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ABSTRACT

K-8 mathematics students must learn many procedures,
such as addition and subtraction. Students frequently learn
“buggy” variations of these procedures, which we ideally
could identify automatically. This is challenging because
there are many possible variations that reflect deep compo-
sitions of procedural thought. Existing approaches for K-8
math use manually specified variations which do not scale to
new math algorithms or previously unseen misconceptions.
Our system examines students’ answers and infers how they
incorrectly combine basic skills into complex procedures. We
evaluate this approach on data from approximately 300 stu-
dents. Our system replicates 86% of the answers that con-
tain clear systematic mistakes (13%). Investigating further,
we found 77% at least partially replicate a known misconcep-
tion, with 53% matching exactly. We also present data from
29 participants showing that our system can demonstrate in-
ferred incorrect procedures to an educator as successfully as
a human expert.
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INTRODUCTION

K-8 mathematics students learn many fundamental proce-
dures, such as how to add 3-digit numbers or how to reduce
fractions. During this process, they frequently make mistakes
and can even learn entirely incorrect procedures. Educators
need to identify these errors for a variety of reasons (provid-
ing corrections, granting partial credit, etc.), but this process
is hard and time-consuming. Math education experts [4,7,46]
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have analyzed large sets of known student errors and recom-
mended training materials to help educators learn to iden-
tify errors better. However, this process remains a roadblock
for educators [17]. We envision a future in which educators
spend less time trying to reconstruct what their students are
thinking and more time working directly with their students.

Automatic identification of students’ procedural errors is part
of a large body of work in HCI studying user intent. HCI
researchers have considered user intent in intelligent tutoring
systems [3,6,29-31], generating curriculum/learning material
[38,44,45], text, spreadsheet, or web processing [5,9,27,37],
visual manipulation [10, 13, 14], and physical interactions
[18]. Many of these systems rely on expert authoring, or work
done by a domain expert that models how the system should
behave for a specific application. Systems then use that expert
authoring to convert system input into output automatically.
However, expert authoring frequently requires work for every
new input, which limits scalability. In addition, inferring the
user’s intended meaning from their input is a recurring chal-
lenge. Our work aims to limit expert authoring and develop
technology that can effectively infer user intent in K-8 math.

Several existing approaches for identifying students’ math er-
rors [4,7,46] concentrate on a specific type of systematic pro-
cedural error, which we refer to as a misconception, that oc-
curs when students learn the wrong process for solving cer-
tain types of problems. These systems make use of “bug
libraries”, which are sets of known student misconceptions
for a given problem type. Since this approach relies on ex-
isting collections of misconceptions, a new collection must
be defined for every new math topic. It is also not robust to
never-before-seen misconceptions. Ideally, a system to iden-
tify students’ procedural errors would trace a student’s solu-
tion process by exploring the set of possible procedures they
may have used, rather than comparing against known error
patterns. Reconstructing this process allows for more fine-
grained understanding. Our approach uses basic math oper-
ations, such as single-digit addition or incrementing a num-
ber, and combines them together to build a procedure that
leads to the student’s solution. Specifically, we generate a
program with potentially complex control flow (conditionals
and nested loops) that models how a student solved a problem
set incorrectly (see Fig. 1 for an overview).
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Figure 1. Our system has two major components: a thought-process reconstruction engine which uses program synthesis and a GUI for displaying
reconstructed thought processes to an educator. The input is a set of problems that have been solved systematically (although possibly incorrectly) by a
student. The engine attempts to synthesize a computer program from the input problems to try to explain what the student was doing. This program is
then passed to the GUI, which automatically produces a step-by-step tutorial explaining the error to an educator.

We evaluate our approach on multiple collections of miscon-
ceptions. We use a set of common student mistakes curated
by an expert [4] to test robustness. We are able to replicate
70% of misconceptions in algorithms ranging from subtrac-
tion to fraction reduction. We then evaluate our system’s real-
world applicability by analyzing it on data from 296 students
in 17 classrooms at 11 schools across 7 states collected in
2014. On this data set we are able to generate programs that
replicate 86% of the students’ solutions to problems classified
as containing a systematic error (13%). Investigating further,
we found 77% at least partially replicate a known misconcep-
tion, with 53% matching exactly.

We also evaluate how well our system can help educators un-
derstand what students are thinking. Many existing class-
room tools for K-8 mathematics help educators understand
their students’ progress, but they concentrate almost exclu-
sively on correctness [16,33]. In order to inform educators
of their students’ misconceptions, we automatically generate
step-by-step visual demonstrations of the programs produced
by our system. We present results from a 29-participant user
study showing that our system can explain incorrect student
procedures to an educator as well as a math education expert.

The main contributions of this work are as follows:

e We present a system that reconstructs student misconcep-
tions in K-8 mathematics by combining basic math opera-
tors into full procedures that replicate how a student solved
a given problem set incorrectly

e We demonstrate that our system can replicate student mis-
conceptions by evaluating it on a set of common student
mistakes curated by an expert and data from 296 students

e We built a visualization of our system’s output and show
that it can can explain students’ misconceptions to educa-
tors as well as human experts

RELATED WORK

Aiding and Modeling the Learner in Education

There has been significant work in modeling how students
approach solving problems in procedural domains, such as
mathematics or programming. Brown and Van Lehn’s repair
theory defines a generative model for reproducing the errors
students make when solving procedural problems [8]. Lan-
gley and Ohlsson [25] developed the concept of production
rules, which check if a particular condition is true about a
problem state and then perform an operation. Intelligent tu-
toring systems [3, 6] train students in procedural tasks using

production rules. Later work [30,31] used a production-rule-
learning framework to learn students’ errors; however, this
approach often learned production rules that were too general
or too specific. Jarvis et al. [20] apply machine learning to
generate production rules for automating intelligent tutoring
system creation. The size of production rules produced by
this system is limited due to the brute force nature of its algo-
rithm. Li et al. use a machine learning agent to learn complex
production rules for algebra from examples [29]. They test
the validity of their technique for a single data set in a single
domain (algebra). In comparison, we evaluate our approach
on two data sets containing data for multiple math algorithms
and hundreds of students.

In contrast to production rules, our approach generates com-
plete imperative programs with nested loops and conditionals
within loops. This is important because accurately identify-
ing systematic errors requires a complete understanding of
the student’s overall process, such as determining that the stu-
dent is (or is not) applying the same process to each column
in a subtraction problem.

BUGGY [7] and DEBUGGY attempted to generate descrip-
tions of K-8 math student errors using a hardcoded bug li-
brary built from a large set of incorrect student solutions. Van
Lehn [46] built the Sierra system which produced student er-
rors based on repair theory and training from the BUGGY
data set. Sison and Shimura provide an overview of other core
Al methods for feedback generation [43]. Since a bug library
cannot address previously unseen errors, our approach instead
searches through how a student may combine basic math op-
erations, like single-digit addition, into complex procedures.
The DIAGNOSER system [19, 28] helps students learn con-
ceptual physics by asking them to justify their answers for
multiple choice problems. In comparison, our system works
for open-ended math problems and the misconceptions that
arise from incorrectly learned math procedures.

More recently, there have been procedural methods for as-
sessing correctness in programming [39, 42], discrete finite
automata [1], and embedded systems [21]. Refazer [40]
moves beyond correctness to determine how students trans-
form programs while writing assignments, and can learn
transformations without any hardcoded bug library or error
model. Head et al. [15] extend Refazer by building a sys-
tem that directly interacts with an educator. They capitalize
on both expertise and automation to provide better feedback.
Other recent work has clustered student programming assign-



ments into similar groups and provides personalized feedback
using semi-supervised methods [22]. Many of the systems
noted above leverage modern advances in program synthesis
technology. We leverage program synthesis to combine small
conceptual units into procedures that model student intent.
We believe ours is the first program synthesis system that di-
rectly demonstrates this capability for K-8 mathematics.

Programming-by-Demonstration (PbD) in HCI

There is a significant body of work in HCI focused on in-
ferring user intent. A common technique is programming-
by-demonstration (PbD), which analyzes demonstrations of
user intent and constructs a program that reproduces these
demonstrations. A major application area for PbD is auto-
matic tutorial generation [36, 44, 45] and instructional scaf-
folding [2,38]. Our method for visualizing the results of our
PbD system was heavily inspired by O’Rourke et al.’s work
on automatic visual tutorials for procedural skills [38].

PbD has also been applied to text editing and viewing.
Mitchell et al. introduced the concept of version space al-
gebras which allow efficient computation of a large number
of hypothetical programs [35]. The SMARTedit system used
a version space algebra to learn repetitive text-editing proce-
dures with simple loop structures [27]. Our technique is able
to synthesize programs with nested loop structures and con-
ditionals. DocWizards [5] generates automatic walkthroughs
of computer documentation. As input it records a user walk-
through of a procedural task. DocWizards then automatically
generates documentation for the task that can guide a new
user by suggesting the steps they need to take, potentially in-
cluding non-linear control flow. Unlike our work, DocWiz-
ards walkthroughs cannot use portions of one walkthrough
to inform the creation of another unrelated tutorial. In other
words, DocWizards’ internal representation of steps is not
modular. Our system is able to model user intent that con-
tains complex control flow using composable math operators.
We apply this system to recover user intent in K-8 mathemat-
ics by representing student thought processes as programs.

Program synthesis also extends to more general HCI appli-
cations. In particular, there has been significant work build-
ing systems that interact with the user through demonstra-
tion. Sketch-n-Sketch [11] allows automatic loading of input-
output examples to generate scalable vector graphics in real
time. The FlashProg system [32] allows users to specify data
extraction tasks in a UI which are then executed and modeled
using a program synthesis backend. As noted above, our con-
tribution is using program synthesis to model student intent in
K-8 mathematics by combining individual mathematics con-
cepts into programs representing student solution processes.

Commercially Available Software

Time to Know® produced one of the first fully digital learn-
ing platforms complete with personalized question sets for
the CommonCore curriculum. Their technology is currently
being used by McGraw-Hill in their Thrive environment [33].
A similar curriculum based tool, HeyMath!® [16], is popu-
lar for its data driven feedback mechanism. However, these
tools do not attempt to address misconceptions or understand

what the student is doing at a semantic level; they concen-
trate almost exclusively on correctness. Our system, in con-
trast, is able to explain misconceptions step-by-step to an ed-
ucator. Gradescope [41] aims to help educators grade stu-
dents more efficiently by providing smart aggregation of sim-
ilar student responses, distributed grading of one assignment
across many graders, and a single unified rubric that can ap-
ply pre-specified comments. We focus on modeling student
intent to help resolve misconceptions that lead to incorrect
answers on assignments and lower grades.

MISCONCEPTIONS IN MATHEMATICS

Student errors in mathematics include careless mistakes, in-
correct fact recall, and systematic errors in which the wrong
algorithm is used [4,46]. We focus only on this last class of
systematic errors, called misconceptions in the literature [12].
We leverage four well-known sources in this area: the mis-
conceptions used in the BUGGY and Sierra systems as de-
scribed by Van Lehn [46], a math education resource book
from Ashlock [4], a data collection study by Cox [12], and
a Department of Education Technical Report [26]. These re-
sources typically present a misconception as a problem set
that a student has solved incorrectly, alongside a text descrip-
tion of the misconception that was either written by an expert
or obtained through an interview with the student.

The main challenge in automatic misconception identification
is the sheer number of possible misconceptions for a single
topic. Van Lehn [46] identified over 100 distinct misconcep-
tions for subtraction alone. As an example, consider these
systematic errors for addition (a; + a;) problems from [4]:

A-W-1: Add each column and write the sum below, even if
it is greater than nine.

A-W-2: Add each column from left to right. If the sum is
greater than nine, write the tens digit below and the ones
digit above the column to the right.

A-W-3 (Fig. 2, left): Only applies to problems in which a;
has two digits and a;, has two digits or one digit. If a; has
one digit, add all three digits and write the sum. If a; and
ap both have two digits, add each column normally.
A-W-4: Only applies to problems in which a; has two dig-
its and a, has one digit. Add in a manner similar to multi-
plication. For each column, moving from right to left, add
the digit of a; in that column to a;. Carry if the sum is
greater than nine and include in the next sum.

We define a solved problem set (SPS) as a set of 3 or more
problems with solutions provided by a single student. A-W-3
and E-F-3 in Fig. 2 are SPSes that contain a misconception.

Although there are many different individual misconceptions
for a variety of math topics, the steps a student takes while
computing an incorrect solution are remarkably similar, when
viewed through the proper lens. For instance, consider E-
F-3 (Fig. 2, right) in which a student divides the larger of
the numerator and denominator by the other value, drops any
remainder, and uses the larger number as the denominator.
Comparing E-F-3 to A-W-3, it is not immediately clear how
one could develop a unified approach to reconstructing both
students’ thought processes. Our key insight is that at each
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Figure 2. Misconceptions in solved problem sets A-W-3 (left) and E-F-3 (right) from [4]. Expert descriptions of these misconceptions are in Fig. 9.
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Figure 3. Our thought process reconstruction algorithm tries to generate
hypotheses for why the student wrote each number in his or her solution.
For each value in the input demonstration, the algorithm tries to explain
that value using a set of operators provided to the system. For example,
the 8 could be 2+ 6, or 4 x 2, or @ + @ — @, i.e. 4+ 6 —2. The 9 could
bed+5,0or®+ @ — OQ,i.e. 5+6—2.

step of their process, both students are using a basic math op-
eration to combine one or more numbers in a given problem.
For instance, the first step in A-W-3 could be “add 2 and 6
together”. The equivalent first step in E-F-3 may be “divide
the larger number by the smaller number.”

Our goal is to build a system that can automatically produce
programs representing student thought processes, when given
a SPS. We call a program produced by our system for a given
SPS a reconstruction program. Our system specifically fo-
cuses on building reconstruction programs by exploring pro-
cedural compositions of basic conceptual units without any
additional information, such as referencing known miscon-
ceptions or a correct algorithm.

Automatically generating reconstruction programs presents
multiple challenges. First, we need to be able to recognize
low-level operations, such as basic column addition. Second,
we need to be able to infer high-level control flow over those
basic operations. For instance, we need to recognize that the
columns are being added left to right in A-W-2.

In order to accomplish these goals, we need to search through
a large space of hypotheses. For example, in order to explain
how the student solved the boxed problem in A-W-3, we need
to first explain why they wrote the 9 and the 8. We can do this
by searching through a set of base operators that are provided
to our system, such as single-digit addition, decrementing a
value, taking the ones digit of a sum, determining the smaller
of two values, etc. A set of operators is specified for each
problem type (addition has a set, subtraction another, etc.)
Note that there are at least three unique operators that can be
used to calculate 8 as the ones digit for the boxed problem, as
shown in Fig. 3. Determining which hypothesis is most likely
or most accurate is very difficult as our input is a single SPS.

In order to learn the student’s high-level process we need to
search through an even larger space of possible control flow.
This can include conditionals to represent choice and loops
to represent a repetitive process. For example, we need to be

able to infer that the student is adding the same way for every
column in A-W-3 for 2-digit plus 2-digit problems.

Our technical solution to considering all hypotheses is to
frame this task as a programming-by-demonstration problem
and design an algorithm that can search through a large hy-
pothesis space. In order to encode SPSes as input to our al-
gorithm, we use a Thought Process Language (TPL) as in-
troduced by O’Rourke et al. [38]. Our adapted TPL includes
constants, integer operators (e.g. +, -, *, /), and Boolean op-
erators (e.g. <, >, ==, !=). It also includes three types of
statements: update statements that write values (i.e. perform
computations by applying an operator), conditionals, and for
loops. Our algorithm combines these statements together to
create a program that represents the student’s thought process.

The set of base operators and the TPL are specified once and
then can be used for multiple misconceptions, allowing our
system to detect misconceptions that are novel combinations
of the same basic conceptual units into an incorrect high-
level (or even low-level) process. The system can capture
any systematic error that is (1) constructed from the set of
provided base operators, (2) encodable in TPL, and (3) suffi-
ciently short in length. We have tested the approach and ob-
tained reconstruction programs with up to 14 statements. As
an example, our system generates the following reconstruc-
tion program for E-F-3 (shown here in psuedocode):

if (denominator < numerator):
resultNumerator = numerator / denominator
resultDenominator = numerator

else:
resultNumerator = denominator / numerator
resultDenominator = denominator

THOUGHT PROCESS RECONSTRUCTION

Input Format

Most of the misconceptions in our primary sources [4, 12,26,
46] can be represented as computations on cells of a table.
Indeed, many different topics in K-8 math, such as addition,
fraction reduction, and long division, can be represented as ta-
ble computation problems. Therefore, we encode each prob-
lem in a SPS as its own table with a specific row / column
for the solution. For example, see Fig. 4 for an encoding of
our running example. The student’s thought process then be-
comes equivalent to manipulating table values. The top left
cell of the table is always the origin ([0,0]). Each problem
type uses the table slightly differently, but each problem in a
given SPS needs to be encoded in the same way for the system
to work. The exact input format we use consists of a set of
tuples (value, row, column, time). The time represents when
the student wrote the value during their solution process.
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Figure 4. A high-level diagram of our approach. For each problem in a
SPS, we first generate hypotheses for why the student might have writ-
ten each digit (Step 1). Then, for each example, we learn higher-level
control flow such as loops and conditionals (Step 2). Finally, we inter-
sect the hypotheses generated for each example to obtain one single set
of hypotheses that matches all of the examples (Step 3).

for(i=0;i<2;i=i+1):
[2,1-1=[0,1-1+[1,1-1]

0 1 wrote ¥ in [2,1] m wrote 9 in [2,0]
0|42 > 1
+ 1.8 &6 U
RS [2,1]=1[0,0] x [0,1]
29y [2,1] = [0,1] + [1,1] [2,0] = [0,0] + [1,0]

[21]=([1.1]+ [00]) - [0.1]  [2,0] =([0,0] +[1,1]) - [0,1]

Figure 5. We use a directed acyclic graph (DAG) to store a large set of
hypotheses regarding what the student’s process was. Node » represents
the state of the table at time . An edge from node /. to node » represents
operations that change the table from its state at time m to its state at
time n. Initially, this includes the concrete value that was written to
the table and its location, such as that an “8” was added to the table at
location [2,1] (Step 1). Later on, we add hypotheses to the DAG that this
value was written because it was the result of an operation applied to
other values in the table (Step 2). Even later, higher-order hypotheses
are added, such as the loop that connects node O to node 2 (Step 3).

Algorithm Details

The high-level process used by the algorithm is shown in Fig.
4. We take a bottom-up approach, in which we first learn the
most basic operators, and then iteratively learn higher-order
control flow structures over these basic operators. Since the
tool takes a sequence of values written to the table as input,
we organize the possible ways to combine operators (which
we call hypotheses) by where they appear in this sequence.
To do this, we use a directed acyclic graph (DAG) which is
a linear chain of nodes. Each node represents a step in the
student’s computation. Edges hold programs that convert the
state of the table from time »n to time n+ 1 (Fig. 5).

Step 1: We first try to explain why the student performed
each low-level operation. To do this, we step through the
input. For each value that the student wrote, we apply the
provided operators to problem digits until we obtain a hy-
pothesis that results in the student’s answer (Fig. 3). We store
all of these hypotheses in the DAG. For example,

start — end | Hypotheses
2,1]=10,0] x [0,1]

0—1 2,1]=1[0,1]+[1,1]
2,1] = ([0,0] +[1, 1) = [0, 1]
2,0/ =[0,0]+[1,0

12 220/ = (1,01 1.1) 0.1

Step 2: The next step is to try to learn control flow over these
basic operations. We first try to see what repetitive operators
can be pulled into a loop. For example, the following two
hypotheses:

01 2,1]=1[0,1]+][1,1
=2 [2,0]=1[0,0]+[1,0

can be unified into the following loop, which appears at the
top of Fig. 5:

for (1=05i<2i=i+1):

0—2 21— =[0,1—i+[1,1—i]

Loops can potentially begin or end at any step. Therefore, we
learn complex control flow by trying all start and end points
in the DAG as follows:

for (i=0; i<n; i=i+1):
for (j=i+1; j<n; j=j+D:
find loops from node i to node j in DAG;
add these loops to DAG

This approach is novel as it can identify repetitive thought
processes that begin or end at any step, making it expressive
and scalable enough to capture a huge range of possible con-
trol flow. We can run the loop learning process multiple times
to learn complex control flow structures like nested loops and
conditionals inside loops.

To learn loop bodies (the sequence of statements inside
loops), we use templates, which are skeletons of code con-
sisting of “holes” for statements or conditionals. Here are
some examples of possible templates:

(A) (B) ©
<statement> <statement> if <conditional>:
<statement> <statement>
<statement> <statement>
else:
<statement>
<statement>

In practice, we have found that most reconstruction programs
we want to generate are small enough that this process is suf-
ficient. To learn loops, we enumerate all templates with no
more than X statements, Y (possibly nested) conditionals, and
Z statements per conditional. For the results in this paper,
X=5Y=3,andZ=3.

Step 3: Once we have learned base hypotheses and control
flow for each problem separately, the next step is to unify the
problems together by identifying a single set of hypotheses
consistent with every problem in the input SPS. To do this, we
use an intersect operation that eliminates all of the hypothe-
ses that are not consistent with the entire SPS. For example,
when we intersect the DAGs associated with the problems
42+ 56 =98 and 18 + 30 = 48, two hypotheses remain: that



the student added both columns in a loop, or that the pro-
cess really does just involve two separate column additions.
These hypotheses are functionally equivalent for these two
examples, but they are distinct semantically. It is significant
whether or not the student knows that they need to do some-
thing for every column.

We also use templates for the unification process. They are
similar in format to those used to learn loop bodies, but may
contain more statements because they represent the structure
of the student’s entire thought process (not just the part that
can be represented as a loop). We used 164 templates at max-
imum, which were the set of all possible templates with a
maximum of 8 statements, 1 conditional and 3 statements per
conditional branch. Instead of trying all templates at once, we
used an iterative, phased strategy that tried various subsets of
templates until a program was generated.

When the provided hypotheses for the problems 46 43 = 13,
164+ 8 =15, and 85 + 6 = 19 are intersected, we can obtain:

0— 1| [2,1]=([0,0]+[0,1]+[1,1])%10
1—2 | [2,0] = ([0,0] +[0, 1]+ [1,1])/10

We are able to learn a final reconstruction program when we
intersect these two hypotheses and the loop that was learned
in Step 2 using template (C) above:

if ([0,1] is empty):
[2.1] = ([0,0] +[0,1] +[1, 1)) %10
[2:0] = ([0.0] +[0,1] + [1,1])/10
else:
for (i=0;i<2i=i+1):
2,1—i]=[0,1—i]+[1,1—1]

We fill in conditionals by keeping track of the state of the ta-
ble every time it executes for each problem, and later search-
ing through the provided boolean operators to identify a con-
dition that produces the correct result (True or False) for each
intended invocation. This can be complex, as the number of
row/column combinations is frequently large.

Note that even this reconstruction program isn’t really “com-
plete”, in the sense that it cannot predict how a student would
solve a problem that had three columns instead of two. This
is because the provided SPSes are not sufficiently rich to dis-
ambiguate whether the student is doing something for each
column, or whether the student is intending to add exactly
two columns. More data from the student would be required.

Step 4: If we obtain multiple reconstruction programs that
are consistent with the entire problem set, we arbitrarily pick
one of them.

Evaluation plan

We perform two evaluations. The first uses curated data from
Ashlock [4] which demonstrates the breadth of math topics
that our approach can handle. The second uses student data
collected by MetaMetrics [34] to determine how well our sys-
tem can handle real classroom data.

Problem Type | Name | <T(s)|A? || Problem Type [Name | <T(s) | A?
Add (+) A-W-1| 1 Y || Frac. Red. E-F-3 1 Y
Add (+) A-W-2| 20 | Y || Frac. + A-F-1 1 Y
Add (+) A-W-3| 1 Y || Frac. + A-F-2| 1 Y
Add (+) A-W-4| 1 Y || Frac. + A-F-3 1 Y
Subtract (—) [S-W-1 1 Y || Frac. + A-F-4 1 Y
Subtract (—) |S-W-2| 1 Y || Frac. — S-F-1 1 Y
Subtract (—) [S-W-3| 10 | Y || Frac. — S-F-2| 130 | Y
Subtract (—) |S-W-4| 30 | Y || Frac. — S-F-3 1 Y
Subtract (—) |S-W-5| 1 N || Frac. — S-F-4| 50 |N
Multiply (x) [M-W-1| 1 Y || Frac. % M-F-1| 1 N
Multiply (¥)  [M-W-2[ 1 Y || Frac. % M-F-2| 1 Y
Divide (+) D-W-1| 1 N || Frac. = D-F-1 1 Y
Frac. Red. E-F-1 1 Y || Frac. = D-F-2 1 Y
Frac. Red. E-F-2| 5 Y || Dec. + A-D-1 1 Y

Figure 6. Summary of misconception benchmarks from [4]. We only
present the 28 successful misconceptions here for space reasons. Name
shows Ashlock’s unique identifier for an error pattern. Problems in blue
are featured in our user study. <7(s) shows an upper bound on the num-
ber of seconds taken by our algorithm to generate a program solving all
of the provided demonstrations. A? states whether the program gener-
ated by our system adequately represented a student’s thought process.

EVALUATION ON CURATED EXPERT DATA

Our first evaluation attempts to generate reconstruction pro-
grams for the 40 errors described by Ashlock [4]. We measure
our algorithm’s performance by how many misconceptions it
can identify, along with their complexity and accuracy.

Our system can replicate 70% of the Ashlock misconceptions
We were able to replicate 28 of the 40 misconceptions in
Ashlock (excluding those in the appendix), which is about
70% coverage (Fig. 6). The most complex control flow in
a reconstruction program was generated for S-F-4 (2 nested
loops) and S-F-1 (3 conditionals, 14 total statements).

The misconceptions we were not able to replicate fell into
three categories. First, some misconceptions involved base
operators that were quite unrelated to the operators used in the
correct algorithm. For example, one misconception for mul-
tiplying two fractions f; and f, required a base operator de-
fined as fi.num* fr.denom+ (10 x fi.denom + fr.num). Al-
though our system can replicate misconceptions of this type if
provided such a non-standard operator, this was too impracti-
cal to include as a successful benchmark. Second, some mis-
conceptions involved too many steps for our system to handle.
Third, some misconceptions involved word problems, which
are outside of the scope of our system.

We identified that most reconstruction programs generated
by the algorithm match the student’s behavior as described
by Ashlock. In particular, we say that a reconstruction pro-
gram is accurate if, reading it as psuedocode, we convinced
ourselves that it could directly represent a student’s thought
process. Programs that strictly violated this made use of un-
natural operator combinations or unnecessary loop / boolean
conditions. We do not claim that this is a quantitative or even
unbiased metric. However, it provides a sense of how well the
system can represent thought processes. With this in mind,
23 of the 28 (82%) reconstruction programs generated for the
Ashlock misconceptions are accurate.

EVALUATION ON STUDENT DATA
We use a data set collected by MetaMetrics in November
2014 from 17 different classes across 11 schools in 7 states



for this evaluation. The data contain responses from 296 stu-
dents to up to 32 addition and subtraction problems.

MetaMetrics collected this data set to study their Quantile®
Framework, which targets instruction and progress of a stu-
dent’s math understanding. Each student was assigned to one
of six worksheets. The variation between each worksheet in-
cluded the problem’s orientation (horizontal or vertical, see
Fig. 7) and skill level. The worksheets tested four math algo-
rithms: addition without regrouping, addition with regroup-
ing, subtraction without regrouping, and subtraction with re-
grouping.

The study was administered by teachers in their classroom.
MetaMetrics provided teachers with a manual, part of which
included the following text, which they asked to be read to the
students: “You will take a short mathematics test. For most of
the items you will need to write the answer on scratch paper
and then type your answer into the computer. For the samples,
you will not need scratch paper. To complete these items, first
do the math problem. Type the answer in the box. Please do
the first sample item.” Students typed their answer into a text
box positioned to the right of the problems (see Fig. 7).

Data Processing

In order to evaluate our algorithm on this data set, we first
generated SPSes in the following way. For the set of 32
questions presented in each worksheet, there are contiguous
“runs” of 3 to 4 problems asking students about the same type
of problem with the same skill level. We consider each of
these runs its own problem set, resulting in 6 possible prob-
lem sets for every student (4 for addition, 2 for subtraction).
Each individual student’s answers to each one of these prob-
lem sets is a SPS. We only used SPSes with one or more in-
correct solutions, yielding 868 total SPSes.

Our system requires a table representation of each problem
indicating when the student wrote each digit of their solution.
Since this information was not recorded during the MetaMet-
rics study, we entered each solution digit in order from right
to left and kept the leftmost column empty (null). This data
set does not contain any written carry values. Compared to
the Ashlock evaluation, we used slightly expanded operator
sets and a differently optimized template phasing strategy.

We used the following process to analyze the SPSes:

Step 1: We manually inspected each of the 868 SPSes de-
fined above to determine if a SPS had a clear misconception.
Using our best judgement, we analyzed each SPS and iden-
tified whether it 1) contained a misconception defined in the
literature or 2) contained a undocumented misconception that
we could clearly identify. We identified 111 SPSes with a
misconception, representing 13% of the 868 SPSes.

We observed that in some cases there were multiple valid
possibilities for the misconception that was expressed by the
SPS. In these cases, we chose one misconception to associate
with the SPS, but in our analysis we considered our system
successful and/or accurate if it modeled any of them.

64 s

247 + 312 = Answer:
+33

11. Answer:

Figure 7. MetaMetrics input method: students calculated their re-
sponses and entered them into the answer text boxes. In our work, we
do not differentiate between the data based on which interface was used.
(Images Courtesy of MetaMetrics, Inc.)

Step 2: We inputted each SPS with a misconception into our
system and obtained either a reconstruction program or sys-
tem failure as output. Our system successfully produced a
program for 95 of the SPSes with misconceptions (86%).

Step 3: We determined how well each reconstruction pro-
gram appeared to represent a student’s likely thought pro-
cess. Since there is no established precedent for matching
programs describing student behavior to SPSes, we empiri-
cally studied preliminary results and used expert consensus
between two researchers (the first two authors) to simultane-
ously develop a coding scheme and apply it to the data.

Ultimately, our coding scheme classified programs into three
groups: “Accurate,” “Somewhat Accurate,” and “Not Accu-
rate.” A program was categorized as “Accurate” if it exactly
modeled the SPS’s misconception. If the control flow or a
computation(s) in the reconstruction program did not match
exactly, it was categorized as “Somewhat Accurate.” If the
reconstruction program could not be interpreted as a student
thought process or the system failed, the program was catego-
rized as “Not Accurate.” If a SPS exhibited multiple miscon-
ceptions, we counted the program as “Accurate” if it matched
any of the misconceptions. After the two researchers indi-
vidually classified the data, we obtained a Cohen’s Kappa of
0.66, which represents significant agreement [24]. A final cat-
egory was chosen for all programs where the two researchers
disagreed by discussion and ultimate consensus.

Results

Our system replicated 86% of SPSes with a misconception
The first measure of success for evaluating our system was
whether or not a reconstruction program was generated for
a given SPS with a misconception. For 86% of the SPSes
with a misconception, our algorithm successfully produced a
reconstruction program. This means that our algorithm is able
to generate representations for almost 100 student solutions to
addition and subtraction problem sets.

77% of reconstruction programs generated by our system

are at least Somewhat Accurate

After classifying reconstruction programs according to the
method outlined above, 77% of the generated reconstruction
programs were either “Somewhat Accurate” (23%) or “Accu-
rate” (53%). We believe this result points to the robustness of
our system’s ability to reconstruct student misconceptions.

For an example of a reconstruction program classified as
“Somewhat Accurate,” consider the program generated for
20+70 =50, 44 +32 =12, and 57 + 10 = 47. This SPS ex-
hibits the third misconception in Table 5, Subtable 2 in [12].
Our system generated the following reconstruction program:



for (=0; T[0,2—i] # null; i=i+1):
if (T[1—-i,1] > T[1,2—i]1):
T[2,2—i] = T[0,2—i] — T[1,2—1i]
else:
T[2,1] =5

This reconstruction program was classified as “Somewhat
Accurate” because of the Boolean conditional and else
branch. A program that more accurately matches the associ-
ated misconception would not differentiate between the first
problem (the else branch) and the remaining problems by us-
ing a conditional. However, the current program represents a
possible misconception for a student who has difficulty with
subtracting larger numbers from smaller numbers.

As mentioned previously, the problem of accurately describ-
ing the thought process behind a SPS is very difficult because
of the poverty of the data set. To be specific, there are typi-
cally multiple consistent hypotheses for a given SPS and our
system must choose one. Since the main goal of this work
was to build a system that could explore basic conceptual
units without any other information, trying to incorporate ad-
ditional information like comparison to the correct algorithm
or heuristics, etc. is beyond the scope of this work.

53% of the reconstruction programs matched a known
misconception exactly

Our system exactly replicated student misconceptions for
53% (or 59/111) of the SPSes. This advances the state-of-
the-art for this domain, as there is no other system with-
out an explicit bug library that can compose base opera-
tors into programs with potentially complex control flow.
The most frequent misconception replicated accurately was
“smaller-from-larger” described in [46]. For example, for
322 — 157 = 235, 405 — 127 = 322, 635 — 166 = 531, and
700 — 586 = 286, the following program was classified as
“Accurate” (| - | represents absolute value):

for (i=0; T[0,3—i] # null; i=i+1):
T[2,3—i] = | T[0,3—i] — T[1,3—4] |

The system also captured misconceptions where the student
reversed the result digit order from right to left to left to right.
For example, consider 44 4534 = 875, 247 +312 = 955, and
444 4531 = 579. This SPS exhibits the first two-digit ad-
dition misconception in Appendix A of [26]. The following
program was classified as “Accurate’:

for ((=0; T[1,i+1] # null; i=i+1):
T2, 2—1i] =
SumSelectRange(0, i+1, 1, i+1) % 10

Note that the SumSelectRange(m;,ny,my,ny) is equivalent
to T[0,i+ 1] + T[1,i+ 1] for this problem, except for
when an addend does not have a hundreds digit. In that case it
carries down the existing hundreds digit (i.e. 5 for 44 4-534).
Although, from the reader’s perspective, this program may
not seem ideal, the system is doing exactly what it is built
for: constructing a single representative program for the en-
tire SPS using base operators.

23% of the reconstruction programs were not accurate
Programs that were classified as ”Not Accurate” either gen-
erated code for each problem in the SPS individually or the
system failed to generate a program altogether. The majority
of programs in this category (12/26) exhibited either multi-
ple misconceptions at once or a misconception not found in
the literature. The main reason we believe the system fails
on these SPSes is that the system is not being provided with
enough data. For the case of multiple misconceptions occur-
ring simultaneously, the system may not have enough data to
model both misconceptions individually, let alone together.

Discussion

For the 13% of MetaMetrics SPSes with misconceptions, we
generated a reconstruction program for 86%. Of these, 77%
at least partially matched a known or plausible misconcep-
tion. 53% exactly matched a known misconception. Our anal-
ysis of the “Somewhat Accurate” and “Not Accurate” SPSes
revealed that one of the most common situations in which
the reconstruction program deviates from what we would ex-
pect is when it infers unnecessary or implausible control flow.
For instance, this occurs when the program uses conditionals
to deal with inconsistencies between problems, such as the
number of digits in the addend vs. the subtrahend. Therefore,
adding heuristics that encode some measure of plausibility
and place value to guide the search is warranted.

Limitations of the MetaMetrics data set

Students entered their answers on a computer, which omitted
parts of the students’ solution process that might normally be
captured on paper, such as carry values or other intermediate
calculations. Furthermore, this data set has not been assessed
by a math education expert. This means that although we as-
signed each SPS a misconception(s), a math education expert
may have chosen a different or additional misconception. We
classified a SPS as “Accurate” if it modeled any of a possible
set of misconceptions that fit the SPS.

Challenges of automatic thought process reconstruction

Our approach is less successful with SPSes that contain cor-
rect solutions. The SPSes with misconceptions that we eval-
uated either contain all incorrect solutions (fully incorrect) or
a mix of correct and incorrect solutions (partially incorrect).
Our system was more accurate on fully incorrect SPSes (57%
were “Accurate”) than partially incorrect SPSes (36% were
“Accurate”). We believe our system’s accuracy on partially
correct SPSes was lower because it is generally harder for
our system to identify misconceptions if not all problems in
the SPS exhibit the misconception. This happens frequently
with partially correct SPSes. Systematic procedural miscon-
ceptions are also significantly rarer to find in partially correct
SPSes. For the MetaMetrics data, we identified only 22 out of
547 total partially correct SPSes as having a misconception.

Our approach assumes that a student solves each problem in
a SPS in exactly the same manner. However, students are
frequently not self-consistent; they make mistakes that are
seemingly unrelated to a misconception or are complex com-
binations of many misconceptions. Differentiating between
systematic and random errors is important future work.



STUDENT SUBMISSION CORRECT ALGORITHM

4 2 4 2
5 6 + 5 06
9 8 9 8

Student Submission: First, the student calculated that the selected cell is not empty.

+

Correct Algorithm: First, add 2 and 6 together and select the ones digit, resulting in 8.

RESET' Q)

Figure 8. GUI Demonstration with a conditional event for the student
and an update event for the correct algorithm

VISUALIZATION OF MISCONCEPTIONS TO EDUCATORS
This section presents the design and evaluation of a GUI that
explains the output of our misconception identification sys-
tem. We were motivated to build a visualization to make our
complex system output (i.e. reconstruction programs) easily
interpretable by educators. The challenge was to build an in-
terface that could work for any problem type in K-8 math.

Preprocessing

To display a reconstruction program via the GUI, we had to
apply the program to each individual problem in the SPS.
From a computational perspective, a reconstruction program
represents the student’s behavior for every problem in the
original SPS. However, this abstraction runs counter to how
educators think about math problems. Educators are accus-
tomed to assessing a student’s work via a series of individ-
ual examples on a worksheet or exam. Furthermore, gen-
erating natural language descriptions of student misconcep-
tions is a very challenging problem. We therefore build on
recent work [38] that automatically generated step-by-step
tutorials to explain procedures. To generate a step-by-step
walkthrough of a reconstruction program we convert it into
an event sequence. An event sequence is an application of a
reconstruction program to one problem in a SPS, worked out
step-by-step with loops unrolled and conditionals evaluated.

Comparing the Student Solution to the Correct Algorithm
In order to place a student’s misconception in context, we
generate a program and an event sequence for the correct al-
gorithm as well and present it side-by-side with the student’s
(Fig. 8). When students solve a problem incorrectly, they may
insert or delete several steps compared to the correct algo-
rithm. To make the student solution advance with the correct
algorithm, we needed to match up events in the student se-
quence with those in the correct sequence. To do this we
compute an edit distance between two paired events using a
heuristic based on the operator, operand locations, and the re-
sult location. We add an empty event if the distance is over a
certain threshold. We add an empty event first to the shorter
sequence and then, once the sequences equalize, we alternate.

Evaluation of the GUI

To evaluate the GUI (also called “the demonstration”) we
conducted a user study. The study was designed to compare
the explanations provided by the GUI against expert descrip-
tions of student misconceptions (Fig. 9). Our hypothesis was

A-W-3 | “Carol misses examples in which one of the addends is written
as a single digit. When working with such examples, she adds
the three digits as if they were all units. When both addends are
two-digit numbers, she appears to add correctly.”

A-W-4 | “She tries to use the regular addition algorithm; however, when
she adds the tens column she adds in the one-digit number
again.”

E-F-3 | Greg “considers the given numerator and denominator as two
whole numbers, and divides the larger by the smaller to de-
termine the new numerator (ignoring any remainder); then the
largest of the two numbers is copied as the new denominator.”
Cox The student “subtracts the single digit of the subtrahend from
both digits of the minuend.”

Figure 9. Expert descriptions for all problems used in the user study.
The Cox example is Table 6, Subtable 1, Misconception 3.

Q1 | The demonstration accurately explains the student’s misconception
Q2 | The demonstration uses unambiguous language and terminology
Q3 | The demonstration addresses every error that I found

Q4 | The demonstration was easy to use

Figure 10. Rating questions asked for both the expert description and
demonstration (our GUI). Users were asked to respond using a 5-point
Likert scale. The ease of use question (Q4) was only asked for the GUIL

that we can explain students’ misconceptions to an educator
as successfully as a human expert.

To determine how well the GUI conveyed the student’s mis-
conception we asked participants to assess three different ex-
planations. First, we had participants explain the misconcep-
tion in their own words, which required them to identify and,
hopefully, internalize the student’s misconception. We then
asked them to rate the expert description from the source ma-
terial (Fig. 9) and the demonstration on a Likert scale indi-
vidually using the first three and four questions, respectively,
of Fig. 10. To prevent priming bias, we randomly determined
whether the GUI or the expert description would come first.
Finally, we had participants compare the expert description
and demonstration directly (see questions in Fig. 12).

User Study Details

We chose 4 student misconceptions that exercise both the
breadth and depth of our system for the study. The tested mis-
conceptions were two addition examples from Ashlock [4]
(E1: A-W-4 & E2: A-W-3, our running example), one sub-
traction misconception from Cox [12] (E3: Table 6, Subtable
1, Misconception 3), and a fraction reduction example from
Ashlock (E4: E-F-3, Fig. 2, right). Reconstruction programs
for the student’s process for E2 and E4 contain conditionals
and have event sequences of unequal lengths. E4 programs
also contain conditionals for the correct algorithm. We did
not use any data from MetaMetrics because we do not have
expert descriptions available. The remaining two resources,
Lankford’s Report [26] and Van Lehn [46], do not provide
full problem sets with their misconception descriptions.

Our recruitment goal was to reach as many US educators as
possible. We recruited participants online through Reddit,
Twitter, and Facebook and contacted multiple educators we
knew. All participants were asked to sign-up for the study
in advance and then the study was released to the participant
pool for 2 weeks. 29 users completed the study in full, of
which 17 self-reported as full-time K-12 educators. Partic-
ipants were allowed to start the study and return at a later
point. Four participants were not able to access the demon-



Hdemo  SEdemo  Hexpert SEexpert Mean Diff.  95% CI BF Hdemo  SEdemo  Hexpert SEexpert Mean Diff.  95% CI BF
E1, Q1 | 434 0.22 4.07 0.19 0.28 (—0.33,0.88) 0.29 [ E3,Q1 | 4.38 0.24 3.96 0.24 0.42 (=0.13,0.97)  0.62
E1,Q2 | 379 0.27 3.14 0.24 0.66 (0.03,1.28) E3,Q2 | 4.50 0.15 431 0.21 0.19 (—0.40,0.78)  0.25
E1,Q3 | 4.38 0.19 4.03 0.22 0.34 (—0.09,0.78) 0.64 | E3,Q3 | 4.50 0.19 3.54 0.30 0.96 (0.43,1.49)
E2,Q1 | 439 0.20 4.71 0.09 —0.32 (=0.77,0.13) 0.53 | E4,Q1 | 4.00 0.27 4.52 0.18 —0.52 (—0.98,—0.06) 1.86
E2,Q2 | 3.93 0.25 443 0.19 —0.50 (—1.05,0.05) 0.90 | E4,Q2 | 441 0.16 441 0.14 0.00 (—0.32,0.32)  0.20
E2,Q3 | 4.36 0.18 4.5 0.18 —0.14 (—0.49,0.20) 0.28 | E4,Q3 | 441 0.18 4.24 0.20 0.17 (—0.21,0.55)  0.29

Figure 11. Numerical results assessing examples E1 — E4 on questions Q1 — Q3 shown in Fig. 10. All data were collected on a 5-point Likert scale.
Means (1) are shown with standard error (SE) for the demonstration and the expert description. Mean Difference is defined as [igemo — Hexpert cOmputed
directly from raw, unrounded means, hence any variability. 95% confidence intervals are calculated for the mean difference. Bayes Factors (BF) are

calculated using R standard priors.

Demonstration Equivalent Text
What is more helpful to you as an educator? 50 23 39
Which do you find easier to use? 39 30 43
What do you think is more accurate? 34 61 17

Figure 12. Comparison data aggregated across E1-E4 (n = 112)

stration for a single example due to a server malfunction; we
included their responses for the examples that worked.

Results

Our system can successfully explain misconceptions

Our data show that the demonstration is as good as the ex-
pert description at explaining the student’s misconception to
the user. We arrive at this conclusion by looking at the re-
sults of the individual rankings of the demonstration and ex-
pert description. The goal of our statistical analysis is to de-
termine if there is support for the traditional null hypothesis
(Hop : Hdemo — Mexpert = 0). Such support would suggest there
is no difference between the demonstration and the expert de-
scription; in other words, the demonstration explains the mis-
conception as well as a human expert.

To determine if there is support for the null hypothesis, we
calculated a series of Bayes Factors as recommended by
Kaptein & Robertson [23]. We calculated Bayes Factor val-
ues using the R language standard priors for all combinations
of questions (Q1-Q3) and examples (E1-E4). In addition, we
calculated basic frequentist statistics, reported in Fig. 11.

The results of this analysis show that 9 out of the 12 Bayes
Factors provide support (value < 1) for the null hypothe-
sis. Using common cutoffs to interpret the size of the sup-
port [47], 5 values provide substantial support (5 to %) and

4 values provide anecdotal support (% to 1). The 3 values that
support a difference between the two treatments were com-
PUted for E1Q2 (Ndemo > I»Lexpert)a E3Q3 (,udemo > uexpert)s and
E4Q1 (.udemo < .uexpett)~

Participants found the demonstration easy to use and as
helpful and accurate as the expert description

We asked the participants to rate how easy the demonstration
was for each example (Fig. 10, Q4). Overwhelmingly, they
agreed or strongly agreed that the demonstration was easy to
use (n = 100, 89%). As a companion to the individual rank-
ing data, we also asked the participants to directly compare
the demonstration with the expert description. The results,
aggregated across examples, are presented in Fig. 12. These
results are statistically significant for both helpfulness and ac-
curacy (x> =9.875, p =0.007; x> =26.375, p=1.87¢—06)
with the caveat that the data are not necessarily independent.

Discussion

The most interesting trend in our results is that the expert de-
scription had higher mean scores on every question for E2
(which is our running example, A-W-3). We believe this is
because E2 contains conditionals for its representative stu-
dent program and the way booleans were translated from the
program to the GUI was insufficient. For instance, one user
specifically noted for E2: “The phrase “the student calculated
that the selected cell is empty” is odd.”

Users also ranked the expert description higher than the
demonstration on accuracy (Q1) for E4. We believe multiple
factors may have contributed. First, E4 is a fraction reduction
misconception and thus the layout of the GUI differs consid-
erably from the previous three examples. In addition, the mis-
conception itself is, in our opinion and the opinion of some
of our users, the most difficult or non-intuitive to identify of
those included in the study. We therefore believe users may
have been more confused when assessing the demonstration.

We received qualitative feedback from users indicating the
potential use of our system in a classroom setting. One user
wrote: “I could see both the text and animation being useful
in different contexts, depending on who the target audience is
and what their math background and strengths are.”

CONCLUSION

We presented a system that automatically identifies incor-
rect procedural thought processes in K-8 mathematics. Our
approach generates programs representing students’ thought
processes and explains misconceptions by visualizing those
programs side-by-side with the correct algorithm. The eval-
uations in this paper focus on K-8 mathematics, but in future
work we hope to evaluate whether our approach can gen-
eralize to other domains. We believe our mechanisms for
thought-process reconstruction and visualization could work
for math topics that involve deterministic step-by-step com-
putations on a 2D spreadsheet. For example, if we were to add
operators that transform variables and coefficients we could
potentially extend our approach to solve linear equations. In
future work, we will explore how our system can be used
in classroom settings by integrating it into an online grading
portal (see our website at: https://goo.gl/DfyryD).
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