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Abstract

Inductive synthesis, or programming-by-examples (PBE) is
gaining prominence with disruptive applications for automat-
ing repetitive tasks in end-user programming. However, de-
signing, developing, and maintaining an effective industrial-
quality inductive synthesizer is an intellectual and engineer-
ing challenge, requiring 1-2 man-years of effort.

Our novel observation is that many PBE algorithms are
a natural fall-out of one generic meta-algorithm and the do-
main-specific properties of the operators in the underlying
domain-specific language (DSL). The meta-algorithm propa-
gates example-based constraints on an expression to its subex-
pressions by leveraging associated witness functions, which
essentially capture the inverse semantics of the underlying
operator. This observation enables a novel program synthe-
sis methodology called data-driven domain-specific deduc-
tion (D*), where domain-specific insight, provided by the
DSL designer, is separated from the synthesis algorithm.

Our FlashMeta framework implements this methodology,
allowing synthesizer developers to generate an efficient syn-
thesizer from the mere DSL definition (if properties of the
DSL operators have been modeled). In our case studies, we
found that 10+ existing industrial-quality mass-market appli-
cations based on PBE can be cast as instances of D*. Our
evaluation includes reimplementation of some prior works,
which in FlashMeta become more efficient, maintainable,
and extensible. As a result, FlashMeta-based PBE tools are
deployed in several industrial products, including Microsoft
PowerShell 3.0 for Windows 10, Azure Operational Manage-
ment Suite, and Microsoft Cortana digital assistant.

Categories and Subject Descriptors D.1.2 [Programming
Techniques]: Automatic Programming; D.2.13 [Software
Engineering]: Reusable Software — Domain Engineering;
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1.2.2 [Artificial Intelligence]: Automatic Programming —
Program Synthesis

General Terms Algorithms, Languages

Keywords Inductive program synthesis; programming by
examples; frameworks; domain-specific languages; deductive
inference; search-based synthesis

1.

Program synthesis is the task of synthesizing a program in
an underlying programming language, given the user’s intent
in the form of some specification [6]. It has applications to
a wide variety of domains, including robotics [20], software
development [19], and biology [18]. Unfortunately, the true
potential of this area still remains elusive: because of the huge
and arbitrary nature of the underlying state space of possible
programs, program synthesis is a hard combinatorial search
problem. Historically, it has been approached in three ways.

Introduction

Deductive Synthesis The traditional view of program syn-
thesis has been to synthesize code fragments from declarative
and complete logical specifications [25]. A commonly used
approach is deductive synthesis, which uses a system of ax-
ioms and deductive rules to transform the given logical speci-
fication into a constructive program. The process of deducing
such a program constitutes a proof that the resulting program
satisfies the original specification. Deductive synthesis has
been successfully used for well-defined application domains
such as numeric computations [29, 30].

The advantage of deductive synthesis is its performance —
since the technique mostly operates over partial programs
that satisfy the current specification, it seldom needs to reject
invalid candidate programs and backtrack. Its disadvantage
is the amount of manual effort required to axiomatize the
application domain into a sound and complete system of
deductive rules. Moreover, writing logical specifications is
difficult and often daunting for end users and developers.

Syntax-guided Synthesis  Syntax-guided synthesis (SyGuS)
[1] parameterizes generic synthesis algorithms with domain-
specific languages (DSLs), and requires a user to provide a
specification for the behavior of desired programs in these
DSLs. The SyGuS synthesis strategies then apply some kind
of search over the DSL to find a satisfying program [13,



31, 35, 37]. Such a problem definition narrows down the
space of possible programs to those that are expressible in
a given DSL or in a template in this DSL, provided by the
user. This drastically increases synthesis performance as com-
pared to a complete exploration of entire program space.
Besides, general-purpose research in SyGuS synthesis strate-
gies immediately benefits any domain-specific applications
that leverage them.

The main drawback of SyGusS is that generic search al-
gorithms cannot leverage any domain-specific insights for
improving the performance of synthesis on a given DSL.
Moreover, SyGusS restricts the language of specifications to
those expressible in some SMT theory, which limits the usabil-
ity of this approach in rich application domains with arbitrary
semantics. An example of such a DSL is the language of
CSS selectors [4]. Its modeling in SMT requires encoding
the semantics of DOM nodes, browser rendering process, and
CSS. As a result, the encoding is too challenging for SyGuS
solvers even for simplest real-life queries [12].

Domain-specific Inductive Synthesis Inductive synthesis
is a sub-area of program synthesis where the specification
is provided in the form of examples [23]. This area is gain-
ing prominence with its disruptive potential for enabling
end users to write small scripts for automating repetitive
tasks from examples. Examples are easier to provide than
logical specifications in such applications, albeit at the cost
of being incomplete. Recent successful mass-market tools
based on inductive synthesis include FlashFill feature in Mi-
crosoft Excel 2013 [7], FlashExtract feature in PowerShell
for Windows 10 [22], and Trifacta’s textual data transforma-
tion toolkit (http://www. trifacta.com). The effectiveness
of these tools is based on their algorithms, which are special-
ized to the underlying domain. However, a domain-specific
inductive synthesizer has 3 key limitations:

I. Developing the synthesis algorithm requires deep do-
main-specific insights.

An efficient and correct implementation of such an
algorithm can take up to 1-2 man-years of effort. For
example, it took the second author 1 year to develop
a robust prototype of FlashFill, and it took the Excel
product team 6 more months to adapt the prototype into
a production-ready feature. Likewise, FlashExtract is a
product of more than a year of research & development.
The underlying DSL is hard to extend because even
small DSL changes might require non-trivial changes to
the synthesis algorithm and implementation.

II.

II1.

1.1 Data-Driven Domain-Specific Deduction

The synthesis approaches discussed above differ in their
strengths and weaknesses. In this work, we propose a program
synthesis methodology called data-driven domain-specific
deduction (D*), which unifies the strengths of deductive,
syntax-guided, and domain-specific inductive approaches in
one meta-algorithm:

108

* D*is domain-specific: it operates over a DSL, a syntacti-
cally restricted program space.

* D* is deductive: it works by deductively reducing the
synthesis problem to smaller synthesis subproblems.

* D*is data-driven: the deductive rules of D* transform the
data space (/O examples in the specification). In contrast,
deductive rules of classic deductive synthesis transform
the program space (partial programs and complete logical
specifications).

In [6], we broadly categorized the aspects of a program
synthesis problem into three main dimensions: intent spec-
ification, program space, and search strategy. For D*, we
borrow each dimension of program synthesis from one of the
aforementioned approaches that tackles it most efficiently:
the intent is specified inductively (via I/O examples), the pro-
gram space is syntax-guided, and the search strategy is based
on deduction.

Program Space Our program space is domain-specific: a
space of possible programs is restricted to those express-
ible in a given functional DSL. As in SyGuS, such a re-
striction drastically increases performance of our search al-
gorithms on complex real-life scenarios. However, unlike
SyGusS, our methodology also permits arbitrarily complex
functional DSLs with rich domain-specific semantics, and
enables scalable program synthesis for such DSLs (less than a
second for common real-life tasks). In §6, we show examples
of tools built using our technologies that manipulate regular
expressions, DOM nodes, and other rich datatypes.

Specification Our specification is inductive: it builds on
the notion of “input-output examples”, one of the most
natural specification forms for end users. We generalize it to
“properties of the output on specific input states” in order to
enable effortless intent specification in complex scenarios.

Input-output examples {o;, oi};ll are the most natural
specification for end users. A program P is considered valid
iff it returns o; when executed on each input state o;. However,
a similar specification is not as natural in FlashExtract [22]. A
program P in FlashExtract takes as input a textual document
d, and returns some sequence of selected spans in d. Thus, in a
specification above, each o; would contain an entire sequence
of spans in the corresponding input document. Describing
the entire output is time-consuming, error-prone, and might
in fact constitute the entire one-off task that the user wants to
perform in the first place.

Instead, in our specification the user can specify a property
of the output (such as some subset of the desired selected
spans for FlashExtract). It is a compromise between input-
output examples (too restrictive in many applications) and
complete logical specifications (inaccessible for end users). In
§3.2, we show more complex scenarios and define inductive
specifications formally.

Search Strategy Our main contribution in D* is a novel
deductive inference methodology for program synthesis. It is
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based on witness functions, which propagate example-based
specifications on a DSL operator down into specifications on
the operator parameters. They essentially capture (a subset
of) the inverse semantics of the underlying operator.

In D*, we combine this deductive inference with enumer-
ative search, a complementary state-of-the-art approach to
program synthesis [1, 37]. We were inspired by the success
of conflict-driven clause learning in SAT solving [39]. It sug-
gests that an efficient algorithm for solving complex logical
problems generally cannot be based on either deduction or
search alone, but should employ a combination of both. In this
work, we present the first generic strategy for domain-specific
inductive synthesis that uses such a combination.

Witness Functions In D*, deductive inference is performed
using the standard algorithmic principle of divide-and-
conquer. Given a synthesis request for a program of kind
F(Ny, N) that satisfies a specification o, D* recursively
reduces this problem to simpler subproblems of similar kind:
a request for a program of kind N; that satisfies a certain
new specification 1, and a request for a program of kind Ny
that satisfies a certain new specification ¢o. The final result
is then constructed from the subproblem results.

The key observation that makes D* scalable and usable
is that many reduction logics for deducing specifications for
simpler sub-problems depends only on the behavior of the
involved operator on the concrete values in the original spec-
ification. They do not depend on the DSL structure, program
synthesis algorithms and data structures, or axiomatization of
the operator semantics. This observation has two important
consequences, which alleviate aforementioned limitations I,
II, and IIT of inductive synthesizers:

* If a reduction logic depends only on the operator behavior,
this behavior can be written once for any operator, and
then reused for its synthesis in any DSL. This enables
modularity in domain-specific program synthesis.

* Since such reduction logic depends purely on domain-
specific knowledge (i.e. inverse semantics of DSL oper-
ators) without details of overall search methodology, it
can be written by a domain expert who is not proficient in
program synthesis or designing search algorithms.

We call such domain-specific knowledge a witness function.
The term has first appeared in FlashExtract, where it specifi-
cally denoted a function that witnessed intermediate inputs
for f given I/O examples for the operator Map(Ax = f, L).
In a general case, given some specification (examples or their
properties) for an operator F'(Ny, Na), it “witnesses” a nec-
essary (and often sufficient) specification for N1 or Ns.

A witness function captures the inverse semantics for the
corresponding operator. For instance, consider the operator
SubStr(v, p1,p2), which selects a substring in v given a pair
of positions (p1,p2). One of its witness functions, on the
other hand, selects a pair of positions (p1,p2) given the
substring returned by SubStr. In many cases, the operator
has no bijective inverse, thus its witness function produces a
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Boolean statement about the parameters (e.g. a disjunction)
instead of concrete values. In §5, we formally define witness
functions and the meta-algorithm that leverages them for
iterative reduction of the synthesis problem.

D* as a Unification of Prior Work In our case studies, we
observed that most prior work in domain-specific inductive
synthesis [2, 3, 5, 7, 8, 16, 21, 22, 28, 32, 33, 38] can be
cast as instances of D* methodology, in which the original
synthesis algorithms naturally arise from the properties of the
operators in their DSLs. However, none of the prior works
formulated their algorithms as such natural fall-outs; instead
their algorithms are manually crafted and defined only for
their underlying DSLs. In §6.1, we discuss the benefits new
formulations give for implementation of synthesizers.

1.2 The FlashMeta Framework

We implemented D* in a declarative framework called Flash-
Meta to facilitate design, implementation, and maintenance
of efficient inductive program synthesizers. FlashMeta re-
quires a synthesizer developer to parameterize the underlying
meta-synthesizer algorithm with a DSL, and then automati-
cally generates an inductive synthesizer for this DSL. Flash-
Meta provides a pre-defined library of generic operators with
associated efficient witness functions that can be reused in
any conformant DSL. With a pre-defined modeling of proper-
ties of various operators, writing a synthesizer becomes an
exploration of various design choices in DSL structure. This
workflow is similar to language parsing, where the burden of
producing a domain-specific parser is nowadays carried by
parser generators, such as yacc [14].

We released FlashMeta to 9 industrial collaborators who
built 5 different inductive synthesizers in FlashMeta for
mass-market industrial applications. 3 of these were inspired
by existing applications, which provides us a baseline for
comparison. The resulting implementations were developed
much faster (by a 7x factor on average), partly due to an
opportunity to reuse synthesizable portions of underlying
DSLs as modules. The applications are also more efficient,
maintainable, and extensible than the original ones. In many
cases, our collaborators were able to discover optimizations
that were not present in the original implementations. We
present details of these implementation case studies in §6.1.

We also compared the performance of original systems
with their FlashMeta-based counterparts. Notably, even ex-
pectations for such a comparison are difficult to formulate. On
one hand, one can expect performance to decrease because
(a) the new systems have larger feature sets, and (b) the old
systems were hand-tuned for a single domain, whereas their
reimplementations are instantiations of a general-purpose
abstract framework. On the other hand, FlashMeta allows au-
tomatic porting of generic algorithmic optimizations to each
application developed on top of it. As a result, performance
of FlashMeta-based systems varies in a range of 0.5 — 3x
the original ones (with median runtime on real-life scenarios



being < 1 sec). This performance is sufficient for FlashMeta
to be successfully used in industry. For example, it is the new
reimplementations of FlashFill and FlashExtract that are ship-
ping with Microsoft PowerShell 3.0 for Windows 10. Besides,
many new industrial applications have been made possible
due to the ease of synthesizer development in FlashMeta.

1.3 Contributions
This paper makes the following contributions:

* We propose a novel strategy for inductive program syn-
thesis using deductive inference. It is based on inverse
semantics of the DSL operators, expressed in the form of
witness functions.

We combine deductive inference and enumerative search
in D* methodology, leveraging complementary strengths
of both strategies.

We extend the version space algebra (VSA) data struc-
ture, commonly used for memory-efficient representation
of the program space in program synthesis. We define
three important efficient operations on VSAs: intersection,
ranking, and clustering.

We present the formulation of multiple prior and novel
DSLs and their synthesizers as instances of D*.

We implement the aforementioned contributions in the
FlashMeta framework. It facilitates rapid development of
efficient, robust, and maintainable PBE-based applications
of industrial quality.

We discuss performance and development effort for a
subset of prior tools that were reimplemented on top of
FlashMeta for industrial usage.

2.

In this section, we describe the D* approach to each dimen-
sion in program synthesis. We first introduce two instances of
prior work that can be cast as instances of D*: FlashFill [7]
and FlashExtract [22]. They are used as running examples
throughout this paper. We then use this background to illus-
trate D* on real-life motivating examples.

Illustrative Scenario

2.1 Background

Figure 1 shows definitions of FlashFill and FlashExtract in
the input syntax of our system. This syntax will be explained
in detail in §3.1; below, we briefly summarize the structure
of both DSLs at a high level.

FlashFill FlashFill is a system for synthesis of string trans-
formations in Microsoft Excel spreadsheets from input-output
examples. Each program P in the FlashFill DSL Lgf takes
as input a tuple of user input strings v1, . .., vy, and returns
an output string.

The FlashFill language Lrr is structured in three layers.
On the topmost layer (omitted in Figure 1), an n-ary Switch
operator evaluates n predicates over the input string tuple,
and chooses the branch that then produces the output string.
Each Switch branch is a concatenation of some number of

110

primitive string expressions, which produce pieces of the
output string. Each such primitive expression can either be a
constant, or a substring of one of the input strings vy, . . ., Vg.
The position expression logic for choosing starting and ending
positions for the substring operator can either be absolute (e.g.
“5%™ character from the right”), or based on regular expression
matching (e.g. “the last occurrence of a number”).

Example 1 (Adapted from [7, Example 10]). Consider the
problem of formatting phone numbers in a list of attendees:

Output

(323) 708-7700
(425) 706-7709
(510) 220-5586

Input v

323-708-7700
(425)-706-7709
510.220.5586

Input v2

Dr. Leslie B. Lamport
Bill Gates, Sr.
George Ciprian Necula

One possible FlashFill program that performs this task is
shown below (o denotes concatenation):
ConstStr(“(”) o Match(v1,“\d+”;1) o ConstStr(“)._.")
o Match(vy,“\d+”,2) o ConstStr(“-") o Match(vy,“\d+",3)

where Match(z,r, k) is a k™ match of a regex r in z. In
Leg, Match(z, r, k) is an abbreviation for “let x = vy in
SubStr(xz, (RegPos(z, (¢, 1), k), RegPos(x, (r,e),k))) .
We also use the notation f1 0. ..o f, for n-ary string concate-
nation: “Concat(f1, Concat(..., Concat(f,—1, fn)))”

FlashExtract FlashExtract is a system for synthesis of
scripts for extracting data from semi-structured documents. It
has been integrated in Microsoft PowerShell 3.0 for release
with Windows 10 and in the Azure Operational Manage-
ment Suite for extracting custom fields from log files. In
the original publication, we present three instantiations of
FlashExtract; in this work, we focus on the fext instantiation
as a running example, although Web and fable instantiations
were also cast in our methodology (see §6.1).

Each program P in the FlashExtract DSL Lrg takes
as input a textual document d, and returns a sequence of
spans in that document. The sequence is selected based
on combinations of Map and Filter operators, applied to
sequences of matches of various regular expressions in d.

Example 2 (Adapted from [22, Examples 1 and 4]). Con-
sider the textual file shown in Figure 2. One possible Lrg
program that extracts a sequence of yellow regions from it is

Map(Az = (AbsPos(z,0), AbsPos(z, —1)),

Filter(A¢ = EndsWith(¢, “\d+"”), SplitLines(d)))

It splits d into a sequence of lines, filters the lines ending
with a number followed by a quote, and on each such line x
selects a span x[0 : —1] (i.e. the entire line x).

2.2 Scenario

We illustrate D* on the synthesis problem from Example 1.
For simplicity, we only consider the first I/O example given
there as our initial specification ¢:

Output
(323) 708-7700

Input v,

323-708-7700  Dr. Leslie B. Lamport

Input v2




language FlashFill; (a)
@Qoutput string e := f | Concat(f, e
string f := ConstStr(s)
| let string x = std.Kth(vs, k) in SubStr(z, pp);

Tuple<int, int> pp := std.Pair(p, p);
int p := AbsPos(z, k) | RegPos(x, rr, k);
Tuple<Regex, Regex> rr := std.Pair(r, r);
@values[FlashFill.Semantics.StaticTokens] Regex r;
@input string[] vs; string s; int k;
string Concat(string f, string e) { return f + e; } (b)
string ConstStr(string s) { return s; }
string SubStr(string x, Tuple<int, int> pp) {

int 1 = pp.Iteml, r = pp.Item2;

return (1 < @ || r > x.Length) ? null : x.Substring(l, r-1);
}
int AbsPos(string x, int k) { return k < @ ? x.Length+k+1 : k; }

int? RegPos(string x, Tuple<Regex, Regex> rr, int k) {
Regex r = new Regex("(?<=" + rr.Iteml + ")" + rr.Item2);
MatchCollection ms = r.Matches(x);
inti=k>07?(k-1): (k+ ms.Count);
return (i < @ || i >= ms.Count) ? null :

ms[i].Index;
}
static readonly Regex[] StaticTokens = new[] {

new Regex("\\d+"), new Regex("[a-z]+"), /xmore tokens...

w3}

Grammar ff = new Grammar("FlashFill.grammar");
ProgramNode p = ff.ParseAST(@"let x = std.Kth(v,
SubStr(x, RegPos(x, std.Pair(new Regex(""""),
new Regex(@""[A-Z]+"")), -1),

(0

Q) in

AbsPos(-1))");
State input = new State(ff.Symbol("vs"),
new string[] {"Leslie Lamport”});
Assert.Equals(p.Invoke(input), "Lamport”);

(d)

language FlashExtract.Text;

using namespace std; using namespace std.list;

StringRegion[] Np :=
Map(Axz = Pair(p, p), Ls) // LinesMap

| Map(At = let string x = GetSuffix(d, t) in

Pair(¢, p), Ps) // StartSeqgMap
| Map(At = let string x = GetPrefix(d, t) in
Pair(p, t), Ps); // EndSeqMap

int[] Ps := FilterInt(ig, k, RRs);

int[] RRs := RegexMatches(d, rr);
StringRegion[] Ls := FilterInt(ig, k, FltLs);
StringRegion[] FltLs := Filter(A{ = B, AllLs);
StringRegion[] AllLs := SplitLines(d);

@extern[FlashFill] int p; //FV(p) = {x: string}
@extern[text.matches] bool B; //FV(B) = {{: StringRegion}
@input StringRegion d; int ig; int k;

Figure 1: (a) A DSL of FlashFill substring extraction Lgg. (b) Executable semantics of FlashFill operators, defined by the DSL
designer in C#, and a set of possible values for the terminal r. (¢) Example program usage in Lgr. The program selects the last
capitalized word (a substring starting from the last capital letter) from the first input string v;. (d) FlashExtract DSL Lgg for
selection of spans in a textual document d. It references position extraction logic p from Lgr and standard string predicates B.

DLZ - Summary Report

"Sample ID:,""5007-01""

"Sample Date/Time:,""Wednesday, May 30, 2006 00:43:51"""

Intensities

s ""Analyte"" ""Mass"™,""Conc. Mean"",""Unit"",""Conc. SD™,""RSD"",""Mean""

DLZ - Summary Report

"Sample ID:,""5007-02""

"Sample Date/Time:,""Wednesday, May 30, 2006 01:02:38"""

Intensities

"I/S,""Analyte™,""Mass"",""Conc. Mean™"",""Unit"",""Conc. SD"","'RSD"",""Mean"""
1.705740,""ug/L"",0.350,0.489,2428667.736"

131132, ""'ug/L"™,0.004,3.315,3606.816"
129.339264,""ug/L"",3.088,2.387,4648771.382"
8, ""ug/L"",,,338359.496"

2.876992 ""ug/L™ 0.730,25.380,129217.588"
3.671043,""ug/L™,0.026,0.702,228830.402"

Figure 2: An illustrative scenario for data extraction from
semi-structured text using FlashExtract [22, Figure 1].

Below, we denote this spec as o ~» “(323).708-7700”,
where o is the given input state {v; — “323-708-7700",
vy — “Dr._Leslie_B._Lamport”}.

Learning Concat Expressions The synthesis starts at the
root symbol of Lgr, called e in Figure 1. We are looking for
all programs of kind e that satisfy the examples ¢ (written
e = ¢). According to the Lgr definition, a program rooted at
e can either be of kind f or of kind Concat(f, e). We reduce
the problem e = ¢ into two independent subproblems f = ¢
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and Concat(f, e) = ¢. The union of their results constitutes
all possible programs of kind e that satisfy (.

Consider first the subproblem Concat(f,e) | . It
involves synthesizing two string programs f and e such that
the program f produces some prefix of the output example in
 and the program e produces the remaining suffix. Assume
that we know the exact positions in the output string where
it is split into a prefix and a suffix being concatenated (i.e.
the exact outputs of f and e on the given input state ). In
this case we can reduce our problem straightforwardly to
subproblems f |= ¢y and e |= ., where ¢ and ¢, are /O
examples with the prefix and the suffix, respectively. However,
there are 13 possible positions that split “(323) 708-7700”
into two non-empty strings. Thus, we split the synthesis
process into 13 branches.

The first witness function w () produces a specification
@y for the prefix program. On the same input state o it
requires the program’s output to equal any of the 13 non-
empty prefixes. This is a disjunctive specification:

wr(p) =0~ “("V “(37 V ...V “(323).708-7700"
Note that independently considering 13 possible suffixes is
inefficient and unproductive (f and e are not independent,
hence concatenation of “any prefix” with “any suffix”” does
not necessarily produce the intended result). Instead, on each
of 13 branches independently, we fix the assumption about a
produced prefix, recursively learn a set of programs for it, and
then immediately deduce the corresponding suffix example.



The witness function for the suffix program is thus dependent
on the specific value of the prefix. For instance:
we(p | f=%(323).7) = (0 ~ “708-7700”)

In other words, wy can be formulated as “If Concat(f,e) =
“(323).708-7700", then [ must have produced some prefix
of “(323).708-7700"”. Likewise, w. can be formulated as
“If Concat(f,e) = “(323)_708-7700” and we know that f
produced “(323).", then e must have produced “708-7700"".
Note that both witness functions require only domain-specific
knowledge about the behavior of Concat operator and do not
specify any details of the synthesis methodology.

Consider now a tree of recursive calls produced by sub-
problems of kind f |= ¢ and e |= ¢. Learning for the latter
subproblem follows the same reduction process over two
DSL productions for e, outlined above. Thus, the divide-
and-conquer process will generate a subproblem f = o ~
s[i : j] for each substring s[i : j] of the output s
“(323)_708-7700”. The solution sets of these subproblems
can be cached, thereby turning the tree of recursive synthe-
sis calls into a DAG. This DAG has O(|s|?) nodes, whereas
naive recursion produces a tree of size O(2/*l). Note that this
DAG-based optimization (a key idea in FlashFill [7]) arises
automatically within the D* methodology.

Learning Primitive String Expressions Consider now
each individual subproblem f = ¢;; where p;; = o ~»
o[ : j]. For instance, let i = 13, j = 14, and o[i : j] = “0”,
the last character. Following the DSL, we again reduce this
problem to two subproblems corresponding to two produc-
tions of f: constant expressions and substring expressions.

In the first subproblem, ConstStr(s) = ¢;;, we invoke
the corresponding witness function for the parameter symbol
s. It returns a trivial specification: “s must have produced “0”,
the constant value of o[13 : 14]”. This branch of synthesis is
now completed, producing a single program ConstStr(“0”),
which satisfies ;; by construction.

In the second subproblem, the learning task is “let z =
Kth(vs, k) in SubStr(z, pp) |= ¢i;”. A let expression first
calculates the value for a binding, then binds the variable
z to it, and evaluates the body. Thus, the only unknown
specification to be deduced is the specification for Kth(vs, k)
because the body of the 1et must satisfy the same constraints
as the let itself (only on an extended input state). At this
point, D* can proceed either with deduction or search.

Deductive approach requires a witness function w,, for the
let binding. In FlashFill, one possible implementation of w,,
is returning a disjunction of all input strings v; that contain
“@” as a substring. In our example, the new specification ¢,
contains only the input v;. Note that this deduction scheme is
only possible because in Lgr, x can be bound only to input
string values. If this assumption does not hold, like in the
modification below, the logic of w, may be more complicated.

string f := ConstStr(s) | let string x = y in SubStr(x, pp);
string y := v | ToUpper(v) | ToLower(v);
string v := std.Kth(vs, k);
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Search-based approach enumerates all possible subex-
pressions in Lgp for the binding value, and retains those
that make the outer program satisfy the specification ¢;;
using the corresponding value of x. For example, in the
Lrr modification above, there are 6 possible programs for
the x binding: Kth(vs, 1), Kth(vs, 2), ToUpper(Kth(vs, 1)),
ToUpper(Kth(vs, 2)), TolLower(Kth(vs, 1)), and
TolLower(Kth(vs, 2)). However, on the given input state
they produce only 4 distinct outputs, since ToUpper(v1) =
TolLower(vy) = vy. Therefore, we cluster all possible subex-
pressions for the x binding w.r.t. their output on o, and
use these output values to further guide the deductive ex-
ploration for SubStr(z, pp). This enumerative approach is
implemented efficiently using dynamic programming [1, 37]
and our novel operations on the data structure that succinctly
stores the program space of a DSL (see §4). As a result,
synthesis splits into 4 branches. The union of their results
constitutes all substring programs that satisfy ¢; ;.

3. Problem Definition

We start with a description of functional domain-specific
languages supported by FlashMeta in §3.1. We proceed with
introducing inductive specifications in §3.2 — incomplete
specifications of program behavior that describe its properties
on a set of representative inputs. Finally, we define the main
problem of this paper.

3.1 Domain-Specific Language

A synthesis problem is defined for a given domain-specific
language (DSL) L. A DSL is specified as a context-free
grammar (CFG), where every symbol N is defined through a
set of rules. Each rule has on its right-hand side an application
of an operator to some symbols of £, and we denote the
set of all possible operators on the right-hand sides of the
rules for N as RHS(NV). Every symbol NV in this CFG is
annotated with a corresponding output type 7, denoted N : 7.
We require every operator in RHS(V) to have the same return
type 7, which is the output type of N. A DSL £ also has a
designated input symbol input(L), which is a terminal in the
CFG of £, and a designated output symbol output(L), which
is the topmost nonterminal in the CFG of L.

Every (sub-)program P rooted at a symbol N: 7 in £
maps an input state o to a value of type 7. A state for
a program P is a mapping of its free variables FV(P) to
values of their types. By definition, the only free variable
of output(L) is the input symbol input(L). The other free
variables in the DSL are introduced by let definitions and
A-functions (described below). A DSL program P € Lis a
function that maps a state 0 = {input(£) + v} to a value of
type 7,, where output(L): 7,, input(L): 7;, and v: 7.

The language of DSL definitions is given in Figure 3.
Apart from user-defined black-box operators, it includes
some special constructs: let definitions, A-functions, variable
terminals (including an input symbol), external operator



decl ::= annotation* type symbol (:= nonterminal-body)? ;
annotation ::= @input | @output | @extern[namespace]
| @values[member-name] | ...
nonterminal-body ::= rule (I rule)*
rule ::= symbol
| (namespace .)? operator—name((arg (, arg)* )?)
| let type symbol = rule in rule
arg ::= symbol | Asymbol: type = rule
(id)

member-name ::= (member in a target language)

symbol, operator-name, namespace .=

type ::= (type in a target language)

Figure 3: FlashMeta DSL definition language. A DSL is a
set of (typed and annotated) symbol definitions, where each
symbol is either a terminal, or a nonterminal defined through
a set of rules. Each rule is a conversion of nonterminals, an
operator with some arguments (symbols or A-functions), or
a let definition. Some auxiliary instructions are omitted for
brevity, such as namespace imports or library references.

references (written as namespace.operator-name) from the
standard library of FlashMeta or from third-party DSLs and
modules. These components increase the expressiveness of
DSLs, allowing us to capture the semantics of many practical
domains in a clean and functional manner.

Example 3. The original FlashFill DSL definition required
two different semantics interpretations: one for the SubStr
operator on a state, and one for the AbsPos/RegPos op-
erators to bind the specific input string that is being pro-
cessed [see 7, Figure 2]. In Figure 1, to make Lgf functional,
we introduce a let binding in the SubStr operator, capturing
the specific input string in a variable symbol x. Operators
AbsPos and RegPos accept x as a parameter.

Example 4. Figure I also shows an example of DSL modular-
ity (reusing existing DSLs as sublanguages). In it, we define
the FlashExtract DSL Lgg on top of the existing position
extraction logic from Lgg and text predicates in the standard
library of FlashMeta. Note how Lgg binds a variable x be-
fore referencing p in Lgg to make the usage conformant with
free variables FV (p) in Lee.

Every (non-external) DSL operator requires an associ-
ated executable semantics function, implemented in a target
programming language (currently C#). We require it to be
deterministic and pure, modulo unobservable side effects.

Symbols and rules may be augmented with multiple
custom annotations, such as:

* @output — marks the output symbol of a DSL;

* @input — marks the input symbol of a DSL;

* @values[member-name] — specifies a member (e.g. a
field, a static variable, a property) in a target language
that stores a set of possible values for the given terminal.

* @extern[namespace] — specifies the external namespace
(e.g. a third-party DSL) that defines a given symbol;
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Notation Throughout the paper, we denote DSL symbols as
N, programs as P, concrete values as v, and sets of programs
rooted at symbol N as N. When we refer to symbols in a
specific DSL (such as Lgg or Lgg), we usually use their IDs
from the DSL definition instead (such as Ps or rr) when the
context is clear.

The execution result of a program P on a state ¢ is written
as [P]lo. Updating a state o with binding N +— v is written
as 0[N := v]. A fixed-length tuple of input states is written
as . If each element v; in a tuple ¥ has the same type 7, it is
denoted as ¥': 7. We also lift the program execution notation
[-] onto tuples of states to produce tuples of values: [P]G =
¥ where v; = [P]o;. Finally, £| denotes a sublanguage of
L induced by all symbols & operators reachable from V.

3.2 Inductive Specification

Inductive synthesis or programming-by-examples tradition-
ally refers to the process of synthesizing a program from a
specification that consists of input-output examples. Tools
like FlashFill [7], IGOR2 [17], Magic Haskeller [15] fall in
this category. Each of them accepts a conjunction of pairs
of concrete values for the input state and the corresponding
output. We generalize this formulation in two ways: (a) by
extending the specification to properties of program output
as opposed to just its value, and (b) by allowing arbitrary
boolean connectives instead of just conjunctions.

Generalization (a) is useful when completely describing
the output on a given input is too cumbersome for a user.
For example, in FlashExtract the user provides instances of
strings that should (or should not) belong to the output list of
selections in a textual document. Describing an entire output
list would be too time-consuming and error-prone.

Generalization (b) arises as part of the problem reduction
process that happens internally in the synthesizer algorithms.
Specifications on DSL operators get refined into specifica-
tions on operator parameters, and the latter specifications
are often shaped as arbitrary boolean formulas. For example,
in FlashFill, to synthesize a substring program that extracts
substrings s from the given input strings v, we synthesize a
position extraction program that returns any occurrence of s
in v (which is a disjunctive specification).

Boolean connectives may also appear in the top-level spec-
ifications provided by users. For instance, in FlashExtract, a
user may provide a negative example (an element not belong-
ing to the output list).

Definition 1 (Inductive specification). Let N : 7 be a symbol
in a DSL L. An inductive specification (“ispec”) ¢ for a
program rooted at NV is a quantifier-free first-order predicate
of type 7 — Bool in NNF with n atoms (o1, 71), ...,
(o7, 7). Each atom is a pair of a concrete input state
o; over FV(N) and an atomic specification 7;: 7 — Bool
constraining the output of a desired program on o;.

Definition 2 (Valid program). We say that a program P
satisfies a specification ¢ (written P |= ¢) iff the formula



olmi([P]oi) / {04, m;)] holds. In other words, ¢ should hold
as a boolean formula over the statements “the output of P on
o; satisfies the constraint 7r;” as atoms. We often denote the
output being constrained as [-], assuming implicit P and o.

Definition 3 (Valid program set). A program set N is valid
for ispec o (written N |= ) iff all programs in NV satisfy (.

Example 5. Given a set of I/O examples {0;,0;}- ,, a pro-
gram P is valid iff [P)o; = o; for all i. In our formula-
tion, such a specification is represented as a conjunction
© = N\~ (0, ;). Here each atomic specification 7; on the
program output is an equality predicate: ©; = ([-] = o;).

Example 6. In FlashExtract, a program’s output is a se-
quence of spans (1, r) in a text document D. A user provides
a sequence of positive examples U (a subsequence of spans
from the desired output), and a set of negative examples X
(a set of spans that the desired output should not intersect).

The ispec here is a conjunction ¢ = (o, ) A (o, 77),
where positive atomic specification 7% is a subsequence
predicate: 7+ = ([-] T U), and negative atomic specifica-
tion T is a non-intersection predicate: 7~ = ([-JNX = 0).
The input states for both atomic specifications are equal to
the same o = {d — D}, where symbol d = input(L).

Often ¢ can be decomposed into a conjunction of output
properties that must be satisfied on distinct input states. In
this case we use a simpler notation ¢ = {o; ~> m;}~,. A
program P satisfies this ¢ if its output on each input state
o; satisfies the constraint ;. For instance, I/O examples are
written as {o; ~ 0;}. ,, and subsequence specifications of
FlashExtract are written as o ~ ([-] C U) A ([[]N X = 0).

Because an ispec is a special case of an arbitrary Boolean
predicate over o and [P]o, it can be given to any general-
purpose synthesis algorithm that expects a declarative com-
plete specification. However, besides being easier to specify
for end users, ispecs also provide two additional benefits that
allow us to design more efficient synthesis algorithms:

1. Representative inputs &, embedded in an ispec, prune the
search space, allowing us to only consider program behav-
ior on & as opposed to analyzing the program behavior
over all possible inputs. This property enables enumer-
ative search strategies [37], which cluster semantically
equivalent subexpressions w.r.t. &'.!

. An ispec has a restricted shape: it defines a boolean for-
mula over atomic properties of program outputs on repre-
sentative inputs. This benefit is hard to exploit for general-
purpose synthesis algorithms, as even a simple ispec turns
into a challenging gigantic formula when the semantics
of all involved operators and datatypes is expressed in
terms of SMT primitives. Our D* methodology exploits

!t is noteworthy that many general-purpose synthesis algorithms, given a
declarative complete specification, implement their search by guessing a
representative input o in a counterexample-guided synthesis loop, and then
searching in the subspace of programs that give the same output on o [1].
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this shape to make intelligent subgoal choices during de-
ductive program space exploration.

3.3 Domain-Specific Synthesis

We are now ready to formally define the problem of domain-
specific synthesis, motivated and tackled in this paper.

Problem 1 (Domain-specific synthesis). Given a DSL L, and
a learning task (N, ) for a symbol N € L, the domain-
specific synthesis problem Learn(N, ©) is to find some set N
of programs in L, valid for .
Some instances of domain-specific synthesis include:
* Finding one program: |[N| = 1.
* Finding all programs (i.e. complete synthesis ).
* Finding k topmost-ranked programs according to some
domain-specific ranking function h: L — R.

Problem 1 might be perceived as a special case of syntax-
guided synthesis [1]. However, our formulation and approach
differ from SyGuS in two important ways.

Deduction-based Approach All known approaches for
solving the SyGuS problem employ some kind of search
over the program space L. In particular, the participants of
the SyGuS-COMP 2014 competition employed: SMT-based
search [13], enumerative search [37], sketching [35], and
stochastic search [31]. In general, such techniques do not
scale to real-life DSLs, described in §1. In D*, we combine
them with domain-specific deductive inference, leveraging
both domain knowledge and efficient search techniques.

Set-based Formulation For most applications of the Sy-
GuS problem, it suffices to find any program P € L that
satisfies the specification ¢. However, in end-user PBE appli-
cations such as FlashFill and FlashExtract, a typical synthesis
problem is satisfied by thousands of ambiguous programs
in the DSL. Thus, the main challenge there historically lies
in learning a program that is not only consistent with the
provided examples ¢, but is also most likely to be correct on
unseen input data. Problem 1 in PBE is only a single iteration
of the counterexample-guided inductive synthesis loop, where
the overall goal of the loop is to converge to desired end-user
program in fewest rounds (end user’s specification amend-
ments). To achieve it, inductive synthesizers compute all (or
many) programs in L that satisfy ¢, and then disambiguate
among them to satisfy the overall user intent.

One possible approach to disambiguation is ranking. It
chooses the right program by maximizing the value of some
domain-specific ranking function h on P. The function h
approximates the likelihood of P to be correct on unseen
data. It may be based on prior probability distributions over £
and/or the execution results of P. Designing a good rank-
ing function is a challenging open problem; one promising
approach is using machine learning [34], but it requires a
sufficient training set of synthesis scenarios.

A second approach to disambiguation is novel user interac-
tion models. For instance, one can paraphrase the ambiguous



program set in English, and display it to the user in such a
way that she can agree with a correct portion of a chosen
program, but replace an incorrect portion with a better alter-
native. Another possible model is active learning: a system
executes several ambiguous programs on the user’s input
and asks the user to select a correct output among their re-
sults (thereby providing an additional example). We have
implemented these interaction models in a novel Ul on top of
FlashMeta and discovered that they significantly increase the
correctness of PBE in solving the users’ problems [26].

4. Version Space Algebra

A typical practical DSL may have up to 103° programs con-
sistent with a given ispec [33]. Any synthesis strategy for
solving Problem 1 requires a data structure for succinctly
representing such a huge number of programs in polynomial
space. Such a data structure, called version space algebra
(VSA), was defined by Mitchell [27] in the context of ma-
chine learning, and later used for programming by demon-
stration in SMARTedit [21], FlashFill [7], and other synthesis
applications. Its efficiency is based on the fact that typically
many of these 103C programs share common subexpressions.
In this section, we formalize the generic definition of VSA
as an essential primitive for synthesis algorithms, expand-
ing upon specific applications that were explored previously
by Mitchell, Lau et al., and us. We define a set of efficient
operations over this data structure that are used by several
synthesis algorithms, including D* (§5).

Intuitively, a VSA can be viewed as a directed graph
where each node represents a set of programs. A leaf node
in this graph is annotated with a direct set of programs, and
it explicitly represents this set. There are also two kinds of
internal (constructor) nodes. A union VSA node represents
a set-theoretic union of the program sets represented by its
children VSAs. A join VSA node with k children VSAs is
annotated with a k-ary DSL operator F', and it represents a
cross product of all possible applications of F' to k parameter
programs, independently chosen from the children VSAs.
Hereinafter we use the words “program set” and “version
space algebra” interchangeably, and use the same notation
for both concepts.

Definition 4 (Version space algebra). Let N be a symbol in
a DSL L. A version space algebra is a representation for a
set N of programs rooted at V. The grammar of VSAs is:
N = {Pi,...., Py} |UVy,...,Ni) | Fsa(Ny, ..., Ng)
where F' is any k-ary operator in £. The semantics of VSA
as a set of programs is given as follows:

Pe{P,... P} if3j: P=P;
P eU(Ny,...,Ni) if3j: P e N;
P € Fu(MNy,...,N) iftP=F(P,...,P)AYj: P, € N;

Definition 5 (VSA size, width, and volume). Given a VSA
N, the size of N, denotizd |N|, is the nuNmber of programs in
the set represented by N, the width of N, denoted W (N), is
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Figure 4: A VSA representing all possible programs output

VSAs representing all ways to output substrings “4”, “27, “57,
“42”, and “25” respectively (not expanded in the figure).

the maximum number 0£ children in any constructor node of
N, and the volume of N, denoted V(N), is the number of
nodes in V.

Note that programs in N can benefit from two kinds of
sharing of common subexpressions. One sharing happens via
join VSA nodes, which succinctly represent a cross product
of possible subexpression combinations. Another sharing
happens by virtue of having multiple incoming edges into a
VSA node (i.e. two identical program sets are represented
with one VSA instance in memory). Therefore in common
(non-degenerate) cases V(N) = O(log |N|).

Example 7. Figure 4 shows a VSA of all FlashFill pro-
grams that output the string “425” on a given input state
o = {v1 — “(425) 706-7709"}. The string “425” can be
represented in 4 possible ways as a concatenation of individ-
ual substrings. Each substring of “425” can be produced by
a ConstStr program or a SubStr program.

We define three operations over VSAs, which are used
during the synthesis process: intersection, ranking, and clus-
tering. Intersection of VSAs was first used by Lau et al. [21]
and then adapted by us for FlashFill [7]. It has been defined
specifically for VSAs built on the SMARTedit and FlashFill
DSLs. In this section, we define VSA intersection generically,
and also introduce ranking and clustering of VSAs, which
are our novel contributions.

4.1 Intersection

Intersection of VSAs enables quick unification of two sets
of candidate programs that are consistent with two different
specifications. Given a conjunctive ispec 1 Apa, one possible
synthesis approach is to learn a set of programs Ni consistent
with 1, another set of programs N, consistent with 2, and
then intersect N 1 with NQ. An efficient algorithm for VSA
intersection follows the ideas of automata intersection [11].

Qeﬁnition 6 (Intersection of VSAs). Given VSAs Nl and
Na, their intersection N1 N Ny is a VSA that contains those
and only those programs that belong to both N; and N,.
Constructively, it is defined as follows (modulo symmetry):



[U(NT, ... Ni)] N N2 2 U (N N Na, ..., Nj. 1 N2)

(N7, ..., Ni) N Gu(NY, ., N2 £
Foi(N7, ..., Nj) N Foa(NY .., N ) &

Fu(Ni NNy, ..., Ne. 0 NY)
Fa(N1, ., N NPy, P} &

{P,=F(P|,..P)| Pj € Nj}
N 1N NQ N 1N Ng as direct program sets otherwise

Theorem 1. V(N; N Ny) = O(V(Ny) - V(N,)).

4.2 Ranking

Ranking of VSAs enables us to quickly select the topmost-
ranked programs in a set of ambiguous candidates with
respect to some domain-specific ranking function.

Definition 7 (Ranking of a VSA). Givena VSA N,a ranking
function h: £ — R, and an integer £ > 1, the operation
Top h(Z\~f , k) returns a (sorted) set of programs that correspond
to k highest values of & in N.

Top,, (N, k) can be defined constructively, provided the
ranking function h is monotonic over the program structure
(i.e. provided h(Py) > h(Ps) = h(F(P1)) > h(F(P))):

def

Top, ({Pi1,..., Pn}, k) = Select(h,k,{P1,...,Pn})
Top, (U(N1, ..., Nim), k) = Select(h, k, Uj—, Top,, (N, k))
Top,, (Fx(N1,. .., Ny, k) &

Select(h, k, {F(Py,...,Pm) | Vi P; € Top,(Ni,k)})
Here Select function implements a selection algorithm for
top k elements among { Py, ..., P, } according to the rank-
ing function h. It can be efficiently implemented either
in O(m + klogk) time using Hoare’s quickselect algo-
rithm [9], or in O(m log k) time using a heap.

Theorem 2. Let N be a VSA, and let m = W (N). Assume
O(mlog k) implementation of the Select function. The time
complexity of calculating Top(N, k) is O(V(N) k™ log k).

4.3 Clustering

Clustering of a VSA partitions it into subsets of programs
that are semantically indistinguishable w.r.t. the given input
state o, i.e. they give the same output on ¢. This operation
enables efficient implementation of various computations
over a set of candidate programs (e.g., filtering or splitting
into independent search subspaces).

Definition 8 (Clustering of a VSA). Given a VSA N and an
input state o over FV(NN), the clustering of N on o, denoted
N|U, is a mapping {v; — ]\71, R Nn} such that:

(@ NyU...UN, = N.

(b) N; N N; = forall i # j.

(c) Forany P € ]\ij: [Plo = v;.

(d) Forany i # j: v; # v;.
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In other words, N |o is a partitioning of N into non-inter-
secting subsets of programs, where each subset contains the
programs that give the same output v on the given input
state 0. We can also straightforwardly lift the clustering oper-
ation onto tuples of input states &, partitioning N into subsets
of programs that given the same output ¥ on &'.

Constructively, N | is defined as follows:

{P1,... P} o £ G({[P]o — {P} | i = 1..k})

U(N1, oy Ni)lo = G(U, Nilo)

Fya(N1, ooy Ni)|o &

G({[F(v1, . vi)]o = Fsa(NT, ..., N}) | (vs, Nj) € Nijlo, })
where o1, ..., 0} are input states generated by F’ for its k
parameters during execution on o, and

G({’Ul — Nl, vy Up N»n}) o
{v—U,. 5 N;|all unique v among v; }

is a “group-by” function. It groups a set of bindings by keys,
uniting VSAs for equal keys with a U constructor.

The clustering operation allows us to answer many ques-
tions about the current set of candidate programs efficiently.
For example, it allows us to efficiently filter out the programs
in N that are inconsistent with a given specification:

Definition 9 (Filtered VSA). Given a VSA N and an ispec
won N, a filtered VSA Filter(N, ¢) is defined as follows:
Filter(N, ) £ {P € N | P |= ¢}.

Theorem 3. If 7 is a state tuple associated with ¢, then:
(1) Filter(N, ) = U{N; | (7 =+ N;) € Nlz A ()}
(2) The construction of Filter(N, ) according to (1) takes

0(|N|3 D time after the clustering.

In §5, we show another application of the clustering operation,
where it helps us to partition the search space of candidate
programs into subspaces with different behavior on a given
input state. We can then parallelize the search process over
such independent subspaces of programs.

Estimating the size of N|z and the running time of
clustering is difficult, since these values depend not only
on N and o, but also on the semantics of the operators in £
and the number of collisions in their possible output values.
However, in §6.2 we show that these values usually remain
small for any practical DSL.

5. Methodology

In this section, we introduce the methodology of data-driven
domain-specific deduction (D*), which is a generalization
of numerous prior works in inductive program synthesis
(some of which are described in §6.1). As we observed,
most of prior search algorithms can be decomposed into
(a) domain-specific insights for refining a specification for
the operator into the specifications for its parameters, and
(b) a common deductive meta-algorithm, which leverages
these insights for iterative reduction of the synthesis problem.



function GENERATESUBSTRING(o: Input state, s: String)
result <
for all (4, k) s.t. s is substring of o(v;) at position k do
Y] < GENERATEPOSITION( o(v;), k)
Y1 < GENERATEPOSITION( 0 (v;), k + Length(s))
result < result U {SubStr(v;, Y1, Y2)}
return result
function GENERATEPOSITION(s: String, k: int)
result < {CPos( k), CPos( —(Length(s) — k))}
for all r; = TokenSeq(71,..
for all r2 = TokenSeq(T7, ...
ri2 < TokenSeq(Th,...,Tn,Ty,...,T},)
Let cbe s.t. s[ky : ko] is the ¢ match for r15 in s
Let ¢’ be the total number of matches for 715 in s
71 < GENERATEREGEX(r1, s)
79 < GENERATEREGEX(r2, s)
result + result U {Pos(r1,72,{¢, =(¢ —c+1)})}

return result

., T,) matching s[k; : k — 1] for some k1 do
, T) matching s[k : k2] for some k2 do

function MAP.LEARN(Examples ¢: Dict(State, List(T)))
Letpbe {o1 — Y1,...,0m — Y}
forj < 1--- do
Witness subsequence Z; <— Map.Decompose(a;, Y;)
o1+ {0]Z;[i]/z] = Y;[i] | i =0.|Z;] = 1, j = 1.m}
N1 + F.Learn(¢1)
w2 < {oj = Z;j | j =1..m}
Na < S.Learn(p2)
return Map(N1, Na)

function FILTER. LEARN(Examples ¢: Dict(State, List(T")))
N1 « S.Learn( )
¢+ {o[Y[i]/z] = true | (0,Y) € , i =0.|Y| -1}
Ny < F.Learn(¢')

return Filter(No, ]Vl)

Figure 5: Left: FlashFill synthesis algorithm for learning substring expressions [7, Figure 7]; Right: FlashExtract synthesis
algorithm for learning Map and Filter sequence expressions [22, Figure 6]. Highlighted portions correspond to domain-specific
computations, which deduce I/O examples for propagation in the DSL by “inverting” the semantics of the corresponding DSL
operator. Non-highlighted portions correspond to the search organization, isomorphic between both FlashFill and FlashExtract.

5.1 Intuition

Figure 5 shows a portion of the synthesis algorithms for
FlashFill [7, Figure 7] and FlashExtract [22, Figure 6]. Both
algorithms use a divide-and-conquer approach, reducing a
synthesis problem for an expression into smaller synthesis
problems for its subexpressions. They alternate between 3
phases, implicitly hidden in the “fused” original presentation:

1. Given some examples for a nonterminal N, invoke syn-

thesis on all RHS rules of IV, and unite the results.

Deduce examples that should be propagated to some

argument N; of a current rule N := F'(Ny, ..., Ny).

. Invoke learning recursively on the deduced examples, and
proceed to phase 2 for the subsequent arguments.

2.

Note that phases 1 and 3 do not exploit the semantics of the
DSL, they only process its structure. In contrast, phase 2 uses
domain-specific knowledge to deduce propagated examples
for N; from the examples for V. In Figure 5, we highlight
the portions of code that correspond to phase 2.

In FlashExtract, list processing operators Map(F, .S) and
Filter(F, S) are learned generically from a similar subse-
quence specification o of type Dict(State, List(T)). Their
learning algorithms are also shown in Figure 5. FlashExtract
provides generic synthesis for 5 such list-processing opera-
tors independently of their DSL instantiations. However, the
domain-specific insight required to build a specification for
the Map’s F parameter depends on the specific DSL instan-
tiation of this Map (such as LinesMap or StartSeqMap in
LrE), and cannot be implemented in a domain-independent
manner. This insight was originally called a witness function —
it witnessed sequence elements passed to F'. We notice, how-
ever, that FlashExtract witness functions are just instances
of domain-specific knowledge that appears in phase 2 of the
common meta-algorithm for inductive synthesis.
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Derivation Consider the operator LinesMap(F, L) in Lre.
It takes as input a sequence of lines L in the document, and
applies a function F' on each line in L, which selects some
substring within a given line. Thus, its simplest type signature
is ((String— String), List(String)) — List(String).

The simplest form of Problem 1 for LinesMap is “Learn
all programs of kind LinesMap(F, L) that satisfy a given I/O
example o = o ~» v”. To solve this problem, we need to
compute the following set of expressions:

{(F, L) | LinesMap(F, L) |= ¢} (D

Applying the principle of divide-and-conquer, in order to

solve (1), we can compute an inverse semantics of LinesMap:

LinesMap™ (v) £ {(f,) | LinesMap(f,¢) =v}  (2)

Then, we can recursively learn all programs F' and L that
evaluate to f and ¢ respectively on the input state o.

Computation of LinesMap ™ (v) is challenging. One pos-
sible approach could be to enumerate all argument values
f € codom F', { € codom L, retaining only those for which
LinesMap(f, ¢) = v. However, both codom L (all string lists)
and codom F' (all String — String functions) are infinite.

In order to finitize the value space, we apply domain-
specific knowledge about the behavior of LinesMap in
Lre. Namely, L must evaluate to a sequence of lines
in the input document, and F' must evaluate to a func-
tion that selects a subregion in a given line. Thus, the
“strongly-typed” signature of LinesMap is actually ((Line—
StringRegion), List(Line)) — List(StringRegion). This is a
dependent type, parameterized by the input state ¢, which
contains our input document. Therefore the inverse semantics
LinesMap™ is also implicitly parameterized with o

f and £ can be obtained from o

LinesMap™ (o ~~ v) = {(f’ 0 and LinesMap(f,£) = v

}



Our implementation of LinesMap™ (o ~ v) now enumer-
ates over all line sequences ¢ and substring functions f given
an input document. Both codomains are now finite. Note
that we had to take into account both input and output in the
specification to produce a constructive synthesis procedure.

The synthesis procedure above is finite, but not necessarily
efficient. For most values of ¢, there may be no satisfying
program L, and therefore even computing matching values
of f for it is redundant. Let v = [r1, o). In this case ¢ must
be the list of two document lines [I1, l5] containing r; and rs,
respectively; any other value for £ cannot yield v as an output
of LinesMap(f, ¢) regardless of the value of f. In general,
there are operators F'(X,Y) (e.g. substring extraction), for
which computing all viable arguments (x, y) is much slower
than computing matching ys only for realizable values of X.

This observation leads to another key idea in D*: decom-
position of inverse semantics. Namely, for our LinesMap ex-
ample, instead of computing LinesMap™ (o ~ v) explicitly,
we ask two simpler questions separately:

1. If [LinesMap(F, L)]o = v, what could be the possible
output of L?

2. If [LinesMap(F, L)]o = v and we know that [L]o = ¢,
what could be the possible output of F'?

The answers to these questions define, respectively, partial
and conditional inverse semantics of LinesMap with respect
to its individual parameters:

LinesMap;'(v) D {¢ | 3f: LinesMap(f,¢) = v} 3)

LinesMapy (v | L =¢) = {f | LinesMap(f,¢) = v} (4)

The key insight of this technique is that, by the principle
of skolemization [10], inverse semantics LinesMap ™ (v) can
be expressed as a cross-product computation of parameter
inverses LinesMap;'(v) and LinesMap (v | L = /) for all
possible £ € LinesMap;' (v):

LinesMap ™ (v) = {(f, £) | LinesMap(f, £) = v} (5)
={(f,0) | € € LinesMap™ (v), f € LinesMapz' (v ‘ L=10)}

Such a decomposition naturally leads to an efficient synthesis
procedure for Learn(LinesMap(F, L), o ~ v), which is
based on a divide-and-conquer algorithmic paradigm:

1. Enumerate ¢ € LinesMap;' (v).

2. For each ¢ recursively find programs Ly s.t. [L]o = £.

3. Enumerate f € LinesMap7 (v | L = ¢) for all those ¢ for
which the program set Zg is non-empty.

4. For each f recursively find programs ﬁ& st [Flo=f.

5. For any combination of parameter programs L € Ly, F' €
Fy. we now have LinesMap(F, L) = ¢ by construction.

In practice, Problem 1 for LinesMap is rarely solved for
example-based specifications: as discussed in §3.2, provid-
ing the entire output v of regions selected by LinesMap is
impractical for end users. Thus, instead of concrete outputs
the procedure above should manipulate inductive specifica-
tions with properties of concrete outputs (e.g. a prefix of

the output list v instead of entire v). A corresponding gen-
eralization of “inverse semantics of LinesMap” is a function
that deduces a specification for L given a specification ¢ on
LinesMap(F, L) (or for F, under the assumption of fixed L).
We call such a generalization a witness function.

In our LinesMap example, a user might provide us a
prefix specification ¢ = [r1,72,...] for the output list of
regions. A witness function for L in this case follows the same
observation above: the output list of L should begin with two
lines containing r; and 7. This is also a prefix specification.
A witness function for F' (conditional on ¢, the output value
of L) is universal for all Maps: it requires the output of F’
to be a function that maps the i element of ¢ into the i
element of [ry, r2]. Such modularity of synthesis (a common
witness function for any domain-specific Map operator) is
another advantage of decomposing inverse semantics into
partial and conditional witness functions.

5.2 Witness Functions

Definition 10 (Witness function). Let F'(Nq,..., Ny) be a
operator in a DSL L. A witness function of F' for N; is a
function w;(y) that deduces a necessary specification ¢,
on N; given a specification ¢ on F'(Nq,. .., Ny). Formally,
wj(p) = ¢ iff F(N1,...,Np) F ¢ = N; |= ;.2

Definition 11 (Precise witness function). A witness function
w; of F(Ny, ..., Ny) for Nj is precise if its deduced specifi-
cation is necessary and sufficient. Formally, w;(p) = ¢, is
pI'CCiSC lffNJ ': p; = E'Nh - 7Nj—1a Nj+1, wo, Ng:
F(Ny,...,Ng) E .

Definition 12 (Conditional witness function). A (precise)
conditional witness function of F(Ny, ..., Ny) for Nj is a
function w;(¢ | Ng, = vi,...,Ng, = v,) that deduces
a necessary (and sufficient) specification ¢; on N; given a
specification ¢ on F'(Ny, ..., Ni) under the assumption that
some other prerequisite parameters Ny, , ..., Ny, of ' have
fixed values vy, ..., vi. Formally, w;(¢ | Ny = v;) = ; iff
F’(Z\H7 ce ,Nk)[vt/Nt] ': p = Nj ': ©j-

Example 8. Figure 6a shows witness functions for all Flash-
Fill substring extraction operators from Figure 1:

* A ConstStr(s) expression returns w iff s is equal to w.

* An expression “let v = Kth(vs, k) inb” returns w iff x
is bound to an element of vs that has w as a substring.

* A SubStr(z, pp) expression returns w (given that x re-
turns v) iff pp returns a position span of any occurrence
of win v as a substring.

* An AbsPos(x, k) expression returns c (given that x re-
turns v) iff k is equal to either c or ¢ — |v| — 1 (since k
may represent a left or right offset depending on its sign).

* An expression P = RegPos(x,rr, k) returns c (given
that x returns v) iff rr is equal to any pair of regular
expressions that matches the boundaries of position c in

2 All free variables are universally quantified unless otherwise specified.



the string v. Additionally, given that rr is equal to (r1,73),
P returns c iff k is equal to a index of c (from the left or
right) among all matches of (r1,72) in v.

L makes use of several external operators from the Flash-
Meta library. Figure 6¢ shows their witness functions:

* A Kth(z, k) expression returns w (given that x returns v)
iff k is an index of some occurrence of w in U.
* If Pair(p1, p2) returns (v1,v2), then p; returns v;.

Most witness functions are domain-specific w.r.t. the
operator that they characterize. However, once formulated
in a module for a domain such as substring extraction, they
can be reused by any DSL. In our example, witness functions
for Pair and Kth operators in Figure 6¢ do not depend on
the domain of their parameters, and are therefore formulated
generically, for any DSL. Witness functions in Figure 6a
hold only for their respective operators, but they do not
depend on the rest of the DSL in which these operators are
used, provided the operator semantics is conformant with its
(strongly-typed) signature. This property allows us to define
witness functions as generally as possible in order to reuse
the corresponding operators in any conformant DSL.

Example 9. Figure 6b shows witness functions for selected
domain-specific portions of Lrg. Since most of the Lrg oper-
ators are generic (e.g. Map, Filter, FilterInt), their witness
functions are domain-independent, and hold for any DSL
that conforms with the operator’s type signature. These prop-
erties are listed in Figure 6¢. However, there is no domain-
independent witness function wy, for the Map(F, L) oper-
ator. Hence, it is provided specifically for every strongly-
typed Map instantiation in a DSL. For instance, the wit-
ness function for the aforementioned LinesMap operator
wr(o ~ [r1,72,...] T [-]) simply maps each output re-
gion ry, ro, ... into its containing line.

5.3 Meta-algorithm

A set of witness functions for all the parameters of an operator
allows us to reduce the inductive synthesis problem (N, ¢) to
the synthesis subproblems for its parameters. We introduce
a simple non-conditional case first, and then proceed to
complete presentation of the meta-algorithm.

Theorem 4. Let N := F'(Ny,...,Ny) be a rule ina DSL L,
and ¢ be an ispec on N. Assume that F' has k non-conditional
witness functions w; (@) = y;, and N; = @; forall j = 1.k
respectively. Then: B

1. Filter(Fy(N1, ..., Nk), @) E .

2. If all w; are precise, then Fu(N1,...,Ny) = o

3 FlashMeta currently cannot statically verify that the strong type require-
ments hold in a given DSL, therefore a DSL designer has to ensure she
reuses an operator in her DSL only if its type signature is satisfied. However,
we manually proved that all witness functions from our case studies in §6.1
hold, which follows from the basic properties of their underlying domains.
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Theorem 4 gives a straightforward recipe for synthesis of
operators with independent parameters, such as Pair(p1, p2).
However, in most real-life cases operator parameters are de-
pendent on each other. Consider an example of Concat(f, )
from FlashFill, and an ispec o ~~ s. It is possible to design
individual witness functions wy and w, that return a disjunc-
tion ¢ of prefixes of s and a disjunction ¢, of suffixes of
s, respectively. Both of these witness functions individually
are precise (i.e. sound and complete); however, there is no
straightforward way to combine recursive synthesis results
f = @5 and € |= @, into a valid program set for .

In order to enable divide-and-conquer approach for de-
pendent operator parameters, we apply skolemization [10].
Instead of deducing specifications ¢ and ¢, that indepen-
dently entail ¢, we deduce only one independent specification
(say, @), and then fix the value of f. For each fixed value of
f a conditional witness function w.(¢ | f = v) deduces a
specification ¢, ,, that is a necessary and sufficient character-
ization for . Namely, . ,, in our example is o ~» s[|v]..] if
v is a prefix of s, or L otherwise.

Skolemization splits synthesis into multiple independent
branches, one per distinct value of f. Tlgese values are
efficiently determined by VSA clustering: f|, = {v1 — f1,

cos Vg ﬁ} Within each branch, the program sets fj
and the corresponding €,, = ¢. ., are independent, hence
Concaty (fj, €v;) |E @ by Theorem 4. The union of & branch
results constitutes all Concat programs that satisfy (.

Definition 13. Let N := F(Ny,..., Ni) be arule in a DSL
L with k associated (possibly conditional) witness functions

., wk. A dependency graph of witness functions of F'is
. Ni}
9 )

Wi, -
a directed graph G(F') = (V, E) where V = {Ny, ..
and (N;, N;) € Eiff N; is a prerequisite for V.

A dependency graph can be thought of as a union of all
possible Bayesian networks over parameters of F. It is not a
single Bayesian network because G (F') may contain cycles:
it is often possible to independently express N; in terms of
Nj as a witness function w;(¢ | N; = v) and NN} in terms of
N; as a different witness function w; (¢ | N; = v).

Theorem 5. Let N F(Ny,...,Ny) be a rule in a
DSL L, and o be an ispec on N. If there exists an acyclic
spanning subgraph of G(F) that includes each node with
all its prerequisite edges, then there exists a polynomial
procedure that constructs a valid program set N E o from

the valid parameter program sets N; |= ; for some choice
of parameter specifications ;.

Proof. We define the learning procedure for F' in Figure 7
algorithmically. It recursively explores the dependency graph
G(F) in a topological order, maintaining a prerequisite path
Q — a set of parameters V; that have already been skolemized
together with their fixed bindings ¥'; and valid program sets
N ;. In the prerequisite path, we maintain the invariant: for
each program set N j in the path, all programs in it produce



ConstStr(s):
let x = Kth(vs, k) inb: wg (o~ w) =0~ \/

ws(o ~ w) =0~ w

(a)
w=v;
SubStr(z,pp): wpp(o ~w |z =v) =0 \/(l,lJr |w])

w oceurs in v at position [

AbsPos(z,k): wi(oc~c|lz=v)=0c~cV(c—|v]—-1)

StartSeqMap(F, L): wy, (0~ [] 30) =0 ~ [] 3 [p1 | (p1,p2) € ] (D)
v EndSeqMap(F, L): wr, (0~ [] 3 €) =0~ [] 3 [p2 | (p1,p2) € £
LinesMap(F,L): wr (o~ [] 3£) = o ~ [] 3 [lineof (s, o[d]) | s € £]
RegexMatches(d, rr): wryr (6~ [ 34| d=v) =0 ~ \/ (r1,72)

(r1,m2) € Npee R(p:v)

RegPos(z,rr, k): wy

(o0 ~clz=v,rr={(r1,r2)) =0 ~ jVj—|¢] — 1 where ¢ = matches(v,r1,72), j = indexof(c, ¢)

RegPos(z,rr,k): wrr(o ~ ¢)o ~» \/ (r1i,72)  where R(c,v) = {(r1,r2) | r1 matches left of ¢ A r2 matches right of ¢}

(r1,m2)€R(c,v)

Kth(z,k): wg(o ~v) =0~ [] 3 [v]
Kth(z, k): 7) =0~ \/vi:w j

wj(o ~ (v1,v2)) = 0~ v;

wig(o~w|z=
Pair(p1,p2):
Map(F, L): wf(aw[[]]j€|Lfv)fo'W/\ D) = &

e = b wy(o = [1(0) =y) =ole=v] ~ y

Filter(p, L):

wr(e~[130) =0~ ]3¢ (0

Filter(p,L): wp(oc~[]3£| L =) 70'“/9/\' ! [1¢:) = “v; € €
FilterInt(io, k, L): wr(c~[] 28 =0~ []3¢
):

FilterInt(io, k, L
FilterInt(io, k, L):

wio (0~ [[] 32| L =v) =0 ~ indexof ({1,v)
wlo =[] 3] L=v) =

o ~ divisors(gcd{indexof (¢; 1 1,v) — indexof (;, v) };=1..1¢|—1)

Figure 6: Witness functions for (a) FlashFill substring extraction DSL operators in Figure 1; (b) FlashExtract DSL operators;
(c) selected generic operators from the pre-defined library of FlashMeta. Here s < w denotes that the string s is a substring
of w, £1 3 {5 denotes that the list /5 is a prefix of a list /1, and ¢; J {5 denotes that the list /5 is a subsequence of a list /1.
Matches(w, r1, 72) denotes the list of positions ¢ in w such that 71 matches on the left of ¢, and 5 matches on the right of c.

the same values U j on the provided input states & . This allows
each conditional witness function w; to deduce an ispec ¢;
for the current parameter V;, given the values of the bindings
Uky,---, Uk, for the prerequisites Ni, , ..., Ni, of N;.

The program sets in each path are valid for the subprob-
lems deduced by applying witness functions. If all the witness
functions in G(F') are precise, then any combination of pro-
grams P, ..., P, from these program sets yields a valid
program F'(Py, ..., Py) for . If some witness functions are
imprecise, then a filtered join of parameter program sets for
each path is valid for N. Thus, the procedure in Figure 7
computes a valid program set N = . O

Theorems 4 and 5 give a constructive definition of the
refinement procedure that splits the search space for N into
smaller parameter search spaces for Ny, ..., Ni. If the cor-
responding witness functions are precise, then every com-
bination of valid parameter programs from these subspaces
yields a valid program for the original synthesis problem.
Alternatively, if some of the accessible witness functions are
imprecise, we use them to narrow down the parameter search
space, and filter the constructed program set for validity. The
Filter operation (§4) filters out inconsistent programs from
N in time proportional to | N |z |.

Handling Boolean Connectives Witness functions for
DSL operators (such as the ones in Figure 6) are typically
defined on atomic specification constraints (such as equality
or subsequence specifications). To complete the definition
of the D* methodology, Figure 8a gives inference rules for
handling of boolean connectives in an ispec . Since an ispec
is defined as a NNF, we give the rules for handling conjunc-
tions and disjunctions of ispecs, and positive/negative literals.
These rules directly map to corresponding VSA operations:
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Theorem 6.

1. N1 |:g01andN2 ':@2 e N1UN2 ’:@1 \/(pg
2. ]yl |:<p1andN2 'ZQD?V <~ NlﬁNg ':(plAQPQ
3. N = ¢1 < Filter(N, ¢2) E ¢1 A pa.

Handling negative literals is more difficult. They can only
be efficiently resolved in two cases: (a) if a witness function
supports the negated ispec directly, or (b) if the negative literal
occurs in a conjunction with a positive literal, in which case
we use the latter to generate a base set of candidate programs,
which is then filtered to also satisfy the former. If neither
(a) nor (b) holds, the set of possible programs satisfying a
negative literal is bounded only by the DSL.

Our pre-defined generic witness functions in Figure 6c¢,
together with witness functions for common syntactic fea-
tures of FlashMeta DSLs (let rules, variables, and literals)
constitute the FlashMeta standard library.

Search Tactics Theorems 5 and 6 and Fig. 8 entail a
non-deterministic choice among numerous possible ways to
explore the program space deductively. For instance, one
can have many different witness functions for the same
operator F' in G(F'), and they may deduce subproblems
of different complexity. A specific exploration choice in
the program space constitutes a search tactic over a DSL.
We have identified several effective generic search tactics,
with different advantages and disadvantages; however, a
comprehensive study on their selection is left for future work.

Consider a conjunctive problem Learn(N, 1 A ¢3). One
possible way to solve it is given by Theorem 6: handle two
conjuncts independently, producing VSAs N and N, and
intersect them. This approach has a drawback: the complexity
of VSA intersection is quadratic. Even if ¢ and 5 are
inconsistent (i.e. N3 N Ny = ), each conjunct individually



(a) N:=F(Ny,...,Ng) | Fa(My, ..

LEARNRULE(G(F1), ) = N1

'7Mn)

LEARNRULE(G(F2), ) = Ny

Vj =1..2: Learn(N, ;) = ]\7]-

Vj =1..2: Learn(N, ¢;) = ﬁj

Learn(N, ¢) = N1UN

- N := F(Ny,..
Learn(N, 1) = N 2 = = (o, m)

Learn(N, o1 A p2) = Nl N Ny

- Ni)
All witness functions in G(F') accept ¢

Learn(N, o1 V p2) = ]VlU]\~f2

Learn(N, @1 A p2) = Filter(N, @2)
(b)

N :=letx = e in ey

Learn(N, ¢) = LEARNRULE(G(F)), ¢)

N is a variable

Learn(N, ¢) = Filter(L|n, ) Learn(N,T)=L|n

N is a literal

weo(p | €1 =v) =0clz:=v]~ ¢ Learn(N,o ~ 7) = {N}if 7(c[N]) else 0

Learn(N,o ~ v) = {v}

Figure 8: (a) Constructive inference rules for processing of boolean connectives in the inductive specifications ¢; (b) Witness
functions and inference rules for common syntactic features for FlashMeta DSLs: let definitions, variables, and literals.

Input G(F): dependency graph of witness functions for the rule F'
Input ¢: specification for the rule F'
function LEARNRULE(G(F), ¢)
1 Permutation  <— TopologicalSort(G(F))
2 N+« J{N'| N’ € LEARNPATHS(G(F), ¢, ,1,2)}
3 if all witness functions in G(F’) are precise then
4 return N
5 else _
6 return Filter(N, )
Input 7r: permutation of the parameters of F'
Input %: index of a current deduced parameter in
Input Q: a mapping of prerequisite values ¥y, and corresponding
learnt program sets N, & on the current path
function LEARNPATHS(G(F), ¢, 7,1, Q)
7 ifi > kthen
8 Let Ny, ..., Ni be learnt program sets for N1, ..., N in Q
9 return {Fm(ﬁl,...,ﬁk)}
10: s <— m; // Current iteration deduces the rule parameter N
11: Letws(o | Ng, =1,..., Ni,, = Us) be the w.f. for N
// Extract the prerequisite values ]?r N from the mapping Q
12 {’Ukl’—)Nkl,...,Ukmr—)Nkm}%Q[kl,...,km}
// Deduce the ispec for N given o and the prerequisites
13: ¢S%ws(<p|Nkl :'D‘kla"'ka-m:ﬁkr,,L)
14: if ws = L then return ()
// Recursively learn a valid program set N E s
15: ﬁs < Learn(Ns, ¢s)
// If no other parameters depend on N, proceed without clustering
16: if N, is aleaf in G(F’) then
17: Q Qs =T~ Ny
18: return LEARNPATHS(G(F), o, m,i + 1,Q")
// Otherwise cluster N, s on & and unite the results across branches
19: else
20: o < the input states associated with ¢
21: for all (7 > N/ ;) € Ni|5 do
22: Q'+ Qs :zﬁ}b—)]\vf;,j]
23: yield return all LEARNPATHS(G(F), o, 7,1+ 1,Q’)

Figure 7: A learning procedure for the DSL rule N :
F(Ny,...,N) that uses k conditional witness functions for
Ny, ..., N, expressed as a dependency graph G(F).

may be satisfiable. In this case the unsatisfiability of the
original problem is determined only after T'(Learn(N, 1)) +
T(Learn(N, ¢2)) + O(V(Ny) - V(Ny)) time.

An alternative search tactic for conjunctive ispecs arises
when ¢; and ¢y constrain different input states o; and
02, respectively. In this case each conjunct represents an
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independent “world”, and witness functions can deduce
subproblems in each “world” independently and concurrently.
FlashMeta applies witness functions to each conjunct in the
specification in parallel, conjuncts the resulting parameter
ispecs, and makes a single recursive learning call. Such
“parallel processing” of conjuncts in the ispec continues up to
the terminal level, where the deduced sets of concrete values
for each terminal are intersected across all input states.*

The main benefit of this approach is that unsatisfiable
branches are eliminated much sooner. For instance, if among
m I/O examples one example is inconsistent with the rest, a
parallel approach approach discovers it as soon as the relevant
DSL level is reached, whereas an intersection-based approach
has to first construct m VSAs (of which one is empty) and
intersect them. Its main disadvantage is that in presence of
disjunction the number of branches grows exponentially in a
number of input states in the specification.

Optimizations FlashMeta performs many practical opti-
mizations in the algorithm in Figure 7. We parallelize the
loop in Line 21, since it explores non-intersecting portions of
the program space. For ranked inductive synthesis, we only
calculate top k programs for leaf nodes of G(F’), provided
the ranking function is monotonic. We also cache synthesis
results for every distinct learning subproblem (N, ), which
makes D* an instance of dynamic programming. This opti-
mization is crucial for efficient synthesis of many common
DSL operators, as we explain in more details in §6.1.

For bottom portions of the DSL (when L] is small) we
switch to enumerative search [37], which in such conditions is
more efficient than deduction, provided no constants need to
be synthesized. In principle, every subproblem Learn(N, ¢)
in FlashMeta can be solved by any sound strategy, not
necessarily D* or enumerative search. Possible alternatives
include constraint solving or stochastic techniques [1].

6. Evaluation

Our evaluation of FlashMeta aims to answer two classes of
questions: its applicability (§6.1) and its performance (§6.2).

4 The “parallel” approach can also be thought of as a deduction over
a new isomorphic DSL, in which operators (and witness functions) are
straightforwardly lifted to accept tuples of values instead of single values.



Table 1: Case studies of FlashMeta: prior works in in-
ductive program synthesis. “D*” means “Is it an instance
of the D* methodology?”, “Imp” means “Has it been
(re)implemented?”, 7 is a top-level specification kind, ¢’
lists notable intermediate specification kinds (for D* only).

Project Domain D*Imp 7 ¢
Gulwani [7] String transformation v v = =
Le and Gulwani [22] Text extraction v VvV O O
Kini and Gulwani [16] Text normalization v v = soft
Barowy et al. [3] Table normalization v /v = =
Singh and Gulwani [33]  Semantic text editng v X = =
Harris and Gulwani [8] Table transformation v X = =
Singh and Gulwani [32] Number transformation v/ X = =
Andersen et al. [2] Algebra education v X trace =
Lauetal. [21] Editor scripting v X trace =
Feser et al. [5] ADT transformation X = =
Osera and Zdancewic [28] ADT transformation X = =
Yessenov et al. [38] Editor scripting X = =
Udupa et al. [37] Concurrent protocols X X trace N/A
Katayama [15] Haskell programs X X = NA
Lu and Bodik [24] Relational queries X X = N/A
WebExtract Web data extraction v Vv 1O 1O

Table 2: Development data on (re)implemented projects.

. LOC Development time
Project

Original FlashMeta Original FlashMeta

Gulwani [7] 12K 3K 9 months 1 month

Le and Gulwani [22] 7K 4K 8 months 1 month

Kini and Gulwani [16] 17K 2K 7 months 2 months

Barowy et al. [3] 5K 2K 8 months 1 month
WebExtract — 2.5K — 1.5 months

6.1 Case Studies

Table 1 summarizes our case studies: the prior works in
inductive synthesis over numerous different applications that
we studied for evaluation of FlashMeta. Of the 15 inductive
synthesis tools we studied, 12 can be cast as a special case of
D* methodology, which we verified by manually formulating
corresponding inductive properties for their algorithms. In the
other 3 tools, the application domain is inductive synthesis,
and our problem definition covers their application, but
the original technique is not an instance of D*: namely,
enumerative search [15, 37] or constraint solving [24].

Our industrial collaborators reimplemented 4 existing
systems and created a new system WebExtract for synthesis
of CSS selectors for extraction of webpage data by example.
We present data on these development efforts in Table 2.

Q1: How motivated is our generalization of inductive spec-
ification? Input-output examples is the most popular speci-
fication kind, observed in 12/15 projects. However, 3 projects
require program traces as their top-level specification, and
2 projects (1 prior) require subsequences of program output.
Boolean connectives such as V and — are omnipresent in
subproblems across all 12 D* projects.

FlashNormalize [16] is a noteworthy case. Its witness
functions introduce soft specifications. Such specifications
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inspire an extension of Problem 1, where it suffices to
satisfy a maximal set of conjuncts in a CNF specification.
In [16], such soft specifications are used to learn conditionals
ITE(B, T, E): first a collection of program sets that cover
different maximals of examples is learned as candidates for
T, and then one of these maximals is selected as a soft
specification for B. After a subset of examples is covered by
the learned B and 7', the remaining examples are passed down
recursively to E' (as a regular, “hard” specification). We are
aware of at least two more applications of soft specifications:
(a) composition of Filter operators, where each program
may satisfy only a subset of negative examples (assuming
other Filters handle the rest), and (b) composition of Merge
operators (for similar reasons). Complete exploration of soft
specifications is left for future work.

Q2: How applicable is our generic operator library? Most
common operators across our case studies are string process-
ing functions, due to the most popular domain being data
manipulation (11/16 projects). Almost all projects include
some version of learning conditional operators (equivalent
to that of FlashFill). List processing operators (e.g. Map,
Filter) appear in 9/16 projects, often without explicit real-
ization by the original authors (for example, the awkwardly
defined Loop operator in FlashFill is actually a combination
of Concatenate and Map). Feser et al. [5] define an extensive
library of synthesis strategies for list-processing operators in
the A? project. These synthesis strategies are isomorphic to
FlashExtract witness functions; both approaches can be cast
as instances of D* (see §8 for detailed comparison).

03: How usable is FlashMeta? Table 2 presents some de-
velopment stats on the projects that were reimplemented. In
all cases, FlashMeta was shorter, cleaner, more stable and ex-
tensible. The reason is that with FlashMeta, our collaborators
did not concern themselves with tricky details of synthesis
algorithms, since they were implemented once and for all,
as in §5.3. Instead, they focused only on domain-specific
witness functions, for which design, implementation, and
maintenance are much easier. Notably, in case of FlashRe-
late [3] reimplementation and WebExtract, our collaborators
did not have any experience in program synthesis.

The development time in Table 2 includes the time re-
quired for an implementation to mature (i.e. cover the re-
quired use cases), which required multiple experiments with
DSLs. With FlashMeta, various improvements over DSLs
were possible on a daily basis. FlashMeta also allowed our
collaborators to discover optimizations not present in the orig-
inal implementations. We share some anecdotes of FlashMeta
simplifying synthesizer development below.

Scenario 1. One of the main algorithmic insights of FlashFill
is synthesis of Concat(ey,...,ex) expressions using DAG
program sharing. A DAG over the positions in the output
string s is maintained, each edge s[i : j] annotated with
a set of programs that output this substring on a given



state 0. Most of the formalism in the paper and code in
their implementation is spent on describing and performing
operations on such a DAG. In FlashMeta, the same grammar
symbol is instead defined through a recursive binary operator:
f := e[| Concat(e, f). The witness function for e in Concat
constructs ¢’ as a disjunction of all prefixes of the output
string in . The property for f is conditional on e and simply
selects the suffix of the output string after the given prefix
[e]o. Since FlashMeta caches the results of learning calls
(f, ) for same (s, the tree of recursive Learn(f, ) calls
becomes a DAG. This is the same DAG as in FlashFill — but
in FlashMeta, it arises implicitly and at no cost. Moreover,
it becomes obvious now that DAG sharing happens for any
foldable operator, e.g. ITE, A, V, sequential statements.

Scenario 2. During reimplementation of FlashFill, a new
operator was added to its substring extraction logic: relative
positioning, which defines the right boundary of a substring
depending on the value of its left boundary. For example,
it enables extracting substrings as in “ten characters after
the first digit”. This extension simply involved adding three
let rules in the DSL, which (a) define the left boundary
position using existing operators; (b) cut the suffix starting
from that position; (c) define the right boundary in the suffix.
This extension was inspired by some practically useful tasks
that FlashFill fails to handle. While such an extension in the
original FlashFill implementation would consume a couple
of weeks, in FlashMeta it took only a few minutes.

6.2 Experiments

Domain-specific Tools To investigate performance of syn-
thesizers generated by FlashMeta, we chose FlashExtract as
a representative implementation, since its test cases cover
huge instances of real-life data. We used the entire original
FlashExtract benchmark set of 139 tests. Figure 9 shows
performance & maximum VSA volume of the new system.

The overall performance is comparable to that of the orig-
inal system, even though the implementations differ drasti-
cally. The original implementation’s runtime varies from 0.1
to 4 sec, with a median of 0.3 sec. The new implementation
(despite being more expressive and built on a general-purpose
framework) has a runtime of 0.5— 3x the original implementa-
tion, with a median of 0.6 sec. This performance is sufficient
for the FlashMeta-based implementation to be successfully
used in industry instead of the original one.

There is no good theoretical bound on the time of VSA
clustering (the most time-consuming operation during D*
deduction). However, it is evident that the output VSA volume
is proportional to the clustering time. Thus, to evaluate it, we
measured the VSA volume on our real-life benchmark suite.
As Figure 9 shows, even for large inputs it never exceeds
8000 nodes, thus explaining efficient runtime.

Generic Tools Comparing FlashMeta to general-purpose
meta-synthesizers proved challenging. Most related projects
are participants of the SyGuS-COMP 2014 competition [1].

123

However, their synthesis procedures are currently defined
only for DSLs based on SMT theories. In contrast, our case
studies explore domains with rich semantics, such as regular
expressions or webpage DOM. Even most recent extensions
of the Z3 SMT solver to strings [40] lack expressiveness to
model such DSLs. We believe that lowering the FlashEx-
tract DSL, for instance, to theory of arrays would deem an
unfair comparison because of huge size of the resulting en-
coding. Therefore we leave comparison of complementary
meta-synthesis approaches to future work. To breach this
comparison gap, we intend to organize an inductive synthesis
competition on a rich industrial benchmark suite.

7. Discussion
7.1 Strengths and Limitations

D* methodology works best under the following conditions:

Decidability A majority of the DSL should be characterized
by witness functions, capturing a subset of inverse semantics
of the DSL operators.

Counterexample An example of an operator that can-
not be characterized by any witness function is an inte-
gral multivariate polynomial Poly(aq, . .., ar, X1, ..., X,).
Here aq, .. ., aj, are integer polynomial coefficients, which
are input variables in the DSL, and X;,...,X,, are inte-
ger nonterminals in the DSL. Given a specification ¢ =
(ag, ..., ax) ~ y stating that a specific Poly executed with
coefficients ao, . . . , aj evaluated to y on some X1, ..., X,,
a witness function w; has to find a set of possible values
for X ;. This requires finding roots of a multivariate integral
polynomial, which is undecidable.

Deduction Witness functions should not introduce many
disjunctions. Each disjunct (assuming it can be materialized
by at least one program) starts a new deduction branch. In
certain domains this problem can only be efficiently solved
with a corresponding SMT solver.

Counterexample Consider the bitwise operator BitOr:
(Bit32, Bit32) — Bit32. Given a specification o ~» b where
b: Bit32, witness functions for BitOr have to construct each
possible pair of bitvectors (by, b2) such that BitOr(by,b2) =
b. If b = 232 — 1, there exist 3°2 such pairs. A deduction over
332 branches is infeasible.

Performance Witness functions should be efficient, prefer-
ably polynomial in low degrees over the specification size.

Counterexample Consider the multiplication operator
Mul: (Int,Int) — Int. Given a specification o ~~ n with
a multiplication result, a witness function for Mul has to
factor n. This problem is decidable, and the number of pos-
sible results is at most O(logn), but the factoring itself is
infeasible for large n.

All counterexamples above feature real-life operators,
which commonly arise in embedded systems, control theory,
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Figure 9: Performance and maximum VSA volume during 139 learning sessions of the FlashExtract reimplementation.

and other domains. The best known synthesis strategies for
them are based on specialized SMT solvers [1]. On the other
hand, to our knowledge D* is the only synthesis strategy
when the following (also real-life) conditions hold:

* The DSL contains arbitrary executable operators that
manipulate domain-specific objects with rich semantics.

* The programs may contain domain-specific constants.

* The specifications are inherently ambiguous, and resolv-
ing user’s intent requires learning a set of valid programs
to enable ranking or additional user interaction.

* The engineering & maintenance cost of a PBE-based tool
is limited by industrial budget and available developers.

7.2 Remarks

VSA as a Language In formal logic, a language is defined
as a set of programs. We commonly represent languages as
CFGs, which are based on two syntactic features: union of
rules (|) and sharing of nonterminals. A VSA (§4) is also
a representation for a set of programs; it is an AST-based
representation that leverages two syntactic features: union
(U) and join of shared VSAs (Fy). These representations
are isomorphic; in fact, a VSA over a DSL L is essentially
a CFG for some DSL £’ built from L. For instance, if
N = output(L), then the VSA N = L|y is isomorphic
to the CFG of £. VSAs produced by D* are granulations of
the CFG of L (i.e. subsets of £ with some nonterminals split
into multiple independent symbols).

8. Related Work

The dream of program synthesis in a general-purpose lan-
guage remains far from reality; the underlying state space is
just too huge to synthesize any useful programs. Creative so-
lutions have thus emerged including three main lines of work:
deductive, syntax-guided, and domain-specific inductive syn-
thesis. In §1, we outlined the main techniques, strengths, and
weaknesses of all three approaches. Our D* methodology
combines the best features of all approaches: it takes as input
an inductive specification, its program space is restricted by
a DSL, and its algorithm is a combination of deductive in-
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ference with enumerative search. Such a combination makes
inductive synthesizers scale to real-world practical domains.

Recently there has been considerable effort in standard-
izing the program synthesis space and developing generic
synthesis strategies and frameworks. Three main initiatives in
this space are SKETCH [35], ROSETTE [36], and SyGusS [1].

SKETCH and ROSETTE SKETCH, developed by Solar-
Lezama [35], is a pioneering work in the space of program
synthesis frameworks. It takes as input a partial program, i.e.
a program template with holes in place of desired subexpres-
sions. SKETCH translates this template to SAT encoding, and
applies counterexample-guided inductive synthesis to fill in
the holes with expressions that satisfy the specification.

ROSETTE by Torlak and Bodik [36] is a DSL-parameter-
ized framework, which supports a rich suite of capabilities
including verification, synthesis, and repair. Unlike SKETCH,
its input language is a limited subset of Racket programming
language, which ROSETTE translates to SMT constraints via
symbolic execution.

Both SKETCH and ROSETTE allow seamless translation
of their input languages (custom C-like in SKETCH or limited
Racket in ROSETTE) to SAT/SMT encoding at runtime. It
reduces the level of synthesis awareness required from the
developer (Torlak and Bodik call such a methodology solver-
aided programming). However, our experiments show that
constraint-based techniques scale poorly to real-world indus-
trial application domains, which do not have a direct SMT
theory [2, 32]. To enable program synthesis in such cases, our
D* methodology separates domain-specific insights into wit-
ness functions, and uses a common deductive meta-algorithm
in all application domains. The resulting workflow is as trans-
parent to the developer as solver-aided programming, but it
does not require domain axiomatization.

Syntax-guided Synthesis SyGuS [1] is a recent initiative
that aims to (a) standardize the input specification language
of program synthesis problems; (b) develop general-purpose
synthesis algorithms for these problems, and (c) establish
an annual competition of such algorithms on a standardized
benchmark suite. Currently, their input language is also based
on SMT theories, which makes it inapplicable for complex



industrial domains (see §1). The main synthesis algorithms
in SyGuS are enumerative search [37], constraint-based
search [13], and stochastic search [31]. Based on the SyGuS-
COMP results, they handle different application domains
best, although enumerative search is generally effective on
medium-sized problems in most settings. We have integrated
enumerative search in our D* methodology, which makes D*
the first domain-specific deduction&search-based technique
in program synthesis. We also plan to organize an inductive
synthesis competition on a suite of industrial benchmarks.

Deduction for ADT Transformations Concurrently with
this work, Feser et al. [5] and Osera and Zdancewic [28]
developed two approaches to ADT transformations from I/O
examples based on deductive reasoning over the program
structure. These techniques operate over languages with ADT-
processing operators and limited forms of recursion. Both
works include deductive synthesis strategies for supported
operators, such as Map and Filter. However, they are limited
to special cases presented in the respective works:

* Osera and Zdancewic cannot proceed with synthesis if
a deduced recursive subproblem is absent in the list
of I/O examples (so called “trace completeness prop-
erty”). For instance, recursive synthesis for the function
Length: List(T") — Int requires an I/O example per each
suffix of the longest input list in the specification.

Feser et al. cannot derive a general-purpose deduction
scheme for Map(F, L) since they do not leverage domain-
specific knowledge about the behavior of L (recall from
§5 that witness functions for L exist only for strongly-
typed Maps). In fact, their deduction rules are formulated
only for Maps whose input is also an input to the overall
program. As a result, they are unable to learn programs
like Ax = Map(F, Filter(B, x)). Deduction in such cases
requires understanding of the domain-specific nature of L,
which D* captures via strong types and witness functions.

In this work, we present the first comprehensive theory
of deduction&search-based inductive synthesis for arbitrary
application domains. It presents a practically useful problem
definition, in which the synthesis specification describes
properties of the output on some concrete inputs (as opposed
to only output values). I/O examples are too limited in many
real-life settings, whereas complete logical specifications are
difficult to satisfy efficiently. Our intent specification is a
trade-off between these two extremes.

Furthermore, we parameterize FlashMeta by a ranking
function h, which is a quantitative constraint over the program
space. By using VSAs, D* supports learning k topmost-rated
programs in the DSL w.r.t. h. This enables learning from a
small number of examples and rich user interaction models
for disambiguation [26].

9. Conclusion and Future Work

The notoriously complex problem of program synthesis has
usually been approached in two ways, which fall on two sides
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of the abstraction spectrum. On one hand, syntax-guided
meta-synthesizers restrict the underlying program space to
DSLs, but they struggle with semantics of rich practical do-
mains and their algorithms are based on expensive search over
DSL. On another hand, domain-specific inductive synthesiz-
ers allow incomplete example-based specifications over arbi-
trary domains, but are incredibly difficult to develop. Our D*
methodology bridges the gap between these approaches by
allowing the DSL designer to separate their domain-specific
insights into witness functions of DSL operators, and exploit
them in our common deductive meta-synthesis algorithm. We
implemented it in the FlashMeta framework, whose effective-
ness is evident from its immediate adoption for developing
mass-market applications of industrial quality.

The inductive synthesis problem opens a new subfield in
the program synthesis domain. To compare many possible
solutions to it, we intend to release our framework and
organize an inductive synthesis competition on a diverse
real-life benchmark set. We foresee it facilitating novel cross-
disciplinary research on program synthesis, such as: (a) Uls
& environments for debugging/guiding inductive synthesis
sessions; (b) Integrating probabilistic techniques with logical
reasoning for handling noisy input data in specifications and
building a statistical program ranking framework.
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A. Proof of Theorem 2

Theorem 2. Let N be a VSA, and let m = W(N ). Assume
O(mlog k) implementation of the Select function. The time
complexity of calculating Top(N, k) is O(V(N) k™ log k).

Proof. Let d be the depth (number of levels) of N. Note that
V(N) = O(m?). Let T(n) denote the time complexity of
calculating Toph(ﬁ(n), k), where J\Nf(n) is the n™ level of N.
For a leaf node we have T'(1) = O(mlogk). For a union
node we have T'(n) = O(m - T'(n — 1) + kmlog k), where
the first term represents calculation of Top,, over the children,
and the second term represents the selection algorithm. For
a join node we similarly have T'(n) = O(m - T'(n — 1) +
k™ log k). Since T'(n) grows faster if N(n) is a join rather
than a union, we can ignore the non-dominant union case.
Solving the recurrence for T'(n), we get:
T(d) = O (m®logk + (m — 1) 'k™(m?" — 1) log k)

O(mk™logk) = O(V(N) - k™ log k) O
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