approximate or computationally expensive [9]. 

Emerging deep-neural networks (DNNs) implicitly 

model data distributions with high-dimensionality. Besides, 

they allow us to fuse multiple features and separate speech 

from fast-varying non-stationary noises [9][10]. Thus, DNNs 

provide a new opportunity to improve the performance of 

voice-activity detection [11]. Indeed, recent work has 

demonstrated its benefits via simple fully-connected 

networks, recurrent networks, and deep-belief networks  [9], 

[12-14]. However, in most prior work, the improvements 

were obtained in cases where the training and test sets had the 

same types of noise. Thus, the performance of existing 

neural-network models has suffered significantly when 

applied to unseen test scenarios [3]. Another limitation of 

 WebRTC 

[8] 

DNN 

Baseline 

(1729-512-512-512-257) 

Optimized 

(256-32-257) 

W32/N32 [9] W1/N2 [This work] 

kOPs/frame - 3073 144 (21x ↓) 1.5 (2048x ↓) 

Memory (MB) - 6.0 0.19 (32x ↓) 0.13 (46x ↓) 

Processing delay 

/sample (ms) 
17 138 (8.2x ↑) 4.7 (3.6x ↓) 0.2 (87x ↓) 

VAD error rate 

(%) 
20.88 

8.20  

(12.68% ↓) 

11.34 

(9.54% ↓) 

14.10 

(6.8% ↓) 

 Table I. Comparison of the computation/memory demand and 

performance of conventional WebRTC and DNN-based VADs. 

DNN models include baseline/optimized structures and two 

different precisions (Wi/Nj indicates i bits for weights and j bits for 

neurons). The reference for the kOPs/frame and memory 

comparison is W32/N32 DNN, and the reference for the processing 

delay and VAD error rate comparison is the WebRTC. 



DNNs is their computational complexity and memory 

demand, which increase significantly depending on the depth 

and breadth of the networks. For instance, on an Intel CPU, 

even a simple 3-layer DNN incurs a processing delay of 138 

ms per frame [see Table I]. This is due to the 3073 kOPs of 

computation and 6 MB of memory required to evaluate every 

frame of audio data. Such overheads are unacceptable in real-

time applications. In this paper, we aim to address both of 

these issues by optimizing the neural network architectures. 

To lower the computation and memory demands of 

DNNs, a number of optimization methods have been 

proposed [15][16]. One of the recently proposed methods is 

a precision-scaling technique that represents the weights 

and/or neurons of the network with reduced number of bits 

[17]. While recent studies have effectively applied binarized 

(1-bit) networks in image classification tasks [18][19], to the 

best of our knowledge, no work has been done to analyze the 

effect of various bit-width pairs of weights and neurons on 

the processing delay and the detection accuracy of VAD.  

In this paper, we investigate the design of efficient DNNs 

for VAD by scaling the precision of data representation 

within the network. To minimize bit-quantization error, we 

use a bit-allocation scheme based on the global distribution 

of the values. We determine the optimal pair of 

weight/neuron bits by exploring the impact of bit widths on 

both the processing performance and delay. We further 

reduce the processing delay by optimizing the network 

structure. We compare the detection accuracy of the proposed 

DNN model with conventional approaches using the test set 

with unseen noise scenarios. Our results show that the DNN 

with 1-bit weights and 2-bit neurons reduces the processing 

delay by 30x with 3.12% increase in accuracy, compared to 

the baseline 32-bit DNN. By shrinking the network, it 

outperforms the state-of-the-art WebRTC VAD with 87x 

lower delay and 6.8% lower error rate. 

 

2. PRECISION SCALING OF NEURAL NETWORKS 

 

One of the most commonly used precision-scaling method is 

the rounding scheme with round-to-nearest or stochastic 

rounding mode [20]. However, rounding can result in large 

quantization error as it does not consider global distribution 

of the values. In this work, we use a precision scaling method 

based on residual error mean binarization [21], in which each 

bit assignment is associated with a corresponding 

approximate value that is determined by the distribution of 

the original values. Fig. 1 illustrates an example of 2-bit 

assignment of 4 values. First representation bit is assigned 

based on the sign – positive values are assigned bit 1 and 

negative values are assigned bit 0. Then the approximate 

value for each bit assignment is computed by 

adding/subtracting the average distance from the reference 

value (0 in the first bit assignment). For next bit assignment, 

each approximate value becomes the reference of each 

section of the bit. This process allocates the same number of 

values in each bit assignment bin to minimize the 

quantization error. 

We estimate the ideal inference speedup due to the 

reduced bit precision by counting the number of operations in 

each bit-precision case [see Fig. 2]. In the regular 32-bit 

network, we need two operations (32-bit multiplication and 

accumulation) per one pair of input feature and weight 

elements to compute the output feature. When the network 

has 1-bit neurons and weights, multiplication can be replaced 

with XNOR and bit count operations, which can be 

performed in sets of 64 operations per CPU cycle. In this case, 

we need three operations per 64 elements, which translates to 

a 42.7x speedup. When the network has 2 or more bit neurons 

and weights, we need to perform the operation for all the 

combinations of the bits. Therefore, the ideal speedup is 

computed as 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = max (1,
128

3 × 𝑊𝑖 ×𝑁𝑗
) 

 

Fig. 2. Illustration of output feature computation with 32-bit (top) 

and 1-bit (bottom) weights and neurons. 
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Fig. 3. Speedup due to reduced bit precision of neurons and weights. 

(a) Ideal and (b) measured speedup. Blue bars indicate speedup>1 

and gray bars indicate no speedup. 
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Fig. 1. An example bit assignment using the proposed method. Four 

different values (-5, -1, 1, 3) are represented by 2-bit precision with 

the approximate values of (-4, -1, 1, 4).  
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where Wi and Nj denote i-bit and j-bit representations used 

for the weights and the neurons, respectively. Fig. 3(a) shows 

that the ideal speedup decreases as we reduce weight/neuron 

bit width. When the product of the two bit-precision values is 

larger than 42.7, there is no advantage from bit truncation 

since XNOR and bit-count operations will take more 

computation than regular multiplication. We have 

implemented our precision scaling methodology within the 

CNTK framework [22], and measured the actual inference 

speedup that was attained on an Intel processor [see Fig. 3(b)]. 

The measured speedup is similar to or even higher than the 

ideal values because of the benefits of loading the low-

precision weights, as the bottleneck of the CNTK matrix 

multiplication is memory access. The figure also indicates 

that reducing weight bits leads to higher speedup than 

reducing neuron bits since the weights can be pre-quantized, 

making their memory loads very efficient.  

 

3. EXPERIMENTAL FRAMEWORK 

 

3.1. Dataset 

We created 750/150/150 files of training/validation/test 

datasets by convolving clean speech with room impulse 

responses and adding pre-recorded noise at different signal-

to-noise ratios (SNRs) ranging between 0-30 dB and 

distances from the microphone ranging between 1-3m. Each 

clean speech file included 10 sample utterances that were 

collected from voice queries to the Microsoft Windows 

Cortana Voice Assistant. Further, our noise files contained 25 

types of recordings in the real world from a single-channel 

microphone array. Using noise files with different noise 

scenarios, we also created 150 files of the test set with unseen 

noise.  

 

3.2. Experimental Framework 

As Fig. 4 shows, the experiments are performed through 

training, inference, and evaluation stages. We utilized noisy 

speech spectrogram windows of 16 ms and 50% overlap with 

a Hann weighting, along with the corresponding ground-truth 

labels for DNN training and inference. For the baseline DNN, 

we utilized the model presented in [9]. The input feature to 

the DNN was prepared by flattening symmetric 7-frame 

windows of the spectrogram. The network had three hidden 

layers with 512 neurons each, and an output layer of 257 

neurons; one for the speech probability for the entire frame 

and the other 256 for frequency bins. At the end of each layer, 

we applied the tanh non-linearity function. 

The network was trained to minimize the squared error 

between the ground-truth and predicted labels. Each training 

involved 100 epochs with a batch size of 400. We trained the 

network with the reduced bit precision from scratch, instead 

of re-training the network after bit quantization. During 

inference, we supplied the noisy spectrogram from the test 

dataset to the trained network to generate the predicted labels.  

The predicted labels were compared with the ground-

truth labels to compute performance metrics including 

probability/binary detection error and mean-square error. We 

define detection error as the average difference between the 

ground-truth labels and probability/binary decision labels for 

each frame or frequency bin. Further, we determined the 

binary decision by comparing the probability with the fixed 

threshold 0.5. For performance comparison with 

conventional approaches, we also obtained the performance 

metrics of the classic VAD in [7] and WebRTC VAD.  

 

4. EXPERIMENTAL RESULTS 

 

Table II compares the per-frame detection accuracy for the 

regular test set and the test set with unseen noise. With the 

regular test set, the baseline 32-bit DNN provides much 

higher detection accuracy than conventional approaches. It is 

important to note that even the DNN with 1-bit weights and 

neurons achieved lower detection error than the conventional 

methods.  

To illustrate the performance advantage, we show the 

binary detection output from each method for a sample file 

that has similar error rates to the average error rates [Fig. 5]. 

The DNN approach shows very similar detection output as 

the ground truth, even with 1-bit weights and neurons. 

However, the classic methods are prone to false positives, 

leading to a higher detection error than the DNN models.  

Table II indicates that the detection performance of the 

conventional methods is not significantly affected by the 

dependency of noise types in the training and test set. 

However, the DNN gives higher error rates with the unseen 

test set since the network is dealing with the noise types 

different from the ones used for training. Nevertheless, the 

binary detection error of the 1-bit DNN is lower than the 

classic approaches even with the unseen test set. As we target 

Model Classic WebRTC 
DNN 

W32/N32 W1/N1 

Regular 

testset 

RMSE 0.411 0.408 0.268 0.389 

Probability (%) 24.24 - 5.96 21.63 

Binary (%) 24.90 20.46 5.55 14.95 

Testset w/ 

unseen noise 

RMSE 0.343 0.389 0.228 0.312 

Probability (%) 17.89 - 15.32 24.51 

Binary (%) 18.08 20.88 8.20 17.76 

Table II. Comparison of voice detection error rates with different 

approaches and test sets. Probability error rates of WebRTC are 

omitted since it only provides the binary-detection result. 

Fig. 4. Experimental framework that we use in this paper. 
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for the practical solution that makes a detection on each frame 

under the various noise types, we focus on the frame-level 

binary detection error on the unseen test set for the rest of the 

analysis. 

Fig. 6(a) shows detection error of the DNN model with 

different weight/neuron bit precision pairs. As expected, the 

detection error increases as lower bit precision is used. One 

important observation from this result is that the accuracy is 

more sensitive to neuron bit reduction than weight bit 

reduction. Thus, to choose the optimal pair of weight/neuron 

bit precision we need to consider both detection accuracy and 

processing delay. Therefore, we introduce the new metric 

computed by multiplying speedup and VAD error, with both 

of them normalized to lie in the range [0,1]. As shown in Fig. 

6(b), the optimal bit-precision pair is determined as 1-bit 

weights and 2-bit neurons (W1/N2). 

We measured the average processing delay per file of the 

different approaches based on their Python implementation 

and an Intel processor. As our implementation of the classic 

VAD was based on MATLAB, we focused on the WebRTC 

VAD to compare the processing delays. The baseline 32-bit 

DNN required 138 ms per file, which was much higher delay 

than the WebRTC VAD (17 ms). As we scaled the precision 

to W1/N2, which we chose as the optimal precision pair in 

the last section, the processing delay reduced by 30x (4.7 ms), 

which was 3.6x lower than the WebRTC VAD.  

We reduced the processing delay further by optimizing 

the network structure such as the number of layers, number 

of neurons in each layer, and the input window size. As 

shown in Fig. 7, the network size reduction leads to a decrease 

in processing delay as well as VAD accuracy. One interesting 

conclusion that we can make at this point is that wide and 

shallow DNNs provide better accuracy than narrow and deep 

DNNs at the same delay (e.g. three 128-neuron vs. one 512-

neuron). By further reducing the network into one 32-neuron 

layer and single-frame window, we observe that the W1/N2 

DNN outperforms the WebRTC VAD with 87X lower delay 

and 6.8% lower error rate.  

Lower precision of the weights not only reduces the 

computational demand, but also reduces the size of the 

weights, which potentially decreases the effective memory 

access latency and energy. As the weights of the baseline 32-

bit DNN (6MB) cannot typically be fit into an on-chip cache 

of usual mobile devices, we recommend that they be stored 

in an off-chip memory such as DRAM, where the system 

throughput and energy is dominated by the weight access. 

Since the entire set of weights for the W1/N2 DNN (128 KB) 

can be stored in the on-chip cache, a significant reduction in 

energy and latency is achieved per our expectation. 

 

5. CONCLUSIONS 

 

In this paper, we presented a methodology to efficiently scale 

the precision of neural networks for a voice-activity detection 

task. Through a careful design-space exploration, we 

demonstrated that a DNN model with optimal bit-precision 

values reduces the processing delay by 30x with only a slight 

increase in the error rate. By further optimizing the network 

structure, it outperforms a state-of-the-art VAD from the 

literature with 87x lower delay and 6.8% lower error rate. The 

results show the promising potential of precision scaling for 

optimization of DNNs for a classification task. As part of 

future work, we intend to further explore the effect of scaling 

the neural-network bit precision for other classification tasks 

such as source separation and microphone beam forming as 

well as estimation tasks such as acoustic echo cancellation. 

Fig. 5. Illustration of voice detection output from different VAD 

approaches for a sample noisy speech file. (a) Ground-truth label, 

(b) classic VAD, (c) WebRTC VAD, (d) DNN with 32-bit 

weights/neurons, and (e) DNN with 1-bit weights/neurons. 

(a)

(b)

(c)

(d)

(e)

Frame number Fig. 6. VAD performance of DNN with different pairs of 

weight/neuron bit precision. (a) Frame-level binary detection error 

and (b) normalized speedup/normalized VAD frame error.  A red 

bar indicates the optimal pair of bit precision (W1/N2). 
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