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Abstract
A common goal in Reinforcement Learning is to
derive a good strategy given a limited batch of
data. In this paper, we adopt the safe policy im-
provement (SPI) approach: we compute a target
policy guaranteed to perform at least as well as a
given baseline policy. Our SPI strategy, inspired
by the knows-what-it-knows paradigm, consists
in bootstrapping the target policy with the base-
line policy when it does not know. We develop
two computationally efficient bootstrapping al-
gorithms, a value-based and a policy-based, both
accompanied with theoretical SPI bounds. Three
algorithm variants are proposed. We empirically
show the literature algorithms limits on a small
stochastic gridworld problem, and then demon-
strate that our algorithms both improve the worst
case scenario and the mean performance.

1. Introduction
Reinforcement Learning (RL, (Sutton & Barto, 1998)) con-
sists in discovering by trial-and-error, in an unknown un-
certain environment, which action is the most valuable in
a particular situation. In an online learning setting, trial-
and-error works optimally, because a good outcome brings
a policy improvement, and even an error leads to learning
not to do it again at a lesser cost. However, most real-world
algorithms are to be widely deployed on independent de-
vices/systems, and as such their policies cannot be updated
as often as online learning would require. In this offline set-
ting, batch RL algorithms should be applied (Lange et al.,
2012). But, the trial-and-error paradigm shows its limits
when the policy updates are rare, because the commitment
on the trial is too strong and the error impact may be severe.
In this paper, we endeavour to build batch RL algorithms
that are safe in this regard.

The notion of safety in RL has been defined in several
contexts (Garcıa & Fernández, 2015). Two notions of un-
certainty: the internal and the parametric, are defined in
(Ghavamzadeh et al., 2016): internal uncertainty reflects
the uncertainty of the return due to stochastic transitions
and rewards, for a single known MDP, while paramet-
ric uncertainty reflects the uncertainty about the unknown
MDP parameters: the transition and reward distributions.

In short, internal uncertainty intends to guarantee a cer-
tain level of return for each individual trajectory (Schulman
et al., 2015; 2017), which is critical in view of their poten-
tial harmful behaviour (Amodei et al., 2016) or in the catas-
trophe avoidance scenarios (Geibel & Wysotzki, 2005; Lip-
ton et al., 2016). In this paper, we focus more specifically
on the parametric uncertainty in order to guarantee a given
expected return for the trained policy in the batch RL set-
ting (Thomas et al., 2015a; Petrik et al., 2016).

More specifically, we seek high confidence that the trained
policy approximately outperforms a given baseline policy
(not necessarily the behavioural policy). The goal is there-
fore to improve the policy, even in the worst case scenario.
As such, this family of algorithms can be seen as pes-
simistic: the optimism in the face of uncertainty (Szita &
Lőrincz, 2008) counterpart. Section 2 recalls the necessary
background on MDPs and safe policy improvement (SPI).

Section 3 presents our novel optimization formulation: SPI
by Baseline Bootstrapping (SPIBB). It consists in boot-
strapping the trained policy with the baseline policy in
the state-action pair transitions that were not probed suf-
ficiently often in the dataset. We develop two novel com-
putationally efficient SPIBB algorithms, a value-based and
a policy-based, both accompanied with theoretical SPI
bounds. At the expense of theoretical guarantees, we im-
plement three additional algorithms variants. Then, we de-
velop the related work positioning where we argue that the
algorithms found in the literature are impractical for the
following reasons: they are intractable in non-small MDPs
and/or make unreasonable assumptions on the dataset size
and distribution.

Then, Section 4 empirically validates the theoretical results
on a gridworld problem, where our algorithms are com-
pared to the state of the art algorithms. The results show
that our algorithms significantly outperform the competi-
tors, both on the mean performance and on the worst case
scenario, while being as computationally efficient as a stan-
dard model-based algorithm.

Finally, Section 5 concludes the paper with prospective
ideas of improvement. Appendix includes the proof of all
theorems and some additional experimental results.
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2. Background
2.1. The MDP framework

Markov Decision Processes (MDPs) (Bellman, 1957) are a
widely used framework to address the problem of optimiz-
ing a sequential decision making. In our work, we assume
that the true environment is modelled as an unknown MDP
M∗ = 〈X ,A, R∗, P ∗, γ〉, where X is the state space, A
is the action space, R∗(x, a) ∈ [−Rmax, Rmax] is the true
bounded stochastic reward function, P ∗(·|x, a) is the true
transition probability, and γ ∈ [0, 1[ is the discount factor.
Without loss of generality, we assume that the process de-
terministically begins in state x0, the stochastic initializa-
tion being modelled by P ∗(·|x0, a0), and leading the agent
to state x1. The agent then makes a decision about which
action a1 to select. This action leads to a new state that de-
pends on the transition probability and the agent receives
a reward R∗(x1, a1) reflecting the quality of the decision.
This process is then repeated until the end of the episode.
We denote by π the policy which corresponds to the deci-
sion making mechanism that assigns actions to states. We
denote by Π = {π : X → ∆A} the set of stochastic poli-
cies, with ∆A the set of probability distributions over the
set of actions A.

The state value function V πM (x) (resp. state-action value
function QπM (x, a)) evaluates the performance of policy
π ∈ Π starting from state x ∈ X (resp. performing action
a ∈ A in state x ∈ X ) in the MDP M = 〈X ,A, R, P, γ〉:

V πM (x) = E

 T∑
t=0

γtR(xt, at)

∣∣∣∣∣ x0 = x
at ∼ π(·|xt)
xt+1 ∼ P (·|xt, at)


QπM (x, a) = E

 T∑
t=0

γtR(xt, at)

∣∣∣∣∣ x0 = x, a0 = a
at ∼ π(·|xt)
xt+1 ∼ P (·|xt, at)


The goal of a reinforcement learning algorithm is to dis-
cover the unique optimal state value function V ∗M (resp.
action-state value function Q∗M ). We define the perfor-
mance of a policy by its expected value ρ(π,M) =
V πM (x0). Given a policy subset Π′ ⊆ Π, a policy π′ is
said to be Π′-optimal for an MDP M when it maximises
its performance: ρ(π′,M) = maxπ∈Π′ ρ(π,M). Later, we
also make use of the notation Vmax ≤ Rmax

1−γ as a known
upper bound of the return absolute value.

2.2. Percentile criterion

We transpose here the percentile criterion (Delage & Man-
nor, 2010) to the safe policy improvement objective:

πC = argmax
π∈Π

E [ρ(π,M) |M ∼ PMDP(·|D)] , (1)

s.t. P (ρ(π,M) ≥ ρ(πb,M)− ζ |M ∼ PMDP(·|D)) ≥ 1− δ,

where PMDP(·|D) is the posterior probability of the MDP
parameters, where 1 − δ is the high probability meta-
parameter, and where ζ is the error meta-parameter. (Petrik
et al., 2016) bound from below the constraint by consider-
ing Ξ(M̂, e) as the set of admissible MDP with high prob-
ability 1 − δ, where M̂ = 〈X ,A, P̂ , R̂, γ〉 is the MDP pa-
rameters estimator, and e : X ×A → R is an error function
parametrised with the dataset D and the meta-parameter δ:

Ξ(M̂, e) = {M :∀(x, a) ∈ X ×A,

||P (·|x, a)− P̂ (·|x, a)||1 ≤ e(x, a),

||R(·|x, a)− R̂(·|x, a)||1 ≤ e(x, a)Rmax}

Instead of the immeasurable expectation in Equation 1, Ro-
bust MDP (Iyengar, 2005; Nilim & El Ghaoui, 2005) clas-
sically consider the worst case scenario in Ξ (from now on,
the Ξ(M̂, e) notation is simplified) of the maximization of
the performance: ρ(π,M). Rather, (Petrik et al., 2016)
contemplate the worst case scenario in Ξ of the SPI prob-
lem: the maximization the gap between the target and the
baseline performances:

πS = argmax
π∈Π

min
M∈Ξ

(ρ(π,M)− ρ(πb,M)) (2)

Unfortunately, they prove that this is an NP-hard problem.
They propose two algorithms approximating the solution
without any formal proof. First, Approximate Robust Base-
line Regret Minimizatrion (ARBRM) assumes that there is
no error in the transition probabilities of the baseline pol-
icy, which is a hazardous assumption. Also, considering
its high complexity (polynomial time), it is difficult to em-
pirically assess its percentile criterion safety. Second, the
Robust MDP solver uses a Ξ-worst-case safety test to guar-
antee safety, which is very conservative.

3. SPI with Baseline Bootstrapping
3.1. SPIBB methodology

As evoked in Section 2.2, we endeavour in this section
to further reformulate the percentile criterion in order to
find an efficient and provably-safe policy within a tractable
amount of computer time. Our new criterion consists in
optimising the policy with respect to its performance in
the MDP estimate M̂ , while being guaranted to be ζ-
approximately at least as good as πb in the admissible MDP
set Ξ, with high probability 1− δ. More formally, we write
it as follows:

max
π∈Π

ρ(π, M̂), s.t. ∀M ∈ Ξ, ρ(π,M) ≥ ρ(πb,M)− ζ

(3)

In order to have this constraint fulfilled with high proba-
bility 1 − δ, for a model-based RL learner, the choice of ζ
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Algorithm 1 Construction of the set of bootstrapped pairs
Data: Dataset D
Data: Parameters ε, δ, and γ
Data: State and action sets: X and A
Initiate the Qπb -bootstrapped state-action pair set: B = ∅.
N∧ = 2

ε2 log |X ||A|2
|X|

δ
for (x, a) ∈ X ×A do

Compute ND(x, a) the transition count from the state-
action (x, a) couple in D.
if ND(x, a) < N∧ then

B = B ∪ {(x, a)}
end

end
return B

is determined by Theorem 8 from (Petrik et al., 2016) that
we reformulate hereinbelow with the consideration of the
uncertainty on the reward model.

Theorem 1 (Near optimality of model-based RL). Let π∗
M̂

be an optimal policy in the MDP M̂ constructed from the
dataset. Let π∗M be an optimal policy in the true MDP M .
If at each state-action pair (x, a) ∈ X ×A, we define:

e(x, a) =

√
2

ND(x, a)
log
|X ||A|2|X |

δ
, (4)

then, with high probability 1− δ,

ρ(π∗
M̂
,M) ≥ ρ(π∗M ,M)−

2Vmax

1− γ
||e||∞. (5)

Inversely, given a desired ζ, the count should satisfy for
every state-action pair (x, a) ∈ X ×A:

ND(x, a) ≥ N∧ =
8V 2

max

ζ2(1− γ)2
log
|X ||A|2|X |

δ
(6)

In this paper, we extend this previous result by allowing
this constraint to be only partially satisfied in a subset of
X×A. Its complementary subset, the set of uncertain state-
action pairs, is called the bootstrapped pairs and is denoted
by B in the following. B is dependent on the state set X ,
on the action set A, on the dataset D and on a parameter
N∧, which itself depends on three parameters: the return
precision level ζ, or equivalently the MDP model precision
level ε = ||e||∞, the high probability 1 − δ, and the dis-
count factor γ. For ease of notation those dependencies are
omitted. The pseudocode for the construction of the set of
bootstrapped state-action pairs is presented in Algorithm 1.

We call SPI with Baseline Bootstrapping (SPIBB) the
methodology of bootstrapping the uncertain state-action

pairs with low variance value estimators/policies obtained
from the baseline policy and then to use RL to train a policy.
We implement in the next subsections two novel SPIBB al-
gorithms. We show that this approach is safe and prove
SPI bounds. We derive three additional SPIBB variants that
work better to some extent in our experiments.

3.2. Value-based SPIBB

In this section, we consider bootstrapping the uncertain
state-action pairs (x, a) ∈ B with a transition to a terminal
state yielding an immediate reward equal to the baseline
policy expected return estimate: Q̂πb(x, a). Considering
that the baseline policy is the behavioural policy used for
the generation of dataset D, the estimates Q̂πb(x, a) can be
obtained by averaging the returns obtained in the dataset af-
ter (x, a) transitions1. Indeed, the constraint on ND(x, a)
for estimation at precision ε with probability 1 − δ grows
logarithmically with the state set size:

Proposition 1. If for all state action pairs (x, a) ∈ B,√
2

ND(x,a) log 2|X ||A|
δ ≤ ε, then, with probability at least

1− δ:
∀(x, a) /∈ B, ‖P ∗(·|x, a)− P̂ (·|x, a)‖1 ≤ ε
∀(x, a) /∈ B, |R∗(x, a)− R̂(x, a)| ≤ εRmax
∀(x, a) ∈ B, |Qπb(x, a)− Q̂πb(x, a)| ≤ εVmax

(7)

Inversely, given a desired ε, the count should satisfy:

ND(x, a) ≥ N⊥ =
2

ε2
log

2|X ||A|
δ

(8)

In the rest of this subsection, we assume that this inequal-
ity is satisfied for every state-action pair (x, a) ∈ B. If
so, we can bootstrap the uncertain state-action pairs with
the Q-function estimates for the baseline policy by creat-
ing a Qπb -bootstrapped MDP M̃ as described earlier, and
formalised in Algorithm 2. Then, we solve the estimated

Qπb -bootstrapped MDP ̂̃M and let π�val denote an optimal
policy. Hereinbelow, Theorem 2 provides bounds on its
near optimality in M̃ , while Theorem 3 offers guarantees
on improving the baseline policy in M∗.

Theorem 2 (Near optimality of Qπb -SPIBB-1). Let π�val
be an optimal policy of the reward maximization problem

of an estimated Qπb -bootstrapped MDP ̂̃M . Then, under
the construction properties of M̃ and under the assumption
of Proposition 1, the performance of π�val in M̃ is near-

1If the baseline policy is not the behavioural policy, the esti-
mates Q̂πb(x, a) can still be obtained through importance sam-
pling, but it suffers from a large variance that may compromise
the use of a small ε.
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Algorithm 2 Qπb -SPIBB-1 algorithm
Data: Dataset D
Data: Set of bootstrapped state-action pairs B
Data: State and action sets: X and A
Compute the estimates P̂ , R̂, and Q̂πb from D.

Construct the estimated Q̂πb -bootstrapped MDP: ̂̃M =

〈X ,A, ̂̃P , ̂̃R, γ〉 such that:

• ̂̃P (x′|x, a) =

{
P̂ (x′|x, a) if (x, a) /∈ B̂̃P (xf |x, a) = 1 otherwise

• ̂̃R(x, a) =

{
R̂(x, a) if (x, a) /∈ B

Q̂πb(x, a) otherwise

return π�val = argmax
π∈Π

ρ(π, ̂̃M)

optimal:

ρ(π�val, M̃) ≥ max
π∈Π

ρ(π, M̃)−
2εVmax

1− γ
(9)

Theorem 3 (Safe policy improvement of Qπb -SPIBB-1).
Let π�val be an optimal policy of the reward maximization

problem of an estimatedQπb -bootstrapped MDP ̂̃M . Then,
under the construction properties of M̃ and under the as-
sumption of Proposition 1, π�val applied in M̃ is an approx-
imate safe policy improvement over the baseline policy πb
with high probability 1− δ:

ρ(π�val, M̃) ≥ ρ(πb,M
∗)−

2εVmax

1− γ
(10)

π�val is trained on the estimated Qπb -bootstrapped MDP,
which can be performed with any RL algorithm with the
same computational efficiency.

During utilization of π�val, casting the environment into
its Qπb -bootstrapped version means that once a Qπb -
bootstrapped state-action pair (x, a) ∈ B has been per-
formed, the reached state in M̃ is terminal and the baseline
policy πb should take control of the trajectory until its end.
This has two practical shortcomings: 1/ it means that πb
must be known, and 2/ it does not take advantage of the
fact that π�val is defined over all state-action pairs, and ex-
pected to be more efficient that πb.

As a consequence, despite the lack of theoretical guaran-
tees, the experimental section also assesses the empirical
safety of continuing to control the trajectory with π�val af-
ter choosing a bootstrapping action. These two variants
of value-based SPIBB are respectively referred as Qπb -
SPIBB-1 and Qπb -SPIBB-∞.

3.3. Policy-based SPIBB

In the previous section, we propose to bootstrap the un-
certain state-action pairs with a Monte Carlo evaluation
of the baseline policy. In this section, we adopt a pol-
icy bootstrapping. More precisely, when a state-action
pair (x, a) is rarely seen in the dataset, i.e. (x, a) ∈ B,
the batch algorithm is unable to assess its performance
and instead it relies on the baseline policy by copying the
probability to take this action in this particular situation:
π(a|x) = πb(a|x) if (x, a) ∈ B. Algorithm 3 provides the
pseudo-code of the baseline policy bootstrapping. It con-
sists in constructing the set of allowed policies Πb and then
to search the Πb-optimal policy π�pol in the MDP model

M̂ estimated from dataset D. In practice, the optimisation
process may be performed by policy iteration (Howard,
1960; Puterman & Brumelle, 1979): the current policy π(i)

is evaluated with Q(i), and then the next iteration policy
π(i+1) is made greedy with respect to Q(i) under the con-
straint of belonging to Πb (see Algorithm 4 in Appendix).

Algorithm 3 Πb-SPIBB algorithm
Data: Dataset D
Data: Baseline policy πb
Data: Set of bootstrapped state-action pairs B
Data: State and action sets: X and A
Compute estimated MDP: M̂ = 〈X ,A, P̂ , R̂, γ〉 where P̂
and R̂ are the model estimates obtained from D.

Define Πb = {π ∈ Π |π(a|x) = πb(a|x) if (x, a) ∈ B}
return π�pol = argmax

π∈Πb

ρ(π, M̂)

Similarly to Theorems 2 and 3 for Qπb -SPIBB-1, the near
Πb-optimality and the SPI of the baseline policy can be
proven for Πb-SPIBB:
Theorem 4 (Near Πb-optimality of Πb-SPIBB). Let Πb be
the set of policies under the constraint of following πb when
(x, a) ∈ B. Let π�pol be a Πb-optimal policy of the reward

maximization problem of an estimated MDP M̂ . Then, the
performance of π�pol is near Πb-optimal in the true MDP
M∗:

ρ(π�pol,M
∗) ≥ max

π∈Πb

ρ(π,M∗)−
2εVmax

1− γ
. (11)

Theorem 5 (Safe policy improvement of Πb-SPIBB). Let
Πb be the set of policies under the constraint of following
πb when (x, a) ∈ B. Let π�pol be a Πb-optimal policy of

the reward maximization problem of an estimated MDP M̂ .
Then, π�pol is an approximate safe policy improvement over
the baseline policy πb with high probability 1− δ:

ρ(π�pol,M
∗) ≥ ρ(πb,M

∗)−
2εVmax

1− γ
. (12)
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Q-value Baseline policy Boostrapped state Πb-SPIBB Π0-SPIBB Π≤b-SPIBB
Q(i)(x, a1) = 1 πb(x, a1) = 0.1 (x, a1) ∈ B π(i)(x, a1) = 0.1 π(i)(x, a1) = 0 π(i)(x, a1) = 0
Q(i)(x, a2) = 2 πb(x, a2) = 0.4 (x, a2) /∈ B π(i)(x, a2) = 0 π(i)(x, a2) = 0 π(i)(x, a2) = 0
Q(i)(x, a3) = 3 πb(x, a3) = 0.3 (x, a3) /∈ B π(i)(x, a3) = 0.7 π(i)(x, a3) = 1 π(i)(x, a3) = 0.8
Q(i)(x, a4) = 4 πb(x, a4) = 0.2 (x, a4) ∈ B π(i)(x, a4) = 0.2 π(i)(x, a4) = 0 π(i)(x, a4) = 0.2

Table 1: Policy improvement step at iteration (i) for the three policy-based SPIBB algorithms.

Algorithm 3, referred as Πb-SPIBB, has the tendency to
reproduce the rare actions from the baseline policy. Even
though this is what allows to guarantee a performance al-
most as good as the baseline policy’s one, it may prove
to be toxic when the baseline policy is already near opti-
mal for two reasons: 1/ the low visited state-action pairs
are generally the actions for which the behavioural policy
probability is lower, meaning that the actions are likely to
be bad, 2/ the exploratory strategies that are embedded in
the baseline policy fall into this category, and reproducing
the baseline policy in this case is reproducing these strate-
gies.

Another way to look at the problem is therefore to consider
that those rare actions must be avoided, because they are
risky, and therefore to force the policy to assign a prob-
ability of 0 to perform this action. Algorithm 3 remains
unchanged except that the policy search space Πb has to be
replaced with Π0 (see Algorithm 5 in Appendix) defined as
follows:

Π0 = {π ∈ Π |π(a|x) = 0 if (x, a) ∈ B} (13)

The empirical analysis of Section 4 shows that this vari-
ant, referred as Π0-SPIBB, often proves to be unsafe. We
believe that a better policy-improvement SPIBB lays in-
between: the space of policies to search in should be con-
strained not to give more weight than πb to actions that
were not tried out enough to significantly assess its perfor-
mance, but still leave the possibility to completely cut off
bad performing actions even though this evaluation is un-
certain. The resulting algorithm is referred as Π≤b-SPIBB.
Once again, Algorithm 3 remains unchanged except for the
policy search space Πb that has to be replaced with Π≤b
defined as follows:

Π≤b = {π ∈ Π |π(a|x) ≤ πb(a|x) if (x, a) ∈ B} (14)

Algorithm 4 in Appendix describes the greedy projection of
Q(i) on Π≤b. Despite the lack of theoretical guarantees, in
our experiments, Π≤b-SPIBB proves to be safe while out-
performing Πb-SPIBB. However, in a growing batch batch
setting (Lange et al., 2012), it might be valuable to keep
exploring the way Πb-SPIBB does.

Table 1 shows the difference of policy projection during the
policy improvement step of the policy iteration process. It

shows how the baseline policy probability mass is redis-
tributed among the different actions according to the three
policy-based SPIBB algorithms. We observe that for Πb-
SPIBB, the boostrapped state-action pairs probabilities are
untouched. At the opposite, Π0-SPIBB removes all mass
from the boostrapped state-action pairs. And finally Π≤b-
SPIBB lies in-between.

3.4. Discussion

Table 2 summarizes the algorithms strengths and weak-
nesses. High-Confidence PI refers to the family of algo-
rithms introduced in (Thomas et al., 2015a), which rely
on the ability to produce high-confidence policy evalua-
tion (Mandel et al., 2014; Thomas et al., 2015b) of the
trained policy, which is known to be high variance (Padu-
raru, 2013). As a consequence, they formally rely on a pol-
icy improvement safety test that is unlikely to be positive
without an immense dataset.

(Petrik et al., 2016) propose a large variety of algorithms.
The basic (model-based) RL relates to searching the opti-
mal policy in the MDP estimate M̂ . It is proved to con-
verge to the optimal policy, but this proof relies on the un-
practical assumption of having sampled every state-action
pair a huge number of times (see Theorem 1 in Section 4).
ARBRM assumes the transition model known around the
baseline policy, which is a strong assumption that cannot
be made in most practical problems. ARBRM and Robust
MDP to a lesser extent suffer from high complexity even
with a finite state space MDP: NP-hard reduced through ap-
proximation to polynomial time; and they also lack safety
guarantees with respect to their approximation to make it
tractable. Finally, Reward-Adjusted MDP’s algorithm has
no proven safety and relies as a consequence on a safety
test, similarly to High-Confidence PI.

(Berkenkamp et al., 2017) assume the existence of a local,
stable policy, and their Safe Lyapunov RL algorithm allows
to safely explore outside from the safe region without ever
leaving it. It exclusively addresses the stabilization tasks
in the online scenario. (Roy et al., 2017) develop robust
versions of the main model-free algorithms, offering algo-
rithms that robustly converge online to the optimal policy.
It does not help in the general batch setting, where the trust
regions are infinite if a state-action pair has never been ob-
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algorithm name safe PI PI test known πb? πbeh = πb? ND(x, a) ≥ N•?

Basic model-based RL yes no no no N∧ =
2

ε2
log |X ||A|2

|X|

δ

ARBRM yes yes yes yes no
Robust MDP ξ yes yes yes no no
Reward-Adjusted MDP yes yes no no no
High-Confidence PI no yes no no no

Qπb -SPIBB-1 Th. 3 no yes yes N⊥ =
2

ε2
log 2|X ||A|

δ

Qπb -SPIBB-∞ no n/a no yes N⊥ =
2

ε2
log 2|X ||A|

δ

Πb-SPIBB Th. 5 no yes no no
Π0-SPIBB no n/a yes no no
Π≤b-SPIBB no n/a yes no no

Table 2: Brief summary of safe improvement algorithms. The columns are from left to right: name of the algorithm,
existence of safe improvement guarantees, does it rely on a policy improvement test?, does the baseline policy need to be
known?, is the baseline policy required to be the behavioural policy?, is there a constraint on the action-state pair counts?
The safety of basic model-based RL is proved in (Petrik et al., 2016). ARBRM, Robust MDP, and Reward-Adjusted MDP
are respectively Algorithms 1, 2, and 3 in (Petrik et al., 2016). High-Confidence PI is the general approach to policy
improvement guaranteed by off-policy evaluation confidence intervals defended in (Thomas, 2015).

served. (Papini et al., 2017) propose to adapt the batch size
to ensure that the gradients safely improve the policy. It has
two main shortcomings: it requires the use of policy gra-
dient updates, which is less sample-efficient than model-
based methods, and it commands the batch size, which is
usually not a feature over which the system has control
in an offline setting like ours. These three very recent al-
gorithms use different assumptions and cannot be directly
compared to our algorithms.

Our algorithms take inspiration from the ARBRM idea of
finding a policy that is guaranteed to be an improvement
for any realization of the uncertain parameters. Still, like
ARBRM, they do so by taking into account the estimation
of the error, as a function of the state-action pair counts.
But instead of searching for the analytic optimum, it goes
straightforwardly to a solution improving the baseline pol-
icy where it can guarantee the improvement, and boot-
strapping on the baseline policy where the uncertainty is
too high. One can see it as a knows-what-it-knows algo-
rithm (Li et al., 2008), asking for help from the baseline
policy when it does not know whether it knows. As a con-
sequence, our proofs do not require the policy improve-
ment safety test. Qπb -SPIBB-1 is proved to be safe under
conditions of application that are widely relaxed, compared
with the basic model-based RL Theorem 1. Πb-SPIBB al-
gorithm does not rely on any condition of application else
than knowing the baseline policy. Additionally, contrary to
the other robust/safe batch RL algorithms in the literature,
all SPIBB algorithms maintain a computational cost equal
to the basic RL algorithms.

4. Experimental evaluation
4.1. Gridworld setting

Our case study is a straightforward discrete, stochastic 5×5
gridworld (see Figure 1a). We use four actions: up, down,
left and right. The transition function is stochastic and
the actions move the agent in the specified direction with
75% chances, in the opposite direction with 5% chances
and with 10% to each side. The initial and final states are
respectively the bottom left and top right corners. The re-
ward is −10 when hitting a wall (in which case the agent
does not move) and +100 if the final state is reached. Each
run consists in generating a dataset, training a policy from
it, and evaluating the trained policy.

The gridworld domain is justified by the fact that basic
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Figure 1: Gridworld domain and dataset distribution.



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Safe Policy Improvement with Baseline Bootstrapping

Figure 2: Expectation of the number of (x, a) pairs count-
ing a unique transition as a function of the dataset size.

model-based RL already fails to be safe in this simple en-
vironment, and by the empirical worst-case evaluation that
requires to run 1,000 runs for 8 algorithms (the 5 SPIBB
algorithms, the basic RL, Robust MDP, and the Reward-
Adjusted MDP), 11 dataset sizes, and 8 N∧ values. For
Basic RL, several Q-functions initializations were inves-
tigated: the optimistic (Vmax), the null (0), and the pes-
simistic (−Vmax). The two first yielded awful perfor-
mances. All the presented results are obtained with the
pessimistic initialization.

Two baseline policies were used to generate the dataset and
to bootstrap on. The literature benchmark is performed
on the first one, a strong softmax exploration around the
optimal Q-function. The SPIBB benchmark is performed
on the second one, which differs in that it favours walk-
ing along the walls, although it should avoid it to prevent
bad stochastic transitions. This baseline was constructed in
order to demonstrate the unsafety of algorithm Π0-SPIBB.

The results are presented in two forms: the mean perfor-
mance on all the runs; and the worst-case performance of
the 10% (decile) or 1% (centile) worst runs. For the SPIBB
algorithms, values of N∧ from 5 to 1000 are tested.

4.2. Basic model-based RL failure

All the state-of-the-art algorithms for batch RL assume that
every state-action has been experienced a certain amount of
times (Delage & Mannor, 2010; Petrik et al., 2016). In this
subsection, we aim to empirically demonstrate that this as-
sumption is generally transgressed even in our simple grid-
world domain. To do so, we collect 12 millions trajectories
with the first baseline. The map of the state-action count
log10 logarithm (see Figure 1b) shows how unbalanced the
ND(x, a) counts are: some transitions are experienced in
each trajectory, some only once every few million trajecto-
ries, and some are even never seen once.

Moreover, the actions that are rarely chosen are likely to

Figure 3: Literature benchmark: Basic RL, Robust MDP,
and Reward Adjusted MDP are compared to our Π≤b-
SPIBB with N∧ = 100 on mean and safe performances.

be the dangerous ones, and for those ones, a bad model
might lead to a catastrophic policy. Figure 2 displays the
expected number of transitions that are seen exactly once
in a dataset as a function of its size. This is a curve that
decreases slowly as more trajectories are collected. But,
if we look more specifically at dangerous transitions, i.e.
the ones that direct the agent to a wall, we observe a peak
around 1,000 trajectories. In the next subsection, we see
that it strongly affects the basic RL safety: surprisingly, the
models trained with 10 trajectories yield better returns than
the ones trained with 1,000 trajectories on average. We
conjecture that this issue is faced in most practical applica-
tions too. For instance, in dialogue, all the collected human
dialogue transitions are relevant to what is being discussed.

4.3. Results

Figure 3 shows the literature benchmark results against
our best algorithm Π≤b-SPIBB. The basic RL algorithm
performs reasonably well on average, but fails to be safe,
and sometimes outputs a policy that is disastrous. We can
notice that the performance reaches a valley for datasets
around 1,000 trajectories. We interpret it as the conse-
quence of the rare pair count effect developed in the pre-
vious subsection. Neither Robust MDP, nor Reward Ad-
justed MDP, seem to improve the safety when the safety
test is omitted. We did so in our curves to make a relevant
comparison: this test appears to be always negative because
of its wide confidence interval. It is also worth mentioning
that the Reward Adjusted MDP algorithm tends to become
suicidal in environments where it can get killed (not the
case in our domain). Indeed, the intrinsic penalty adjust-
ment may be overwhelming the environment reward and
the optimal strategy may be to stop the trajectory as fast
as possible. Our algorithm Π≤b-SPIBB with N∧ = 100
is safe. Its worst decile performance is even significantly
higher than the other algorithms mean performance. The
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(a) Mean performance (b) Worst centile performance

Figure 4: SPIBB benchmark (N∧ = 5): mean and worst centile performance

SPIBB algorithms empirical results are lengthily discussed
hereinbelow.

Our SPIBB algorithms are so efficient and safe that we shift
the dataset size range to the [10,1000] window. The safety
is assessed by a worst-centile measure: mean of the perfor-
mance of the 1% worst runs. The basic RL worst centile is
too low to appear. A wide range of values for N∧ are eval-
uated: from 5 to 1000. The main lessons are that the safety
of improvement over the baseline is not much impacted by
the choice of N∧, but that a higher N∧ implies the SPIBB
algorithms to be more conservative and to bootstrap more
often on the baseline. For complete results, we refer the
interested reader to the Appendix. Even though the theory
would advise to use higher values, we report here our best
empirical results: with N∧ = 5.

Value-based SPIBB algorithms Qπb -SPIBB-1 and Qπb -
SPIBB-∞ fail at being safe with small datasets. The rea-
son is that these algorithms rely on the assumption that even
bootstrapped state-action pairs must have been experienced
a small amount of times. We also notice that, despite the
lack of guarantees, Qπb -SPIBB-∞ improves the safety as
compared to Qπb -SPIBB-1.

Πb-SPIBB and Π≤b-SPIBB get a worst case scenario only
10 points below the baseline, which is partially explained
by the variance in the evaluation, and is not likely to be a
consequence of a bad policy. Π0-SPIBB lacks safety with
very small datasets, because it tends to completely abandon
actions that are not sampled enough in the dataset, regard-
less of their performance. Results with higher N∧ values
show that there is a dataset size for which Π0-SPIBB tends
to cut the optimal actions (of not walking along the wall),
which causes a strong performance drop, both in worst case
scenario and in mean performance (see the Appendix). Πb-
SPIBB is more conservative and fails to improve as fast as
the two other policy-based SPIBB algorithms, but it does

it safely. Π≤b-SPIBB is the best of both worlds: safe al-
though still capable of cutting bad actions even with only a
small number of samples. However, for growing batch set-
tings, it might be better to keep on trying out the actions that
were not sufficiently explored yet, and Πb-SPIBB might be
the best algorithm in this setting.

5. Conclusion and future work
In this paper, we tackle the problem of Batch Reinforce-
ment Learning and its safety. We reformulate the percentile
criterion without compromising its safety at the expense of
the optimality of the safe solution. The gain is that it al-
lows to implement two algorithms Qπb -SPIBB-1 and Πb-
SPIBB that run as fast as a basic model-based RL algo-
rithm, while generating a provably safe policy improve-
ment over a known baseline πb. Three other SPIBB al-
gorithms are derived without any safety guarantees: Qπb -
SPIBB-∞, Π0-SPIBB, and Π≤b-SPIBB.

The empirical analysis shows that, even on a very sim-
ple domain, the basic RL algorithm fails to be safe, and
the state-of-the-art safe batch RL algorithms does no better
when the policy improvement safety test is omitted. This
safety test has also proven to be (almost) always negative
in our tests consequently preventing any improvement over
the baseline. The SPIBB algorithms show significantly bet-
ter results: their worst-centile performance even surpassing
the basic RL mean performance in most settings.

Future work includes developing model-free versions of
our algorithms in order to ease their use in continuous state
MDP and real-world applications, designing a Bayesian
policy projection to take into account the uncertainty of
local policy evaluation, and demonstrating that our algo-
rithms may be used in conjunction with imitation learning
to compute the baseline policy estimate.
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A. Proofs for Qπb-SPIBB-1 (Section 3.2)
A.1. ε error with high probability 1− δ

Proposition 1. If for all state action pairs (x, a) ∈ B,
√

2
ND(x,a) log 2|X ||A|

δ ≤ ε, then, with probability at least 1− δ:
∀(x, a) /∈ B, ‖P ∗(·|x, a)− P̂ (·|x, a)‖1 ≤ ε
∀(x, a) /∈ B, |R∗(x, a)− R̂(x, a)| ≤ εRmax
∀(x, a) ∈ B, |Qπb(x, a)− Q̂πb(x, a)| ≤ εVmax

(15)

Proof. From construction of B, and from Proposition 9 of (Petrik et al., 2016), the first condition is satisfied for every
state-action pair (x, a) /∈ B individually with probability δ

|X ||A| .

The second and the third inequalities are obtained similarly. The proof is further only detailed for the third inequality
hereinafter: given (x, a) ∈ B, and from the two-sided Hoeffding’s inequality:

P
(
|Qπb(x, a)− Q̂πb(x, a)| > εVmax

)
= P

 |Qπb(x, a)− Q̂πb(x, a)|
2Vmax

>

√
1

2ND(x, a)
log

2|X ||A|
δ

 (16)

≤ 2 exp

(
−2ND(x, a)

1

2ND(x, a)
log

2|X ||A|
δ

)
(17)

≤
δ

|X ||A|
(18)

Adding up all |X ||A| state-action pairs probabilities lower than δ
|X ||A| gives a result lower than δ, which proves the

proposition.

A.2. Value function error bounds

Lemma 1 (Value function error bounds). Consider two transition probability matrices P1 and P2, two reward functions
R1 and R2, and two bootstrapping Q-function Q1 and Q2, used to bootstrap two MDPs M1 and M2. Consider a policy
π ∈ Π. Let V1 and V2 be the state value function of the policy π given (P1, R1, Q1) and (P2, R2, Q2), respectively.

If

 ∀(x, a) /∈ B, ‖P1(·|x, a)− P2(·|x, a)‖1 ≤ ε
∀(x, a) /∈ B, |R1(x, a)−R2(x, a)| ≤ εRmax
∀(x, a) ∈ B, |Q1(x, a)−Q2(x, a)| ≤ εVmax

then |V1 − V2| ≤ (I− γπ̇P1)−1εVmax, (19)

where Vmax is the known maximum of the value function.

Proof. The policy π can be decomposed as the aggregation of two partial policies: π = π̇ ⊗ π̃, where π̇ are the non-
boostrapped actions probabilities, and π̃ are the bootstrapped actions probabilities

Then, the difference between the two value functions can be written:

V1 − V2 = πR1 + γπP1V1 − πR2 − γπP2V2 (20)
= πR1 + γπP1V1 − πR2 − γπP2V2 + γπP1V2 − γπP1V2 (21)
= π(R1 −R2)− γπP1(V1 − V2) + γπ(P1 − P2)V2 (22)
= π(R1 −R2)− γπ̇P1(V1 − V2) + γπ̇(P1 − P2)V2 (23)

= (I− γπ̇P1)−1 [π(R1 −R2) + γπ̇(P1 − P2)V2] . (24)

Line 23 is explained by the fact that the bootstrapping action lead to a terminal state: therefore V1 = V2 = 0, and Line
24 is passing the second term to the left-hand side of the equation, factorised over V1 − V2 and divided by its factor. Now
using the Holder’s inequality, for any state-action couple (x, a) /∈ B, we have:

|(P1(·|x, a)− P2(·|x, a))>V2| ≤ ‖P1(·|x, a)− P2(·|x, a)‖1‖V2‖∞ ≤ εVmax. (25)
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Also, considering the reward term, we get:

π|R1(x, a)−R2(x, a)| = π̇|R1(x, a)−R2(x, a)|+ π̃|R1(x, a)−R2(x, a)| (26)
≤ π̇εRmax + π̃εVmax. (27)

Inserting 25 and 27 into Equation 24 gives:

|V1 − V2| ≤ (I− γπ̇P1)−1 [π̇εRmax + π̃εVmax + γπ̇εVmax] (28)

≤ (I− γπ̇P1)−1 [π̃εVmax + π̇ε(Rmax + γVmax)] (29)

≤ (I− γπ̇P1)−1 [π̃εVmax + π̇εVmax] (30)

≤ (I− γπ̇P1)−1εVmax (31)

A.3. Near optimality

Theorem 2 (Near optimality of Qπb -SPIBB-1). Let π�val be an optimal policy of the reward maximization problem of

an estimated Qπb -bootstrapped MDP ̂̃M . Then, under the construction properties of M̃ and under the assumption of
Proposition 1, the performance of π�val in M̃ is near-optimal:

ρ(π�val, M̃) ≥ max
π∈Π

ρ(π, M̃)−
2εVmax

1− γ
(32)

Proof. From Lemma 1, with π = π�val, P1 = P̃ , P2 = ̂̃P , R1 = R̃, R2 = ̂̃R, Q1 = Qπb , and Q2 = Q̂πb , we have:

|ρ(π�val, M̃)− ρ(π�val,
̂̃M)| = |V π

�
val

M̃
(x0)− V π

�
val̂̃M (x0)| (33)

≤ (I− γπ̇�valP̃ )−1εVmax (34)

And if we write π∗ = argmaxπ∈Π ρ(π, M̃), analogously, we also have:

|ρ(π∗, M̃)− ρ(π∗, ̂̃M)| ≤ (I− γπ̇∗P̃ )−1εVmax (35)

Thus, we may write:

ρ(π∗, M̃)− ρ(π�val, M̃)
(a)

≤ ρ(π∗, M̃)− ρ(π�val,
̂̃M) + (I− γπ̇�valP̃ )−1εVmax (36)

(b)

≤ ρ(π∗, M̃)− ρ(π∗, ̂̃M) + (I− γπ̇�valP̃ )−1εVmax (37)
(c)

≤ (I− γπ̇∗P̃ )−1εVmax + (I− γπ̇�valP̃ )−1εVmax (38)
(d)

≤
2εVmax

1− γ
, (39)

where each step is obtained as follows:

(a) From equation 34.

(b) Optimality of π�val in the estimated Qπb -bootstrapped MDP ̂̃M .

(c) From equation 35.

(d) For any policy π ∈ Π, we have ‖(I− γπ̇P̃ )−1‖1 ≤ 1
1−γ .
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A.4. Safe policy improvement

Proposition 2 (Baseline policy value conservation under Qπb -bootstrapping).

V πb

M̃
= V πb

M∗ . (40)

Proof. The V -value function can be decomposed as follows:

V πb

M̃
= πb

(
R̃+ P̃ V πb

M̃

)
(41)

= π̇b

(
R̃+ P̃ V πb

M̃

)
+ π̃b

(
R̃+ P̃ V πb

M̃

)
(42)

= π̇b

(
R∗ + P ∗V πb

M̃

)
+ π̃b (Qπb

M∗) (43)

= π̇b

(
R∗ + P ∗V πb

M̃

)
+ π̃b (R∗ + P ∗V πb

M∗) . (44)

From Equation 44, it is direct to conclude that V πb

M∗ is the unique solution of the Bellman equation for V πb

M̃
, and therefore

that V πb

M̃
= V πb

M∗ .

Corollary 1 (Baseline policy return conservation under bootstrapping).

ρ(πb, M̃) = ρ(πb,M
∗). (45)

Proof. This is a direct consequence from Proposition 2:

ρ(πb, M̃) = V πb

M̃
(x0) = V πb

M∗(x0) = ρ(πb,M
∗). (46)

Theorem 3 (Safe policy improvement ofQπb -SPIBB-1). Let π�val be an optimal policy of the reward maximization problem

of an estimated Qπb -bootstrapped MDP ̂̃M . Then, under the construction properties of M̃ and under the assumption
of Proposition 1, π�val applied in M̃ is an approximate safe policy improvement over the baseline policy πb with high
probability 1− δ:

ρ(π�val, M̃) ≥ ρ(πb,M
∗)−

2εVmax

1− γ
(47)

Proof.

ρ(π�val, M̃)
(a)

≥ max
π∈Π

ρ(π, M̃)−
2εVmax

1− γ
(48)

(b)

≥ ρ(πb, M̃)−
2εVmax

1− γ
(49)

(c)

≥ ρ(πb,M
∗)−

2εVmax

1− γ
, (50)

where each step is obtained as follows:

(a) From Theorem 2.

(b) Optimality of maxπ∈Π ρ(π, M̃).

(c) From Corollary 1.
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B. Proofs for Πb-SPIBB (Section 3.3)
B.1. Q-function error bounds with Πb-SPIBB

Lemma 2 (Q-function error bounds with Πb-SPIBB). Consider two transition probability matrices P1 and P2 and two
reward functionsR1 andR2 over an MDPM . Consider a policy π ∈ Πb satisfying the following constraint: if (x, a) ∈ B,
π(x, a) = πb(x, a). Also, consider Q1 and Q2 be the state-action value function of the policy π given (P1, R1) and
(P2, R2), respectively. Under the construction properties of B, we have:

∀(x, a) /∈ B, |Q1(x, a)−Q2(x, a)| ≤ (I− γP1π)−1Vmaxε, (51)

where Vmax is the known maximum of the value function.

Proof. For any state-action pair, the difference between the two state-action value functions can be written:

Q1 −Q2 = R1 + γP1πQ1 −R2 − γP2πQ2 (52)
= R1 + γP1πQ1 −R2 − γP2πQ2 + γP1πQ2 − γP1πQ2 (53)
= R1 −R2 − γP1π(Q1 −Q2) + γ(P1 − P2)πQ2 (54)

= (I− γP1π)−1 [R1 −R2 + γ(P1 − P2)πQ2] . (55)

Now using the Holder’s inequality, for any state-action couple (x, a) /∈ B, we have:

|(P1(·|x, a)− P2(·|x, a))>πQ2| ≤ ‖P1(·|x, a)− P2(·|x, a)‖1‖π‖∞‖Q2‖∞ ≤ Vmaxε. (56)

Also, considering the reward term, for any state-action couple (x, a) /∈ B, we get:

|R1(x, a)−R2(x, a)| ≤ εRmax (57)

Inserting 56 and 57 into Equation 55 gives for any state-action couple (x, a) /∈ B:

|Q1(x, a)−Q2(x, a)| ≤ (I− γP1π)−1 [Rmaxε+ γVmaxε] (58)

≤ (I− γP1π)−1Vmaxε, (59)

which proves the lemma.

B.2. Near optimality of Πb-SPIBB

Theorem 4 (Near Πb-optimality of Πb-SPIBB). Let Πb be the set of policies under the constraint of following πb when
(x, a) ∈ B. Let π�pol be a Πb-optimal policy of the reward maximization problem of an estimated MDP M̂ . Then, the
performance of π�pol is near Πb-optimal in the true MDP M∗:

ρ(π�pol,M
∗) ≥ max

π∈Πb

ρ(π,M∗)−
2εVmax

1− γ
. (60)

Proof. From Lemma 2, with π = π�pol, P1 = P ∗, P2 = P̂ , R1 = R∗, and R2 = R̂, we have:

|ρ(π�pol,M
∗)− ρ(π�pol, M̂)| = |V

π�pol
M∗ (x0)− V

π�pol

M̂
(x0)| (61)

= |Q
π�pol
M∗ (x0, a0)−Q

π�pol

M̂
(x0, a0)| (62)

≤ (I− γP ∗π�pol)
−1εVmax (63)

Let π∗ denote the optimal policy in the set of admissible policies Πb: π∗ = argmaxπ∈Πb
ρ(π,M∗). Analogously to 63,

we also have:
|ρ(π∗,M∗)− ρ(π∗, M̂)| ≤ (I− γP ∗π∗)−1εVmax (64)
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Thus, we may write:

ρ(π∗,M∗)− ρ(π�pol,M
∗)

(a)

≤ ρ(π∗,M∗)− ρ(π�pol, M̂) + (I− γP ∗π�pol)
−1εVmax (65)

(b)

≤ ρ(π∗,M∗)− ρ(π∗, M̂) + (I− γP ∗π�pol)
−1εVmax (66)

(c)

≤ (I− γP ∗π∗)−1εVmax + (I− γP ∗π�pol)
−1εVmax (67)

(d)

≤
2εVmax

1− γ
, (68)

where each step is obtained as follows:

(a) From equation 63.

(b) Optimality of π�pol in the estimated MDP M̂ .

(c) From equation 64.

(d) For any policy π ∈ Π, we have ‖(I− γP ∗π)−1‖1 ≤ 1
1−γ .

B.3. Safe policy improvement of Πb-SPIBB

Theorem 5 (Safe policy improvement of Πb-SPIBB). Let Πb be the set of policies under the constraint of following πb
when (x, a) ∈ B. Let π�pol be a Πb-optimal policy of the reward maximization problem of an estimated MDP M̂ . Then,
π�pol is an approximate safe policy improvement over the baseline policy πb with high probability 1− δ:

ρ(π�pol,M
∗) ≥ ρ(πb,M

∗)−
2εVmax

1− γ
. (69)

Proof. It is direct to observe that πb ∈ Πb, and therefore that:

max
π∈Πb

ρ(π,M∗) ≥ ρ(πb,M
∗) (70)

It follows from Theorem 4 that:

ρ(π�pol,M
∗) ≥ ρ(πb,M

∗)−
2εVmax

1− γ
. (71)
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C. Algorithms for the greedy projection of Q(i) on Πb, Π0, and Π≤b

The policy-based SPIBB algorithms rely on a policy iteration process that requires a policy improvement step under the
constraint of the generated policy to belong to Πb, Π0, or Π≤b. Those are respectively described in Algorithms 4, 5, and 6.

Algorithm 4 Greedy projection of Q(i) on Πb

Data: Baseline policy πb
Data: Last iteration value function Q(i)

Data: Set of bootstrapped state-action pairs B
Data: Current state x and action set A
Initialize π(i)

pol = 0

for (x, a) ∈ B do π
(i)
pol(x, a) = πb(x, a) ;

π
(i)
pol(x, argmax(x,a)/∈BQ(i)(x, a)) = 1−

∑
(x,a′)∈B πb(x, a

′)

return π(i)
pol

Algorithm 5 Greedy projection of Q(i) on Π0

Data: Baseline policy πb
Data: Last iteration value function Q(i)

Data: Set of bootstrapped state-action pairs B
Data: Current state x and action set A
Initialize π(i)

pol = 0

π
(i)
pol(x, argmax(x,a)/∈BQ(i)(x, a)) = 1

return π(i)
pol

Algorithm 6 Greedy projection of Q(i) on Π≤b

Data: Baseline policy πb
Data: Last iteration value function Q(i)

Data: Set of bootstrapped state-action pairs B
Data: Current state x and action set A
Sort A in decreasing order of the action values: Q(i)(x, a)

Initialize π(i)
pol = 0

for a ∈ A do
if (x, a) ∈ B then

if πb(a|x) ≥ 1−
∑
a′∈A π

(i)
pol(a

′|x) then
π

(i)
pol(a|x) = 1−

∑
a′∈A π

(i)
pol(a

′|x)

return π(i)
pol

else
π

(i)
pol(a|x) = πb(a|x)

end
else

π
(i)
pol(a|x) = 1−

∑
a′∈A π

(i)
pol(a

′|x)

return π(i)
pol

end
end
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D. Extensive SPIBB experimental results

(a) Mean performance (b) Worst decile performance (c) Worst centile performance

Figure 5: SPIBB benchmark (N∧ = 5): mean, worst decile and worst centile performances.

(a) Mean performance (b) Worst decile performance (c) Worst centile performance

Figure 6: SPIBB benchmark (N∧ = 10): mean, worst decile and worst centile performances.

(a) Mean performance (b) Worst decile performance (c) Worst centile performance

Figure 7: SPIBB benchmark (N∧ = 20): mean, worst decile and worst centile performances.

(a) Mean performance (b) Worst decile performance (c) Worst centile performance

Figure 8: SPIBB benchmark (N∧ = 50): mean, worst decile and worst centile performances.
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(a) Mean performance (b) Worst decile performance (c) Worst centile performance

Figure 9: SPIBB benchmark (N∧ = 100): mean, worst decile and worst centile performances.

(a) Mean performance (b) Worst decile performance (c) Worst centile performance

Figure 10: SPIBB benchmark (N∧ = 200): mean, worst decile and worst centile performances.

(a) Mean performance (b) Worst decile performance (c) Worst centile performance

Figure 11: SPIBB benchmark (N∧ = 500): mean, worst decile and worst centile performances.

(a) Mean performance (b) Worst decile performance (c) Worst centile performance

Figure 12: SPIBB benchmark (N∧ = 1000): mean, worst decile and worst centile performances.
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