And Then There Were More:
Secure Communication for More Than Two Parties

David Naylor*i, Richard Li'* Christos Gkantsidis*, Thomas Karagiannisi, Peter Steenkiste*
*Carnegie Mellon University, TUniversity of Utah, ¥Microsoft Research

ABSTRACT

Internet communication today typically involves intermediary mid-
dleboxes like caches, compression proxies, or virus scanners. Unfor-
tunately, as encryption becomes more widespread, these middle-
boxes become blind and we lose their security, functionality, and
performance benefits. Despite initial efforts in both industry and
academia, we remain unsure how to integrate middleboxes into
secure sessions—it is not even clear how to define “secure” in this
multi-entity context.

In this paper, we first describe a design space for secure multi-
entity communication protocols, highlighting tradeoffs between
mutually incompatible properties. We then target real-world re-
quirements unmet by existing protocols, like outsourcing middle-
boxes to untrusted infrastructure and supporting legacy clients. We
propose a security definition and present Middlebox TLS (mbTLS),
a protocol that provides it (in part by using Intel SGX to protect
middleboxes from untrusted hardware). We show that mbTLS is
deployable today and introduces little overhead, and we describe
our experience building a simple mbTLS HTTP proxy.

CCS CONCEPTS

« Security and privacy — Security protocols; Trusted comput-
ing; « Networks — Session protocols; Middle boxes / network
appliances;

KEYWORDS
TLS, middleboxes, trusted computing, SGX

ACM Reference format:

David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and
Peter Steenkiste. 2017. And Then There Were More: Secure Communication
for More Than Two Parties. In Proceedings of CONEXT ’17: The 13th Inter-
national Conference on emerging Networking EXperiments and Technologies,
Incheon, Republic of Korea, December 12—15, 2017 (CONEXT ’17), 13 pages.
DOI: 10.1145/3143361.3143383

Work done while David and Richard were interns at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT 17, Incheon, Republic of Korea

© 2017 ACM. 978-1-4503-5422-6/17/12...$15.00

DOI: 10.1145/3143361.3143383

88

1 INTRODUCTION

Internet communication is no longer two endpoints exchanging
messages over a dumb packet-forwarding core; our data is fre-
quently processed by intermediary middleboxes like caches, com-
pression proxies, intrusion detection systems, or virus scanners. For
example, all four major U.S. mobile carriers use HT TP proxies [55]
and a typical enterprise network has roughly as many middleboxes
as it does routers and switches [47]. As the use of encryption online
increases (as of 2014, nearly half of all Web flows used HTTPS [40]),
these middleboxes become blind and can no longer perform their
jobs, prompting both the academic community and industry to
consider the question: how do we integrate middleboxes into secure
communication sessions?

Because TLS—the standard secure communication protocol used
in the Internet—is designed for exactly two parties, the current
practice is to “split” the session into two separate TLS connections:
the middlebox impersonates the server to the client and opens
a second connection to the server. Doing so drastically weakens
security, in part because the client cannot explicitly authenticate the
middlebox or be sure that the middlebox will properly authenticate
the server [23].

These weaknesses underscore the fact that, while the properties
of TLS are well-understood in the two-party case, it is unclear how
to define “secure” in the multi-party case. Recent work has proposed
new protocols alongside new security definitions. For example,
Multi-Context TLS (mcTLS) [41] allows endpoints to restrict which
parts of the data stream the middleboxes can read or write and
BlindBox [48] allows middleboxes to operate directly on encrypted
data. However, these are largely point solutions that, while useful
in certain scenarios, leave several real-world needs unmet.

In this paper, we focus on three practical requirements that are
so far unaddressed. First, there is increasing interest in outsourcing
middleboxes to third-party cloud providers [2, 11, 31, 47] or to
ISPs [5, 9, 12]. This setting poses a new challenge: the owner of
middlebox software and the owner of the hardware on which it
runs are not the same. If the infrastructure is untrusted, existing
protocols like “split TLS” and mcTLS cannot provide the standard
security properties TLS does today because (1) session data and
keys are visible in memory and (2) the endpoints cannot tell if the
infrastructure provider ran the intended code. Second, in order
to be realistically deployable, any new protocol should be reverse
compatible with TLS (i.e., upgraded endpoints should be able to
include middleboxes in sessions with legacy TLS endpoints). And
third, the ability to discover middleboxes on-the-fly is a practical
requirement in many contexts. For example, if a service provider
places proxies in edge ISPs, directing each client to its local proxy
using DNS (1) is an unnecessary configuration burden and (2) is
brittle, since clients can use non-local DNS resolvers like OpenDNS.

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

We make two primary contributions in this paper. First, we care-
fully articulate a design space for secure multi-entity commu-
nication protocols (and use it to place previous work in context).
We describe the different properties that such a protocol might have
and argue why some combinations are impossible to achieve at
once, suggesting that the community needs to either carefully select
which set of properties to support or develop different protocols for
different use cases. Second, we present Middlebox TLS (mbTLS),
a protocol for secure multi-entity communication that addresses
the needs described above:

(1) mbTLS is immediately deployable. Unlike mcTLS or BlindBox,
it interoperates with legacy TLS endpoints and provides in-band
middlebox discovery.

(2) mbTLS protects session data from third party infrastructure providers.
mbTLS leverages trusted computing technology, like Intel SGX [15,
26, 37], to isolate the middlebox execution environment from the
third party infrastructure.

(3) mbTLS provides other important security properties unique to
multi-party settings. For example, mbTLS guarantees that data vis-
its middleboxes in the order specified by the endpoints, prevents
attackers from learning whether or not a middlebox modified a
piece of data before forwarding it, and gives endpoints guarantees
about what code a middlebox is running.

We implement mbTLS using OpenSSL and the Intel SGX SDK
and evaluate its deployability and performance, showing that (1)
mbTLS is immediately deployable, (2) mbTLS reduces CPU load on
the middlebox and adds reasonable overhead on the server, and (3)
running inside an SGX enclave does not degrade throughput.

Our hope is that mbTLS represents a significant and practical
step toward bridging the gap between end-to-end security and the
reality that middleboxes are not going away.

2 MULTI-PARTY COMMUNICATION

Most network communication sessions today involve more parties
than just a client and a server. By and large, these additional entities
fall into one of three categories:

Network-Layer Middleboxes (e.g., firewall, NAT, layer 3 load bal-
ancer). These process data packet by packet and do not need to
reconstruct or access application layer data.

Application-Layer Middleboxes (e.g., virus scanner, IDS, parental
filter, cache, compression proxy, application layer load balancer).
These do need access to application layer data.

Application-Layer Delegates (e.g., CDNs). In contrast to middle-
boxes, which act as intermediaries between client and server at com-
munication time, we use the term delegate for intermediaries that
take on the role of the server during the session (though in terms
of real-world relationships, they are still more naturally viewed
as intermediaries). Content delivery networks (CDNs) are a good
example; clients talk to directly to CDN servers; the origin server
might not be involved at all.

As we move toward an Internet where encryption is ubiquitous,
it is becoming clear that we do not have an adequate protocol for
secure multi-entity communication, nor do we know exactly what

89

D. Naylor et al.

properties one should provide. In the two-party case, it is well
understood what security properties we want and how to achieve
them; we have been using TLS for years. But in the multi-party
case, there are still two key unanswered questions: (1) what security
properties should hold for sessions involving three or more parties?
and (2) what are the best mechanisms to enforce those properties?

The answers to these questions will be different for each of the
three categories of intermediary. In this paper, we focus on secure
multi-entity communication for application-layer middleboxes.
Even among just application-layer middleboxes, security needs are
potentially diverse—for example, intrusion detection systems and
compression proxies behave very differently and trust relationships
differ between an administrator-mandated virus scanner and an
opt-in compression service—which suggests there may not be a
single one-size-fits-all solution. Our first step toward answering
these questions is to articulate the design space.

2.1 Design Space

TLS Security Properties. TLS currently provides the following
properties in the two-party case. Clearly we want these properties
in the multi-party case as well, but it turns out there are multiple
ways to extend the two-party definitions to the multi-party case.

Data Secrecy and Data Authentication. Only the endpoints can read
and write (create, modify, delete, replay, or re-order) session data.
Furthermore, with a modern cipher suite, communication is forward
secret (the compromise of a long-term private key does not help an
attacker access previous sessions’ data). To extend these properties
beyond two parties, the following questions arise.
Granularity of Data Access. yes/no RW/RO/None func. crypto
Do middleboxes have complete access to session data, or do they
have some level of partial access? This could mean they can
read/write some bytes but not others (e.g., HTTP headers but
not HTTP bodies), as in mcTLS [41], or that they can perform
a limited set of operations over encrypted data (e.g., search for
patterns), as in BlindBox [48].
Definition of "Party.” pachine progran
When a party is added to a session, is session data accessible
to anyone with physical access to the machine, or only to the
middlebox service software? This distinction becomes important
when middleboxes are outsourced to third-party hardware (e.g.,
cloud providers or ISPs).

Entity Authentication. Each endpoint can verify that the other is
operated by the expected entity by verifying that they possess a
private key that a CA has certified belongs to that entity. To extend
this property beyond two parties, the following question arises.
Definition of “Identity” owner code
When a party in a session verifies the “identity” of another party,
what is it checking? That the machine is owned by the expected
entity (e.g., this is a YouTube server)? That the machine is running
the expected software and is correctly configured (e.g., Apache
v2.4.25 with only strong TLS cipher suites enabled)? Both?

And Then There Were More: Secure Communication...

Other Security Properties. In the multi-party case, a number of
new security properties arise.

Path Integrity. yes no

Does the protocol enforce that data must traverse middleboxes
in a fixed order (and that they cannot be skipped)? Path order
can impact security, especially when middleboxes perform filter-
ing/sanitization functions.

Can the adversary learn anything about the communication by
observing data before and after a middlebox? Protocols could offer
no protection (adversary knows any time a middlebox makes a
change), value protection (adversary does not learn when a middle-
box changes a message so long as the size stays constant), or value
+ size protection (adversary does not learn about any changes).

Authorization. § endpts 1 endpt poth endpts endpts + mboxes

Who gets to add a middlebox to a session (and decide what permis-
sions it has)? Do both endpoints need to be made aware, so they
can terminate the session if they do not approve? Only one? Should

middleboxes be aware of other middleboxes?

Other Properties. Finally, there are a number of non-security
properties that impact protocol deployability and usability.
Legacy Endpoints. both upgrade 1 legacy both legacy

Do both endpoints need to be upgraded to a new protocol, or can
one or both be legacy TLS endpoints?

In-Band Discovery. yes yes + 1 RTT no

Does the protocol allow endpoints to discover on-path middleboxes
on-the-fly? If so, does adding discovered middleboxes add time to
the handshake?

Does the protocol restrict what kinds of jobs middleboxes can per-
form (i.e., arbitrary computation vs. a limited set of operations, like
pattern matching)?

2.2 Design Tradeoffs

Next we look at existing approaches in the context of this design
space, highlighting how the mechanisms they introduce interact
with the properties described above. Often, a mechanism that pro-
vides a particular property (denoted like this) along one dimension
often eliminates options along another (denoted like this).

TLS Interception with Custom Root Certificates [23, 27, 42]
is the standard approach today. First, an administrator provisions
clients with custom root certificates (this is easy in managed envi-
ronments like corporate networks). Then, when the client opens a
new connection, the middlebox intercepts it, impersonates the in-
tended server by fabricating a certificate for that domain, and opens
a second connection to the server. Though this means both clients
can be legacy TLS clients [Legacy: both legacy], it also makes it
impossible for clients to authenticate the server [Authentication:
ewner | —they must trust the middlebox to do so (trust which, in

N {
practice, is often misplaced [23]).

90

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

Multi-Context TLS (mcTLS) [41] offers access control—endpoints
can restrict which parts of the data middleboxes can access
and whether that access is read/write or read only [Data access:
RW/R0/None]. It does this by encrypting different parts of the data
with different keys and only giving middleboxes certain keys. This
requires that both endpoints run mcTLS, precluding legacy end-

points, since a legacy TLS endpoint only knows what to do with

point generates part of the key material for each of these keys,
ensuring that a middlebox only gains access if both endpoints agree

[Authorization: both, .e.r]qp_t_s‘]. This also prevents legacy support.

BlindBox [48] offers searchable encryption—pattern-matching mid-
dleboxes like intrusion detection systems can operate directly on
_______ crypto]. But searchable encryp-
tion only works for pattern-matching; it cannot support other mid-
dleboxes, like compression proxies, that perform arbitrary computa-

tion [Computation: arbitrary]. It also requires that both endpoints

Middlebox TLS (mbTLS) (this paper). We will soon see this for
mbTLS too: for example, mbTLS uses a different symmetric key for
each “hop” in the session, allowing mbTLS to provide path integrity
[Path integrity: yes], but making it impossible to support two legacy
endpoints [Legacy: ?e%h—kegac—)f]

The takeaway is this: there is no one-size-fits-all solution for
secure communication with application-layer middleboxes.
Each protocol here gives up desirable properties in order to provide
others. Different properties, and therefore different protocols, will
lend themselves best to different use cases. For instance, mcTLS
is ideal for read-only middleboxes since its access control mecha-
nisms provide cryptographic guarantees that the middlebox will
not modify data. And for pattern-matching middleboxes like IDSes,
BlindBox provides better privacy guarantees than mbTLS or mcTLS.
Unfortunately, mcTLS and BlindBox achieve these properties using
mechanisms that make them harder to deploy; in this paper, our
goal is a protocol that prioritizes deployability and operability.

3 MIDDLEBOX TLS

The solutions introduced in §2.2 serve niche needs while failing to
address several common ones, making them harder to deploy and
reducing the incentive to do so in the first place. In this section, we
present Middlebox TLS, or mbTLS, a protocol for secure commu-
nication sessions that include application-layer middleboxes. We
saw in §2.2 that it is hard to build a super-protocol incorporating
all the good features from §2.1; instead, we target the following
three common-case, real-world needs:

(1) Immediate Deployability: First, mbTLS needs to interoperate
with legacy endpoints. BlindBox [48] and mcTLS [41] require
both endpoints to be upgraded. Others protocols require that at
least the client be upgraded [33, 34, 36], meaning servers cannot
include middleboxes in a session with a legacy client. Realistically,
however, it is not an option to wait until every client in the Internet
is upgraded, especially since as many as 10% of HTTPS connec-
tions are already intercepted [23]. Second, in-band middlebox
discovery is important for practical deployment in the use cases
we target. For example, suppose a service provider places proxies

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

in edge ISPs. Directing clients to their local proxy using DNS (1) is
an unnecessary configuration burden and (2) is brittle, since clients
can use non-local DNS resolvers like OpenDNS. Another example
is guest networks where administrators cannot feasibly configure
every client device that joins (nor would those users want them to).

(2) Protection for Outsourced Middleboxes: There is an increasing
interest in deploying middleboxes in third-party environments.
This takes one of two forms. First, network functions can be out-
sourced to a cloud provider! that specializes in operating middle-
boxes, freeing network administrators from learning to operate
specialized boxes and leveraging economy of scale to drive down
costs [2, 11, 47]. Second, deploying middleboxes in client ISPs can
help lower latency or bandwidth costs [5, 9, 12]. (For example,
Google’s Edge Network proxies connections using nodes in client
ISPs [5].) In both cases, the logical owner of the network function and
the operator of the hardware on which it runs are different. Since the
middlebox infrastructure might not be trusted, mbTLS must protect
session data from the middlebox infrastructure in addition to
traditional network attackers.

(3) Middlebox Accountability: Endpoints may be more comfortable
giving a middlebox access to their data if they have guarantees
about its behavior. mcTLS and BlindBox provide this to an extent,
but BlindBox only supports pattern matching and in mcTLS, once
a middlebox is granted data access, it can do anything it wants. As
a first step, mbTLS allows endpoints to verify middlebox code
identity; in the future, combined with program analysis, this could
provide guarantees about middlebox behavior.

3.1 Threat Model

Parties. To capture the threats implied by these requirements, we
identify six distinct parties and label each as “trusted” or “untrusted,”
where trusted means authorized to read and write session data.

Client (C) [trusted]: The user, their machine, and the software they
run (e.g., a web browser). We assume any other software running
on the machine is trusted (i.e., its misbehavior is out of scope).
Service Provider (S) [trusted]: The company providing the online
service, its servers, and the software it runs (e.g., a web server). We
do not consider attacks by other software running on S’s servers
or by malicious employees.

Third Parties (TP) [untrusted]: Anyone else with access to network
traffic, such as ISPs or coffee shop Wi-Fi sniffers.

Middlebox Software (MS) [trusted]: The middlebox software that
processes session data.

Middlebox Service Provider (MSP) [trusted]: The entity offering the
middlebox service.

Middlebox Infrastructure Provider (MIP) [untrusted]: The entity pro-
viding the hardware on which the MS runs.

The MIP could be the MSP itself or a third party such as an
edge ISP or a dedicated cloud middlebox service, in which case we
assume this company, its employees, its hardware, and any other
software running on its machines are not trusted. For example,

I This trend is encouraged by maturing technology for running middlebox applications
on commodity hardware (NFV) [24, 25, 35, 46], including commercial offerings [3, 7, 8].

91

D. Naylor et al.

suppose Google implemented its Flywheel proxy [14] using Apache
httpd running on Amazon EC2. In this case, MS = Apache httpd,
MSP = Google, and MIP = Amazon. By distinguishing between
MS and MIP, we can require mbTLS to permit the MS, but not the

MIP, to access session data [Party: P_r_qg_r_a_n}]

Adversary Capabilities. We assume an active, global adversary
that can observe and control any untrusted part of the system. In
the network, the adversary can observe, modify, or drop any packet
and inject new ones. On the middlebox infrastructure, the adversary
has complete access to all hardware (e.g., it can read and manipulate
memory) and software (e.g., it can execute arbitrary code, including
privileged code like a malicious OS). This includes the ability to
modify or replace MS code sent by the MSP to be executed by
the MIP. We assume the adversary is computationally bounded
(i.e., cannot break standard cryptographic primitives) and cannot
compromise trusted computing hardware (e.g., Intel SGX-enabled
CPUs). Side channel attacks (e.g., based on traffic or cache access
patterns), exploitable flaws in middlebox software, and denial of
service are out of scope.

3.2 mbTLS Properties

Based on the design requirements above, we define “secure” for
mbTLS by the following four security properties.

Data Secrecy. The adversary must not be able to read
session data. [Access: y_e_s.{p.o‘] Communication should be for-
ward secret (the compromise of a long-term private key does not
help an attacker access previous sessions’ data). The adver-
sary should learn nothing more from observing ciphertext than
it would if each “hop” were its own, independent TLS connection.

[Change secrecy: value]

Data Authentication. The adversary must not be able to
modify, delete, or inject session data. This includes replaying or
re-ordering data. More formally, if a session consists of an ordered
set of nodes Ni, ..., Np,, then any data received by N; must be a
prefix of the data sent by N;_j.

Entity Authentication. Endpoints must be able to verify
they are talking to the “right thing” This encompasses two prop-
erties. Each endpoint can verify that the other endpoint is
operated by the expected entity and that each MS is operated by
the expected MSP (e.g., this proxy is operated by AT&T). (This
requires the entity being verified to have a certificate.) [Identity:
owner] Each endpoint can verify that the other endpoint and
each MS is running the expected software and that it is correctly
configured (e.g., Apache v2.4.25 with only strong TLS cipher suites
enabled). (This requires the entity being verified to support secure
execution environments—see below.) [Identity: E.qqg]

Path Integrity. Each endpoint fixes an order for its middle-
boxes. It must not be possible for any other entity (including a
middlebox or the other endpoint) to cause session data to be pro-
cessed by middleboxes in a different order (including skipping a

2Note that this provides no guarantees about the behavior or bug-freeness of that
software; for this, the code identity verification must be coupled with software analy-
sis/verification, which is out of the scope of this paper.

And Then There Were More: Secure Communication...

Primary TLS Session
(data transfer)

LTSI

Y~ “mm= ‘y
Secondary TLS Session
(pass primary session key)

Figure 1: Naive Approach. Establish a TLS session end-to-end and pass
the session key to the middlebox over a secondary TLS session.

Primary TLS Session Unique Per-Hop Keys
(data transfer + discovery)
—
SecureExecution S mm ==V

Environment
(e.g., SGX Enclave)

Secondary TLS Session

(secure env. attestation &
pass primary session key)

Figure 2: mbTLS Approach. Generate unique keys for each “hop” and
run middleboxes in secure execution environments.

middlebox). More formally, if a session consists of an ordered set of
nodes N, . .., Ny, then a record received by N; was either already
processed by Nj_ or was originated by Nj_1. [Path integrity: yes]

In addition to these security properties, we also have the follow-
ing performance and deployability-related goals:

Legacy Interoperability. mbTLS should work with legacy
TLS endpoints (client or server) so long as one of the endpoints has

legacy]

In-Band Discovery. mbTLS should discover on-path middle-
boxes during session setup. [Discovery: yes |

Minimal Overhead. mbTLS should introduce as little over-
head (compared to TLS) as possible. Importantly, mbTLS should
not add any round trips to the TLS handshake.

3.3 Design Overview

Since TLS already provides many of the properties we want, one
simple approach is the following: establish a regular TLS session
between the client and the server, then pass the session keys to the
middleboxes over separate, secondary TLS sessions (Figure 1) [43].
This provides many of the properties we want: data is encrypted
and integrity-protected against changes from third parties (partial
(P1A)), the communication is forward secret if a forward secure
cipher suite is used (P1BJ, the endpoints can verify one another’s
identities using certificates ([P3A}, and a middlebox-aware endpoint
can add middleboxes without support from the other endpoint (P5).

However, using TLS in this way is insufficient in our threat model
for three reasons: (1) it has no mechanism to provide path integrity
since it was designed for two parties (P4J; (2) the same key is used
for encryption on each “hop” in the session, making it simple for
adversaries to compare records entering and leaving a middlebox
to see if they changed (P1CJ; and (3) the infrastructure provider
can access session data in memory (P1A), access key material in

92

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

memory and use it to forge MACs (P2), and potentially run software
other than what was provided by the MSP [P3B). Furthermore, TLS
provides no discovery mechanisms (P6).

We address these insufficiencies by introducing the following
features (Figure 2), and we call the result Middlebox TLS (mbTLS).

e In-Band Middlebox Discovery. As long as one of the end-
points supports mbTLS, middleboxes can announce themselves
and join the session (with endpoint approval) during the primary
TLS handshake (P6).

e Secure Execution Environments. Middleboxes can optionally
run in a secure execution environment, like an Intel SGX enclave
(see below),® which provides memory encryption, protecting ses-
sion data and keys from an untrusted MIP (P2}, and remote
attestation, allowing endpoints to verify the software identity of
the MS (P3B). Endpoints may also run in secure environments
to provide (P3B).

e Unique Per-Hop Keys. Each “hop” uses its own symmetric
keys for protecting session data. This prevents adversaries from
delivering records to an out-of-sequence middlebox and
makes it impossible to tell when a middlebox forwards data

without changing it (P1C).

An Aside: Trusted Computing and SGX. Some features of
mbTLS rely on trusted computing technology, like Intel’s Software
Guard Extensions (SGX) [15, 26, 37]. In particular, mbTLS uses
two features provided by SGX—secure execution environments
and remote attestation—though any trusted computing technol-
ogy that offers these features, like Microsoft’s Virtual Secure Mode
(VSM) [21], would work as well. (Other technologies, like ARM
TrustZone [1], offer similar functionality, but provide slightly dif-
ferent security guarantees.) We briefly describe these features now;
if you are familiar with SGX, skip ahead to §3.4.

Secure Execution Environment. SGX allows applications to run code
inside a secure environment called an enclave. An enclave is a region
of protected memory; before cache lines are moved to DRAM, they
are encrypted and integrity-protected by the CPU. As long as the
CPU has not been physically compromised, malicious hardware or
privileged software cannot access or modify enclave memory.

Remote Attestation. SGX can provide code running in an enclave
with a special message, signed by the CPU, called an attestation, that
proves to remote parties that the code in question is indeed running
in an enclave on a genuine Intel CPU. The attestation includes a
cryptographic hash of initial state of the enclave code and data pages
(so the remote verifier can see that the expected code is running)
as well as custom data provided by the enclave application (we use
this to integrate attestation with the TLS handshake).

3.4 The mbTLS Protocol

At a high level, the endpoints do a standard TLS handshake, estab-
lishing a primary TLS session, which will eventually be used for data
transfer. Each endpoint adds zero or more middleboxes to a session,
which we refer to as client-side and server-side middleboxes and can
be known a priori or discovered during the handshake (P6]. Each
endpoint has no knowledge of the other’s middleboxes (or if it has

3This will be come increasingly practical as more middleboxes are designed to run on
commodity CPUs, on which features like SGX will soon be commonplace.

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

Client Mbox-C Mbox-S Server
—— | ClientHello + MiddleboxSupportExtensionf—————»
| Middlebox |

"Announcementl_ >

ServerHello + MiddleboxSupportExtension
Certificate + ServerKeyExchange

H ServerHello
< Certificate .
iServerKeyExchange!

i ClientKeyExchange ! |r ServerHello]
ChangeC!pherSpec > - Certificate F
H h : |ServerKeyExchange|

| [ClientKeyExchange | |

(_EChangeCipherSpe H

Finished <€ 1ChangeCipherSpect -
""""""""""""""" | Finished |
| D) 4
l\iuad_le_bExT(e_
I Y i
<- Exchange I—
< {Dataf————————————— >

L &hangeprherSpec} >
L Finished j

Condry Hadshake
(C/rsnry/Mbox <))

{Secondary Handshake ,
-t (ServehMboss) i >

Primary Handshake

Figure 3: mbTLS Handshake. Note that it consists of multiple standard
TLS handshakes, interleaved, with a few additional messages (shaded).

any at all) which means an mbTLS endpoint can inter-operate with
legacy TLS endpoints [P5]. The endpoints simultaneously establish
a secondary TLS session with each of their middleboxes. Once an
endpoint has a secure channel to a middlebox (which can include
verifying that the middlebox software is running in a secure exe-
cution environment, if the middlebox supports that), it sends the
middlebox the key material it needs to join the primary session.

Data Transport. Our implementation creates a separate TCP con-
nection for each hop. This is not strictly necessary—middleboxes
that change the data stream could tweak TCP sequence numbers
accordingly—but, since middleboxes operating on encrypted data
must collect a complete TLS record before decrypting and operating
on it, it makes sense to have reliable transport on each hop.

Control Messaging. mbTLS multiplexes the primary and sec-
ondary TLS sessions over the same TCP connections. Compared to
opening secondary TCP connections, this reduces overhead
by (1) reducing TCP state on both middleboxes and endpoints, (2)
keeping all handshake messages on the same path, and (3) keep-
ing client-side middlebox discovery from adding a round trip. We
introduce a new TLS record type (Encapsulated) to wrap sec-
ondary TLS records between a middlebox and its endpoint. These
records consist of an outer TLS record header followed by a one
byte subchannel ID and the encapsulated record. For details on
mbTLS message formats, see Appendix A.

93

D. Naylor et al.

Middlebox Discovery. There are four ways a middlebox can be-
come part of a session: client-side pre-configured, client-side dis-
covered, server-side pre-configured, and server-side discovered.

Client-Side Middleboxes. If a client knows about a middlebox in
advance (e.g., from user configuration), it opens a TCP connection
directly to the middlebox. It then sends the primary ClientHello,
which includes a new MiddleboxSupport TLS extension (top line
in Figure 3) containing, among other things, a list of all middleboxes
known a priori. The middlebox then opens a TCP connection to
the next hop and forwards the ClientHello. Additionally, mid-
dleboxes on the default routing path can be discovered during the
handshake (P6]. The MiddleboxSupport extension is a signal to
these middleboxes that the client supports mbTLS; they optimisti-
cally split the TCP connection and, upon seeing the extension, join
the handshake as described next.

In either case, when it sees the extension, the middlebox (1)
forwards the ClientHello onward toward the server and (2) pre-
pares to initiate its own secondary handshake with the client. In
this secondary handshake, the middlebox plays the role of the
server. The original, primary ClientHello serves double-duty as
the ClientHello for the secondary handshake, allowing the mid-
dlebox to insert its own ServerHello right after forwarding the
primary ServerHello toward the client, rather than waiting a
round trip for a new secondary ClientHello(P7). When the client
receives the secondary ServerHello, if the middlebox was not
configured by the client in advance, the client-side mbTLS library
will ask the application for approval, which might in turn defer this
decision to the user.

There may be multiple client-side middleboxes. Secondary hand-
shake messages are sent in Encapsulated records, each middlebox
with its own subchannel ID. Middleboxes wait until they see the
primary ServerHello, buffer it, assign themselves the next avail-
able subchannel ID, inject their own secondary ServerHello into
the data stream using that ID, and finally forward the primary
ServerHello. This process ensures that each middlebox gets a
unique subchannel ID with minimal coordination.

Server-Side Middleboxes. Server-side middleboxes can also be ei-
ther pre-configured or discovered. In the pre-configured case, the
server must somehow arrange for the handshake to traverse the
(potentially off-path) middlebox. This could be done by changing
the server’s DNS entry to resolve to the middlebox or by asking
the client—if it supports mbTLS—to include the middlebox in the
MiddleboxSupport extension (e.g., by listing the middlebox in a
new DNS record type).

In the discovery case, unlike the client, the server does not an-
nounce mbTLS support using the MiddleboxSupport extension
for two reasons: first, the TLS spec forbids the server from including
an extension in the ServerHello that the client did not include in
the ClientHello [22]; relying on a MiddleboxSupport extension
for the server would fail if the client does not also support mbTLS.
Second, even if this were allowed, if server-side middleboxes waited
to announce their presence until after the server’s ServerHello,
the middlebox-server handshake would finish after the primary
handshake, lengthening the overall handshake to more than two
RTTs (against (P7)).

And Then There Were More: Secure Communication...

KC—C1 KCW CO KC—S K 0-S1 KSLS
[> > [[
[] Y —ay— i —
ee— Mbox-C1 Mbox-CO Mbox-SO Mbox-S1

Client
Server

Figure 4: Unique Per-Hop Keys. Each hop encrypts and MAC-protects
data with a different key—the client generates keys for the client-side hops
(Kc-c1 and Kc1-¢o), the server generates keys for the server-side hops
(Kso-s1 and Ks1-5), and the primary session key (Kc-s) bridges the sides.

Instead, server-side middleboxes optimistically announce them-
selves with a new MiddleboxAnnouncement message before they
know if the server supports mbTLS. If it does not, then de-
pending on its TLS implementation, it will either ignore the
MiddleboxAnnouncement and the handshake will proceed with-
out the middlebox, or the handshake will fail. (In either case, the
middlebox will cache this information and not announce itself to
this server again.) If the handshake fails, the client will need to retry.
There is a potential danger that client software might interpret this
to mean the server is running an out-of-date TLS stack and retry
using an older version of TLS. We verified that Chrome and Firefox
do not exhibit this behavior; Chrome will try a second TLS 1.2 hand-
shake, and Firefox will not retry at all (meaning the user will need
to manually click “Refresh”). Furthermore, in practice, we expect
server-side middleboxes and servers will typically be under the
same administrative control, in which case the middleboxes know
that the server supports mbTLS and is expecting announcements.

Secure Environment Attestation. We have extended the TLS 1.2
handshake to optionally include a remote attestation (in addition
to the standard certificate check). This extension is independent
of mbTLS and could be used in standard client/server handshakes
in the event that either endpoint wants to verify that the other
runs in a secure environment. In the context of mbTLS, however,
this capability will typically be used by endpoints to verify that (1)
secondary TLS sessions with outsourced middleboxes terminate
inside a secure execution environment and (2) those
middleboxes are running the expected software in the expected
configuration (P3B]. The goal is to convince the endpoint that only
the middlebox application running in the enclave knows the TLS
session key being established. The main idea is the following: since
the attestation includes the identity of the code, and we assume
the code (application + mbTLS library) has been inspected and is
trusted, then if the code asserts that it generated the secret key
material for this handshake and did not export it, then the endpoint
can trust this assertion.

The challenge becomes identifying “this handshake”—how can
the endpoint be sure the attestation is fresh and not an adversary re-
playing an old attestation from a different handshake? This means,
in addition to the code identity, the attestation must include some
kind of handshake identifier to demonstrate freshness. For this, we
use a hash of all handshake messages exchanged so far, much like
TLS already does to authenticate the handshake in the Finished
messages. Since this includes the client and server nonces, attesta-
tions will be unique to each handshake and the adversary cannot
force them to repeat.

94

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

Unique Per-Hop Keys. At the end of an mbTLS handshake, the
session looks like Figure 4. After finishing the secondary hand-
shakes with its middleboxes, each endpoint generates a symmetric
key for each hop on its side of the connection (e.g., the client gener-
ates Kc—c1 and Kci1—cp). This prevents an adversary from causing
records to skip a middlebox or traverse the middleboxes out-of-
order and also prevents eavesdroppers from detecting whether
or not a middlebox modified a record (P1CJ. Endpoints distribute
these keys to their middleboxes in MiddleboxKeyExchange records
which are sent as (encrypted) data over the secondary TLS con-
nections. (Just like the secondary handshake messages, secondary
data records are sent in Encapsulated records in the same TCP
stream.) At this point, the secondary TLS connections are not used
again. The session key established during the primary handshake,
Kc—s, serves as a “bridge” between the client-side and server-side
middleboxes (or between a middlebox and a legacy endpoint (P5)).

3.5 Discussion

Session Resumption. mbTLS supports both ID-based and ticket-
based session resumption. Each sub-handshake (the primary hand-
shake and the secondary handshakes) is replaced with a standard
abbreviated handshake; the only minor difference is that the session
tickets for middleboxes should contain the session keys for the pri-
mary end-to-end session (in addition to the key for the secondary
endpoint-middlebox session). A new attestation is not required,
because only the enclave knows the key needed to decrypt the
session ticket. The client stores a session ID or ticket for the server
and each client-side middlebox. The server can either cache the
session IDs/tickets for server-side middleboxes or ask the client to
cache them and return them in its ClientHello.

Assuming the client sends application data first, it is pos-
sible for data to arrive at a server-side middlebox before the
ChangeCipherSpec and Finished from the server. This is the
same scenario seen in TLS False Start [32]. The middlebox can
choose to wait for the server’s Finished, thereby slightly delaying
the handshake beyond 1 RTT, or go ahead and process the data if
the cipher suite is whitelisted for use with False Start.

TLS 1.3. TLS 1.3 [44] significantly changes the TLS handshake
compared to TLS 1.2 and earlier, shortening it from two round
trips to just one. With minor modifications, mbTLS’s handshake
can be adapted to TLS 1.3. There is one caveat: when client-side
middleboxes are present, data sent by the server in the same flight
as the server Finished could be delayed, in the worst case, up to
one round trip. In most cases, however, clients send data first.

Trust. How does an endpoint decide to trust a middlebox? While
this is orthogonal to the design of mbTLS, we briefly describe three
scenarios we anticipate. First, the user might sign up for a service
(e.g., parental filtering from their ISP) and explicitly configure their
browser to trust it. Second, client software might be pre-configured
to trust middleboxes from a known set and prompt the user when
one is discovered (e.g., Chrome could do this for Flywheel). Finally,
service providers might rely on mbTLS to discover the closest in-
stance of their own middleboxes; the server expects the middlebox
and verifies it with certificate and attestation.

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

4 SECURITY ANALYSIS

4.1 Core Security Properties

We now revisit each security property from §3.2, arguing why
mbTLS provides them. (Table 1 summarizes.)

Data Secrecy.

Decrypting session data requires access to one of the sym-
metric keys shown in Figure 4. The bridge key, Kc_s, is established
during the end-to-end client-server TLS handshake in which the
endpoints verify one another’s certificates. Next, this key and the
rest of the session keys (e.g., Kc—c1, Kc1-co, etc.) are transferred
to the middleboxes over individual secondary TLS connections;
importantly, because these secondary connections terminate inside
SGX enclaves (remote attestation proves to the endpoint that this
is the case), the MIP cannot access the secondary session’s key
in memory, so only the MS (and not the MIP) learns the primary
session keys.

The bridge key (Kc—s) is the result of the (standard) primary
TLS handshake, so if the primary handshake is forward secure,
so is Kc_g. The other session keys (e.g., Kc—co, Kco-c1, etc.) are
generated fresh for each session and sent to the middleboxes over
(standard) secondary TLS connections. Therefore, if these secondary
handshakes are forward secure, so are the non-bridge session keys.

Since each hop uses its own independent encryption and
MAC keys, after the handshake each hop effectively operates like its
own TLS connection. In particular, this prevents an adversary from
learning whether or not a middlebox modified a record (though it
can still see the sizes and timings of each record, including whether
a middlebox increased or decreased the size of the data).

Data Authentication. Each record carries a message authen-
tication code (MAC), a small tag generated using the session key that
identifies a piece of data. Unauthorized changes can be detected if
the MAC does not match the data. Since only the endpoints and
each MS know the session keys (see (P1A), only these entities can
modify or create records.

Entity Authentication.

First, the client and server can require one another’s certifi-
cates in the primary handshake (though typically client authen-
tication happens at the application layer). A certificate binds the
server’s public key to its identity, and that public key is used in the
primary handshake to negotiate the shared bridge key, so after a
successful handshake, the client is assured that any data encrypted
with that bridge key can only be decrypted by the expected service
provider (or middleboxes it chose to trust). Second, endpoints can
also require certificates from middleboxes. Since the corresponding
private keys are stored in the middleboxes’ enclaves, inaccessible
by the MIP (and remote attestation proves that this is the case),
the endpoint is convinced it is talking to software supplied and
configured by the expected MSP.

Since our threat model assumes that the SP and all software
running on its server is trusted, and in P3A we verified that the
server possesses the SP’s private key, the client trusts that the ma-
chine is properly configured with the expected application software.

95

D. Naylor et al.

The same logic applies to middleboxes if they are operated in-house;
for outsourced middleboxes, endpoints can directly verify MS code
and configuration with remote attestation.

Path Integrity. This follows from the fact that mbTLS uses a
fresh key for each hop. Suppose an adversary sniffs a record from
the C1 — C0 link in Figure 4 and tries to insert it on the SO — S1
link (thereby skipping middleboxes C0 and S0). The record will be
encrypted and MAC’d with K¢1—cy, but C1 expects data secured
with Kg1_g0, so the MAC check will fail and the record will be
discarded. (Note, that an endpoint can inject, delete, or modify data
anywhere in its portion of the path because it knows all the session
keys on its side. We discuss potential security implications below.)

4.2 Other Security Properties

Endpoint Isolation. Endpoints can only authenticate their own mid-
dleboxes, not those added by the other endpoint. In fact, an endpoint
likely does not even know about the other side’s middleboxes. This
follows from the way keys are generated and distributed. Checking
a certificate or an attestation is only meaningful if the public key in
the certificate is used for key exchange (then you trust that only the
entity associated with that public key can decrypt what you send
with the new symmetric key). Since endpoints don’t do a KE with
the other side’s middleboxes, they have no means of authenticating
one another, even if they exchanged certificates/attestations. This
limitation seems reasonable; since the endpoints presumably trust
one another or they would not be communicating in the first place,
it is natural to trust the other endpoint to properly authenticate
any middleboxes it adds to the session.

Path Flexibility. It is not possible to interleave client-side and server-
side middleboxes. To support this, the endpoints would need to
coordinate to generate/distribute keys to the interleaved portion
of the path. This means (1) extra work for endpoints and (2) the
endpoints would need to know about (some of) one another’s mid-
dleboxes. This would also mean an endpoint could modify/inject
traffic after the other endpoint’s middleboxes, which could be a
security problem if one of those middleboxes performs filtering or
sanitization.

Middlebox State Poisoning. It is not safe to use mbTLS with client-
side middleboxes that keep global state. Since endpoints know
the keys for each hop on their side of the session, a malicious
client can read and/or modify data on any of these hops without its
middleboxes knowing. This is a problem when a middlebox shares
state across multiple clients, like a Web cache does. A client with
access to a link between the cache and the server could (1) request a
page, (2) drop the server’s response, and (3) inject its own response,
thereby poisoning the cache for other clients.

One possible solution is to alter the handshake protocol so that
middleboxes establish keys with their neighbors rather than end-
points generating and distributing session keys; this means each
party only knows the key(s) for the hop(s) adjacent to it. The down-
side is the client has lost the ability to directly authenticate the
server; instead, the client must trust its middleboxes to authenticate
the server.

And Then There Were More: Secure Communication...

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

Security Property Threat

Defense (TLS) Defense (mbTLS)

Data Secrecy Data read on-the-wire by TP or MIP

Data read in MS application memory by MIP

Old data decrypted by TP after a long-term key leaks
TP compares record entering and leaving MS to see ifit — —

was modified

Data Authentication

Entity Authentication

someone other than S

C or S establishes key with M S software operated by -

someone other than MSP

C or S establishes key with wrong MS software
Records passed to middleboxes in the wrong order

Path Integrity

Records dropped, injected, or modified on-the-wire
Data deleted, injected, or modified in RAM by MIP —
C establishes key with wrong software on S
C establishes key with software on hardware operated by

Encryption Encryption*
- Secure Execution Environment
Ephemeral Key Exchange Ephemeral Key Exchange
Unique Per-Hop Keys
MACs MACs*
Secure Execution Environment
Certificate Certificate
Certificate Certificate
Certificate®

— Remote Attestation

— Unique Per-Hop Keys

Table 1: Threats and Defenses. How mbTLS defends against concrete threats to our core security properties. For comparison, we include TLS where
applicable. An asterisk indicates that defense also relies on the secure environment to safeguard the session key.

Bypassing “Filter” Middleboxes. It might appear that the fact
endpoints know all the session keys on their side enables another
attack: if a middlebox performs some kind of filtering function (e.g.,
a virus scanner, parental filter, or data exfiltration detector), this
means the endpoint has the keys to access incoming data before it is
filtered or inject outbound data afterward. However, if an endpoint
is capable of reading or writing data “on the other side” of the
filter (i.e., physically retrieve/inject packets from/into the network
beyond the middlebox), then the filter was ineffective to begin with.

5 EVALUATION

We evaluate four critical aspects of mbTLS. First, our security anal-
ysis argues that mbTLS is secure (§4). Second, with a series of
real-world experiments, we show that mbTLS is immediately
deployable (§5.1). Third, we show mbTLS imposes reasonable
CPU overhead for servers wishing to deploy it (and reduces it for
middleboxes) (§5.2). Finally, we show that SGX applications can
support network I/0 heavy workloads (§5.3).

Prototype Implementation. We implemented mbTLS in
OpenSSL (v1.1.1-dev) using the Intel SGX SDK for Windows (v1.7).
Our prototype currently supports any cipher suites using DHE
or ECDHE for key exchange and AES256-GCM for bulk encryption
(these are not fundamental limitations of the protocol—any TLS
cipher suite works in mbTLS). We also provide a support library for
running our mbTLS implementation inside an SGX enclave. Our
support library implements 8 libc functions directly in the enclave
(3 of which are only used for debugging and can be removed in
production builds) and exits the enclave for another 7 libc functions
(4 of which are for debugging). The middlebox in the following
experiments is a simple HT TP proxy that performs HTTP header
insertion.

Testbed. Our local testbed comprises four servers running Win-
dows Server 2016, with SGX-enabled Intel Core i7 6700 processors
and an SGX-enabled motherboard. These are connected through
Mellanox ConnectX-3 40Gbps NICs to a local Arista 7050X switch.

96

Network Type # Sites Network Type # Sites
Enterprise 6 University 11
Residential 34 Public 1
Mobile 2 Hosting 56
Colocation Services 35 Data Center 19
Uncategorized 77 Total 241

Table 2: Handshake Viability. Number of distinct sites from which we
performed mbTLS handshakes to our test server, broken down by network
type. All handshakes were successful.

5.1 Deployability

We test two things through real-world deployments: (1) Do fire-
walls or traffic normalizers in the public Internet block mbTLS
connections? (2) Can mbTLS interoperate with legacy endpoints?

Handshake Viability. Since mbTLS introduces new TLS exten-
sions (MiddleboxSupport) and record types (Encapsulated and
MiddleboxAnnouncement), we verify that existing filters, like fire-
walls, traffic normalizers, or IDSes, do not drop our handshakes.
To do so, we connect to a middlebox and server running in Azure
from clients located in various networks around the world. The
middlebox is configured to be a client-side middlebox, so the new
record types traverse the networks between the client and the data
center. To test a diverse set of client networks, we do two things.
First, we run our client through Tor, using 550 exit nodes located in
46 countries across 214 ASes. Using whois data, we categorized the
networks by type. We chose not to use platforms such as PlanetLab
(whose nodes are mainly located in university networks) or public
clouds like Azure or EC2, as these environments are more homoge-
neous and typically are not heavily filtered. Second, to fill in gaps
in the Tor experiment, we manually connect from different types
of networks (namely public, mobile, and data center networks).
Table 2 shows a breakdown of the distinct client networks from
which we initiated a handshake. All handshakes were successful.

Legacy Interoperability. To demonstrate that mbTLS can commu-
nicate with legacy endpoints, we use a version of curl [4] modified

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

2.5

Computation Time (ms)

Client

Middlebox

B mbTLS (1 server mbox)
B mbTLS (2 server mboxes)
mbTLS (3 server mboxes)

Server

M TLS (no mbox)

mbTLS (no mbox)
B "Split" TLS (1 mbox)
B mbTLS (1 client mbox)

Figure 5: Handshake CPU Microbenchmarks. Each bar shows the time
spent executing a single handshake (not including waiting for network
1/O). Each bar is the mean of 1000 trials; error bars show a 95% confidence
interval of the mean.

to use mbTLS to download the root HTML document for the top 500
Alexa sites that support HTTPS via our SOCKS HT TP proxy run-
ning in Azure. Only 385 sites in the Alexa top 500 support HTTPS;
we successfully connected to 308 of these. Of the 77 that failed,
19 had invalid or expired certificates. Another 40 did not support
AES256-GCM, the only encryption algorithm currently supported
by our prototype (note that this is a limitation of our prototype,
not the protocol). Another 13 failed due to redirects our SOCKS
implementation did not properly handle. The remaining 5 failed
for unknown reasons.

5.2 Performance Overhead

mbTLS does not modify the TLS record layer, so it has no impact
on data transfer performance. On the other hand, it does change
the handshake, so we (1) investigate the computational expense
of performing a handshake and (2) empirically verify that mbTLS
does not increase session setup latency.

Handshake CPU Microbenchmarks. To understand mbTLS’s
impact on CPU load, we measured the time it costs clients, middle-
boxes, and servers to perform TLS and mbTLS handshakes. CPU
overhead is of particular concern for middleboxes and servers, who
need to serve many connections simultaneously. As Figure 5 shows,
without a middlebox, the TLS and mbTLS times are close (we sus-
pect the slight difference is inefficiency in our implementation, not
the protocol). Second, for the middlebox, an mbTLS handshake is
cheaper than Split TLS because the middlebox only performs one
TLS handshake, not two. Finally, the server’s load is not impacted by
client-side middleboxes and increases linearly with the number of
server-side middleboxes. Note, however, that each server-side mid-
dlebox only adds approximately 20% of the original, no-middlebox
handshake time; this is because, for each middlebox, the server
performs one additional client TLS handshake, which is cheaper
than a server handshake. (Key exchange was ECDHE -RSA; results
were similar for DHE -RSA. Machine specs: Intel i7-6700K CPU at
4 GHz; 16 GB RAM; Windows 10.)

Handshake Latency. To confirm that our handshake protocol
does not inflate session setup in practice (it should not, since it

97

D. Naylor et al.
o TLS mbTLS B Handshake # Data Transfer
2000, e
. 7
% 7
__ 1500 o B é 7
E Handshake DataTransfer V) é
s 1000 2 5
£
£
500
0

Rl
RO

Path (client-mbox-server)

Figure 6: mbTLS vs. TLS Latency. Time to fetch a small object via one
middlebox across various paths between data centers.

maintains the same four-flight “shape” as TLS), we perform several
handshakes across data centers in Microsoft Azure. We deploy VMs
in four regions (Australia, US West, US East, and UK) and test all
permutations of a client-middlebox-server path across them (with
no two VMs in the same DC). In each test, we compare the time
to fetch a small object using mbTLS and TLS. For regular TLS, the
middlebox simply relays packets, i.e., it does not perform split TLS—
this is the worst-possible case to compare mbTLS against since the
middlebox performs no handshake operations. Figure 6 summarizes
the results, broken into handshake time and data transfer time.
Each bar is the mean of 100 trials; error bars show a 95% confidence
interval. We observe that mbTLS increases the handshake latency
on average by 0.7% (1.2% in the worst case—a 10 ms increase out of
800 ms). This is likely due simply to handshake computations on
the middlebox.

5.3 Network I/0 in SGX

Finally, we investigate network I/O performance from the enclave.
SGX imposes restrictions on what enclave code can do. Since only
the CPU is trusted, interaction with the outside world is not permit-
ted by default (notably, system calls are not permitted, since the OS
is untrusted). When an enclave thread needs to make a system call,
there are two high-level strategies: (1) it copies the arguments into
unprotected memory, exits the enclave, executes the call, re-enters
the enclave, and copies the result back into enclave memory (this
boundary-crossing incurs a performance penalty); or (2) it places a
request in a shared queue and another thread outside the enclave
executes the call passes the result back into the enclave via a re-
sponse queue. To borrow terminology from SCONE [16], these are
synchronous and asynchronous system calls, respectively.

In a microbenchmark of repeated pwrite()s, SCONE found that,
for small buffer sizes, asynchronous calls can be up to an order of
magnitude faster. However, here we are concerned specifically with
send()s and recv()s, so we performed a small experiment to test
the enclave’s impact on throughput. We configured four machines
in our lab to be a middlebox, a server and two clients. The clients
send a stream of random bytes, sent in encrypted chunks whose size
we vary. The middlebox is configured with one of four behaviors:
it either simply forwards the (encrypted) data to the server or it
decrypts and re-encrypts it before forwarding, and it does this either

And Then There Were More: Secure Communication...

B No Encryption + No Enclave
No Encryption + Enclave

M Encryption + No Enclave
M Encryption + Enclave

_

No Encryption Encryption

Enclave

0
8
6f No Enclave
4

Throughput (Gbps)

1K

2K 4K
Buffer Size (Bytes)

512 8K 12K

Figure 7: SGX (Non-)Overhead. Middlebox throughput with/without en-
cryption and with/without SGX. Confidence intervals are within 1-5% of
the average and differences between different scenarios for small buffers
are not statistically significant.

outside or inside the enclave. We add connections from multiple
client threads until the middlebox CPU is saturated.

Figure 7 shows that the enclave did not have a noticeable impact
on throughput, suggesting that optimizations like asynchronous
system calls are not necessary for applications with I/O heavy work-
loads. We suspect this is due to high I/O interrupt rates; overhead
from interrupt handling overwhelms the overhead from crossing
the enclave boundary. Even if a developer uses asynchronous sys-
tem calls, under the impression that a thread will permanently live
in the enclave, that thread will still leave the enclave whenever that
core is interrupted. While pinning interrupts to a different core to
avoid interrupting the enclave might help, you then pay the cost
of transferring the received data from the interrupt-handling core
to the enclave core. Figure 7 also shows that the throughput when
the middlebox decrypts/encrypts data plateaus around 7 Gbps. This
is yet another source of CPU overhead that helps outweigh any
performance penalty from enclave transitions.

6 RELATED WORK

Middlebox as an Endpoint. In §2.2 we describe the current prac-
tice of intercepting TLS connections using custom root CA cer-
tificates. Other proposals include a 2014 IETF draft from Ericsson
and AT&T [34] which would allow a proxy to intercept a TLS
handshake and return a certificate identifying itself as such; if
the client chooses, it can complete the handshake with the proxy
and rely on the proxy to open its own TLS connection to the
server. A related Cisco proposal [36] builds on this by introducing
a ProxyInfoExtension which the proxy would use to pass the
client information about the certificate and cipher suite used on
the proxy-server connection. Finally, at least one ISP ships custom
browsers with the certificates for its proxies built in [33]. Unfortu-
nately, these approaches do not allow the client to authenticate the
server or verify what cipher suite is used between the middlebox
and the server.

Middlebox as a Middlebox. In contrast to the above approaches,
which glue together separate TLS connections, several techniques

98

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

maintain some form of end-to-end session. An IETF draft from
Google has clients connect to servers directly and pass the session
key to a proxy out-of-band over a separate TLS connection [43].
CloudFlare’s Keyless SSL does much the same thing for server-
side delegates [20, 52]. Both of these techniques expose data to
the middlebox infrastructure and fail to provide path integrity (the
same session key is used on each hop).

We discuss mcTLS [41] and BlindBox [48] in §2.2.

Finally, the security concerns for network-layer middleboxes,
which operate on L3 and L4 header fields (e.g., NATSs, firewalls, and
load balancers), are orthogonal to the concerns mbTLS addresses.
Systems like Embark [31], SplitBox [17], and others [29, 38, 49] allow
network administrators to outsource network-layer middleboxes
to a cloud provider or ISP without revealing private information
about their networks.

Network Architectures. DOA [53] provides network support for
routing a packet through one or more intermediaries, but does
not by itself provide all of our security properties. ICING [39] is a
mechanism for enforcing path integrity and is more general than
ours. Our path integrity mechanism optimizes by taking advantage
of the fact that mbTLS parties already share keys and each mbTLS
record is already MAC-protected.

SGX. Protecting outsourced middleboxes with SGX was briefly dis-
cussed in [30], but without a concrete protocol or implementation.
S-NFV [50] sketches a framework for implementing SGX-protected
middlebox applications. PRI [45] details the design of an SGX-based
IDS. Both focus on the middlebox application architecture rather
than the protocol for including a middlebox in a communication
session to begin with. There are also a number of TLS implemen-
tations designed to work in SGX enclaves [6, 10, 18, 54]. These
libraries port unmodified TLS; we go a step further and extend
the TLS handshake to include remote attestation, allowing one
party to verify that the TLS session terminates inside an enclave.
Finally, there is a rapidly growing body of work on how to build
SGX-protected systems (or port existing ones) [13, 16, 19, 28, 51].
These are all orthogonal to this work and could be used in concert
with mbTLS to build an SGX-protected middlebox.

7 CONCLUSION

In this paper we presented Middlebox TLS, or mbTLS, a protocol
for secure multi-entity communication. Unlike previous solutions
for integrating middleboxes into secure sessions, mbTLS (1) inter-
operates with legacy TLS endpoints and (2) can protect session data
from untrusted middlebox infrastructure using trusted computing
technology like Intel SGX. Our prototype implementation shows
that mbTLS can indeed communicate with real, unmodified web
servers and incurs reasonable overhead. Finally, we discuss the
space of security properties for multi-entity communication and
the trade-offs protocol designers must make among them.

Acknowledgements Many thanks to Cédric Fournet, Antoine
Delignat-Lavaud, Felix Schuster, Manuel Costa, and Istvan Haller
for their time, feedback, and expertise. We also thank the reviewers
and our shepherd for their helpful comments and suggestions. This
work was funded in part by NSF under award number CNS-1345305.

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

A MBTLS PROTOCOL DETAILS

This appendix describes the message formats and protocol constants
used in our implementation of mbTLS. It follows the formatting
conventions set forth in RFC 5246 (TLS 1.2) [22].

A.1 Record Protocol
mbTLS adds three new record types (bold):

enum {
change_cipher_spec(20),
alert(21)
handshake(22),
application_data(23),
mbtls_encapsulated(30),
mbtls_key_material(31),
mbtls_middlebox_announcement(32),
(255)

} ContentType;

Encapsulated. The MBTLSEncapsulated record is used to carry
secondary handshake messages.

struct {

uint8 subchannellD;

opaque record[TLSPlaintext.length-1];
} EncapsulatedRecord;

Here, record is another complete TLS record. Because the inner
record is the outer record’s payload, which is limited to 214 bytes,
and because the subchannel ID uses 1 byte, the inner record’s
payload is limited to 2'4~1 bytes. MBTLSEncapsulated records may
only be sent during handshake or renegotiation.

Key Material. The MBTLSKeyMaterial record is used by end-
points to send symmetric key material to their middleboxes.

struct {
uint32 key_len;
uint32 iv_len;
opaque clientWriteKey[key_len];
opaque clientWriteIV[iv_len];
opaque clientReadKey[key_len];
opaque clientReadIV[iv_len];
opaque serverWriteKey[key_len];
opaque serverWriteIV[iv_len];
opaque serverReadKey[key_len];
opaque serverReadIV[iv_len];

} MBTLSGCMKeyMaterial;

struct {
Version client_server_version;
opaque client_to_server_sequence[8];
opaque server_to_client_sequence[8];
CipherSuite cipher_suite; /* 2 bytes x/
select(cipher_suite) {

case TLS_RSA_WITH_AES_256_GCM_SHA384:
MBTLSGCMKeyMaterial;

}

} MBTLSKeyMaterial;

D. Naylor et al.

The MBTLSKeyMaterial message is always sent encapsulated in
a subchannel (i.e., in an MBTLSEncapsulated record). It contains
the TLS version negotiated between the client and the server, the
sequence number for client-to-server data (write sequence from
client’s perspective and read sequence from server’s) and the se-
quence number for server-to-client data. It also contains key and
IV material in a format dependent on the cipher suite.

Middlebox Announcement. The MBTLSMiddlebox-
Announcement message is used by middleboxes to alert the
server to their presence.

struct {
} MBTLSMiddleboxAnnouncement;

The MBTLSMiddleboxAnnouncement message is always sent in
an MBTLSEncapsulated record. The message is empty, and only
serves to alert the server of the middlebox’s presence. Middleboxes
never send this message to a client.

A.2 Handshake Protocol
mbTLS adds one handshake protocol message (bold):

enum {
hello_request(0), client_hello(1l), server_hello(2),
certificate(1ll), server_key_exchange (12),
certificate_request(13), server_hello_done(14),
certificate_verify(15), client_key_exchange(16),
sgx_attestation(17),
finished(20), (255)

} HandshakeType;

SGX Attestation. The SGXAttestation handshake message can
optionally be used during the handshake for the server to send the
client an SGX attestation (quote). This feature is independent of the
rest of mbTLS. sgx_quote follows Intel’s sgx_quote_t format.

struct {
opaque sgx_quote<0..2"14-1>;
} SGXAttestation;

Middlebox Support Extension. mbTLS also adds one TLS exten-
sion, the MiddleboxSupportExtension

struct {
uint8 numHellos;
uintl6é helloLengths[numHellos];
opaque clientHellos[numHellos];
uint8 numMboxes;
opaque middleboxes[numMboxes];
} MiddleboxSupportExtension;

The MiddleboxSupportExtension is sent by a TLS client in the
ClientHello message. It indicates that the client supports mbTLS,
inviting on-path middleboxes to announce themselves to the client.
The extension carries one or more “optimistic” ClientHellos, to
which the middleboxes may respond with ServerHellos, as well
as a list of middleboxes known to the client a priori.

99

And Then There Were More: Secure Communication...

REFERENCES

(1]

[11]
[12]

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24

[25]

[26]

[27]

[28

[29]

ARM TrustZone. https://www.arm.com/products/security-on-arm/trustzone.
Accessed: January 2017.

Aryaka. http://www.aryaka.com. Accessed: January 2017.

Brocade Network Functions Virtualization. http://www.brocade.com/en/
products-services/software-networking/network-functions-virtualization.
html. Accessed: January 2017.

curl. https://curlhaxx.se.

Google Edge Network. https://peering.google.com. Accessed: January 2017.
Intel Official SGX OpenSSL Library. https://software.intel.com/en-us/sgx-sdk/
download. Accessed: June 2017.

Juniper Architecture for Technology Transformation. https://www.juniper.net/
assets/us/en/local/pdf/whitepapers/2000633-en.pdf. Accessed: January 2017.
Network Functions Virtualization (Dell). http://www.dell.com/en-us/work/learn/
tme-telecommunications-solutions-telecom-nfv. Accessed: January 2017.
Telefonica NFV Reference Lab. http://www.tid.es/long-term-innovation/
network-innovation/telefonica-nfv-reference-lab. Accessed: January 2017.
TLS for SGX: a port of mbedtls. https://github.com/bl4ck5un/mbedtls-SGX.
Accessed: June 2017.

Zscaler. https://www.zscaler.com. Accessed: January 2017.

AT&T Domain 2.0 Vision White Paper. https://www.att.com/Common/about_us/
pdf/AT&T%20Domain%202.0%20Vision%20White%20Paper.pdf, 2013. Accessed:
January 2017.

Graphene-SGX: A Practical Library OS for Unmodified Applications on SGX. In
2017 USENIX Annual Technical Conference (USENIX ATC 17), Santa Clara, CA,
2017. USENIX Association.

V. Agababov, M. Buettner, V. Chudnovsky, et al. Flywheel: Google’s data com-
pression proxy for the mobile web. NSDI ’15, pages 367-380, Oakland, CA, May
2015. USENIX Association.

1. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for cpu
based attestation and sealing. In HASP ’13, volume 13, 2013.

S. Arnautov, B. Trach, F. Gregor, et al. SCONE: Secure Linux Containers with
Intel SGX. In OSDI ’16, pages 689-703, GA, 2016. USENIX Association.

H. J. Asghar, L. Melis, C. Soldani, et al. Splitbox: Toward efficient private network
function virtualization. In Proceedings of the 2016 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization, HotMIddlebox 16, pages 7-13,
New York, NY, USA, 2016. ACM.

P.-L. Aublin, F. Kelbert, D. O’Keeffe, et al. TaLoS: Secure and Transparent TLS
Termination inside SGX Enclaves.

A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an un-
trusted cloud with Haven. In OSDI ’14. USENIX - Advanced Computing Systems
Association, Oct. 2014.

K. Bhargavan, I. Boureanu, P.-A. Fouque, C. Onete, and B. Richard. Content
delivery over tls: A cryptographic analysis of keyless ssl. In Proceedings of the
2nd IEEE European Symposium on Security and Privacy, 2017.

A. de Zylva. Windows 10 Device Guard and Credential Guard
Demystified. https://blogs.technet.microsoft.com/ash/2016/03/02/
windows-10-device-guard-and- credential-guard-demystified/. Accessed:
January 2017.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746, 5878, 6176.
Z. Durumeric, Z. Ma, D. Springall, et al. The Security Impact of HTTPS Intercep-
tion. In NDSS ’17, 2017.

S.K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. Enforcing network-
wide policies in the presence of dynamic middlebox actions using flowtags. In
NSDI 14, pages 543-546, Seattle, WA, 2014. USENIX Association.

A. Gember-Jacobson, R. Viswanathan, C. Prakash, et al. Opennf: Enabling
innovation in network function control. SIGCOMM ’14, pages 163-174, New
York, NY, USA, 2014. ACM.

M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo. Using innovative
instructions to create trustworthy software solutions. In HASP ’13, page 11, 2013.
L.S. Huang, A. Rice, E. Ellingsen, and C. Jackson. Analyzing forged ssl certificates
in the wild. In IEEE Symposium on Security and Privacy, SP 14, pages 83-97,
Washington, DC, USA, 2014. IEEE Computer Society.

T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A distributed sandbox for
untrusted computation on secret data. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 533-549, GA, 2016. USENIX
Association.

A. R. Khakpour and A. X. Liu. First step toward cloud-based firewalling. In 2012
IEEE 31st Symposium on Reliable Distributed Systems, pages 41-50, Oct 2012.

100

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

(30]

[31]

(32]
(33]
(34]

(35]

[42]
[43]
[44]

[45]

[48

[49

[50]

(52]

[53

[54]

[55]

S. Kim, Y. Shin, J. Ha, T. Kim, and D. Han. A first step towards leveraging
commodity trusted execution environments for network applications. In HotNets-
XIV, pages 7:1-7:7, New York, NY, USA, 2015. ACM.

C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu. Embark: Securely out-
sourcing middleboxes to the cloud. In NSDI ’16, pages 255-273, Santa Clara, CA,

Mar. 2016. USENIX Association.
A. Langley, N. Modadugu, and B. Moeller. Transport Layer Security (TLS) False

Start. RFC 7918 (Informational), Aug. 2016.

P. Lepeska. Trusted proxy and the cost of bits. http://www.ietf.org/proceedings/
90/slides/slides-90- httpbis-6.pdf, 7 2014.

S. Loreto, J. Mattsson, R. Skog, et al. Explicit Trusted Proxy in HTTP/2.0. Internet-
Draft draft-loreto-httpbis-trusted-proxy20-01, IETF Secretariat, Feb. 2014.

J. Martins, M. Ahmed, C. Raiciu, et al. ClickOS and the Art of Network Func-
tion Virtualization. In NSDI ’14, pages 459-473, Seattle, WA, 2014. USENIX
Association.

D. McGrew, D. Wing, Y. Nir, and P. Gladstone. TLS Proxy Server Extension.
Internet-Draft draft-mcgrew-tls-proxy-server-01, IETF Secretariat, July 2012.

F. McKeen, 1. Alexandrovich, A. Berenzon, et al. Innovative instructions and
software model for isolated execution. In HASP ’13, page 10, 2013.

L. Melis, H. J. Asghar, E. De Cristofaro, and M. A. Kaafar. Private processing of
outsourced network functions: Feasibility and constructions. In Proceedings of
the 2016 ACM International Workshop on Security in Software Defined Networks
& Network Function Virtualization, SDN-NFV Security "16, pages 39-44, New
York, NY, USA, 2016. ACM.

J. Naous, M. Walfish, A. Nicolosi, et al. Verifying and enforcing network paths
with icing. CONEXT 11, pages 30:1-30:12, New York, NY, USA, 2011. ACM.

D. Naylor, A. Finamore, I. Leontiadis, et al. The Cost of the “S” in HTTPS.
CoNEXT 14, pages 133-140, New York, NY, USA, 2014. ACM.

D. Naylor, K. Schomp, M. Varvello, et al. Multi-Context TLS (mcTLS): Enabling
Secure In-Network Functionality in TLS. In Proceedings of the 2015 ACM Con-
ference on Special Interest Group on Data Communication, SSIGCOMM 15, pages
199-212, New York, NY, USA, 2015. ACM.

M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala. Tls proxies: Friend or foe? In
IMC 16, pages 551-557, New York, NY, USA, 2016. ACM.

R. Peon. Explicit Proxies for HTTP/2.0. Internet-Draft draft-rpeon-httpbis-
exproxy-00, IETF Secretariat, June 2012.

E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. Internet-
Draft draft-ietf-tls-tls13-18, IETF Secretariat, Oct. 2016.

L. Schiff and S. Schmid. PRI: Privacy Preserving Inspection of Encrypted Network
Traffic. In Security and Privacy Workshops (SPW), 2016 IEEE, pages 296-303. IEEE,
2016.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and implemen-
tation of a consolidated middlebox architecture. NSDI'12, Berkeley, CA, USA,
2012. USENIX Association.

J. Sherry, S. Hasan, C. Scott, et al. Making middleboxes someone else’s problem:
Network processing as a cloud service. SIGCOMM °12, pages 13-24, New York,
NY, USA, 2012. ACM.

J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blindbox: Deep packet inspection
over encrypted traffic. In SIGCOMM ’15, pages 213-226, New York, NY, USA,
2015. ACM.

J. Shi, Y. Zhang, and S. Zhong. Privacy-preserving network functionality out-
sourcing. CoRR, abs/1502.00389, 2015.

M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska. S-nfv: Securing nfv states by
using sgx. In Proceedings of the 2016 ACM International Workshop on Security
in Software Defined Networks & Network Function Virtualization, SDN-NFV
Security ’16, pages 45-48, New York, NY, USA, 2016. ACM.

S. Shinde, D. L. Tien, S. Tople, and P. Saxena. Panoply: Low-tcb linux applications
with sgx enclaves. In 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26-March 1, 2017,
2017.

N. Sullivan. Keyless SSL: The Nitty Gritty Technical Details. https://blog.
cloudflare.com/keyless- ssl-the-nitty-gritty- technical-details/. Accessed: Sep-
tember 2016.

M. Walfish, J. Stribling, M. Krohn, et al. Middleboxes no longer considered
harmful. OSDI’'04, Berkeley, CA, USA, 2004. USENIX Association.

wolfSSL. wolfSSL with Intel SGX. https://software.intel.com/en-us/sgx-sdk/
download. Accessed: June 2017.

X. Xu, Y. Jiang, T. Flach, et al. Investigating transparent web proxies in cellular
networks. PAM ’15.

https://www.arm.com/products/security-on-arm/trustzone
http://www.aryaka.com
http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization.html
http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization.html
http://www.brocade.com/en/products-services/software-networking/network-functions-virtualization.html
https://curl.haxx.se
https://peering.google.com
https://software.intel.com/en-us/sgx-sdk/download
https://software.intel.com/en-us/sgx-sdk/download
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000633-en.pdf
https://www.juniper.net/assets/us/en/local/pdf/whitepapers/2000633-en.pdf
http://www.dell.com/en-us/work/learn/tme-telecommunications-solutions-telecom-nfv
http://www.dell.com/en-us/work/learn/tme-telecommunications-solutions-telecom-nfv
http://www.tid.es/long-term-innovation/network-innovation/telefonica-nfv-reference-lab
http://www.tid.es/long-term-innovation/network-innovation/telefonica-nfv-reference-lab
https://github.com/bl4ck5un/mbedtls-SGX
https://www.zscaler.com
https://www.att.com/Common/about_us/pdf/AT&T%20Domain%202.0%20Vision%20White%20Paper.pdf
https://www.att.com/Common/about_us/pdf/AT&T%20Domain%202.0%20Vision%20White%20Paper.pdf
https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/
https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/
http://www.ietf.org/proceedings/90/slides/slides-90-httpbis-6.pdf
http://www.ietf.org/proceedings/90/slides/slides-90-httpbis-6.pdf
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://software.intel.com/en-us/sgx-sdk/download
https://software.intel.com/en-us/sgx-sdk/download

	Abstract
	1 Introduction
	2 Multi-Party Communication
	2.1 Design Space
	2.2 Design Tradeoffs

	3 Middlebox TLS
	3.1 Threat Model
	3.2 mbTLS Properties
	3.3 Design Overview
	3.4 The mbTLS Protocol
	3.5 Discussion

	4 Security Analysis
	4.1 Core Security Properties
	4.2 Other Security Properties

	5 Evaluation
	5.1 Deployability
	5.2 Performance Overhead
	5.3 Network I/O in SGX

	6 Related Work
	7 Conclusion
	A mbTLS Protocol Details
	A.1 Record Protocol
	A.2 Handshake Protocol

	References

