
Exposure: A White-Box Photo Post-Processing Framework

YUANMING HU, Massachusetts Institute of Technology
HAO HE, Massachusetts Institute of Technology
CHENXI XU, Peking University
BAOYUAN WANG, Microsoft Research
STEPHEN LIN, Microsoft Research

User Rating

Exposure
(ours)

CycleGAN
Human
Level

Average
Photo

3.66
Expert
Level

Pix2pix
(paired data

needed)

3.302.47 3.37 3.43

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Exposure +2.15

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Contrast −0.59

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Color

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Tone

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Gamma 1/0.77

Fig. 1. Our method provides automatic and end-to-end processing of RAW photos, directly from linear RGB data captured by camera sensors to visually
pleasing and display-ready images. Our system not only generates appealing results, but also outputs a meaningful filtering sequence. User studies indicate
that the retouching results surpass those of strong baselines, even though our method uses only unpaired data for training.

Retouching can significantly elevate the visual appeal of photos, but
many casual photographers lack the expertise to do this well. To address
this problem, previous works have proposed automatic retouching systems
based on supervised learning from paired training images acquired before
and after manual editing. As it is difficult for users to acquire paired images
that reflect their retouching preferences, we present in this paper a deep
learning approach that is instead trained on unpaired data, namely a set
of photographs that exhibits a retouching style the user likes, which is
much easier to collect. Our system is formulated using deep convolutional
neural networks that learn to apply different retouching operations on an
input image. Network training with respect to various types of edits is
enabled by modeling these retouching operations in a unified manner as
resolution-independent differentiable filters. To apply the filters in a proper
sequence and with suitable parameters, we employ a deep reinforcement

learning approach that learns to make decisions on what action to take
next, given the current state of the image. In contrast to many deep learning
systems, ours provides users with an understandable solution in the form of
conventional retouching edits, rather than just a “black box” result. Through
quantitative comparisons and user studies, we show that this technique
generates retouching results consistent with the provided photo set.

1 INTRODUCTION
The aesthetic quality of digital photographs can be appreciably
enhanced through retouching. Experienced photographers often
perform a variety of post-processing edits, such as color adjust-
ment and image cropping, to produce a result that is expressive
and more visually appealing. Such edits can be applied with the

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

ar
X

iv
:1

70
9.

09
60

2v
1

 [
cs

.G
R

]
 2

7
Se

p
20

17

X:2 • Hu, Y. et al

help of software such as Photoshop and Lightroom; however, photo
retouching remains challenging for ordinary users who lack the skill
to manipulate their images effectively. This problem underscores
the need for automatic photo editing tools, which can be helpful
even to professionals by providing a better starting point for manual
editing.

An important consideration in photo retouching is that different
people have different preferences in retouching style. While some
people like photos with vibrant colors that pop out of the screen,
others may prefer more subdued and natural coloring, or even a
monochromatic look. Personal preferences extend well beyond color
to include additional image properties such as contrast and tone.
They furthermore may vary with respect to semantic image content.

A natural way to express a user’s personal preferences is through
a set of retouched photos that they find appealing. The photographs
may be self-curated from the web or taken from the collection of a
favorite photographer. Such an image set gives examples of what
an automatic retouching system should aim for, but few techniques
are unable to take advantage of this guidance. The automatic edit-
ing tools in the literature are mostly designed to handle only a
single aspect of photo retouching, such as image cropping [Yan
et al. 2015], tonal adjustment [Bychkovsky et al. 2011], and color
enhancement [Wang et al. 2011; Yan et al. 2014, 2016]. Moreover,
the state-of-the-art techniques for these problems are all based on
machine learning with training data composed of image pairs, be-
fore and after the particular retouching operation. Paired image
data is generally difficult to acquire, as images prior to retouching
are usually unavailable. This is especially true of photos before and
after a specific retouching step.

In this paper, we present a photo retouching system that handles
a wide range of post-processing operations within a unified frame-
work, and learns how to apply these operations based on a photo
collection representing a user’s personal preferences. No paired im-
age data is needed. This is accomplished through an an end-to-end
learning framework in which various retouching operations are for-
mulated as a series of resolution-independent differentiable filters
that can be jointly trained within a convolutional neural network
(CNN). How to determine the sequence and parameters of these
filters for a given input image is learned with a deep reinforcement
learning (RL) approach guided by a generative adversarial network
(GAN) that models personal retouching preferences from a given
photo collection.

In contrast to many neural network solutions where the function-
ing is hidden within a “black box”, our “white box” network can
reveal its sequence of editing steps for an image, which correspond
to standard retouching operations and provide some understanding
of the process that it took. We show both quantitatively and through
user studies that the system can produce results that plausibly match
the user preferences reflected within a photo collection. Examples
of these automatically retouched images are displayed in Figure 1.
The technical contributions of this work are summarized as fol-

lows:
• An end-to-end model of photo post-processing with a set

of differentiable filters.
• By optimizing the model using reinforcement learning, our

system can generate a meaningful operation sequence that

provides users with an understanding of the given artistic
style, rather than just outputting a black-box result.

• Using a GAN structure, we enable learning of photo re-
touching without image pairs. To our knowledge, this is the
first GAN that scales with image resolution and generates
no distortion artifacts in the image.

• Through extensive experiments, we qualitatively and quan-
titatively validate our model and learning framework. We
show that our method not only provides an effective end-
to-end post-processing tool that aids ordinary users, but
also can help advanced users to reverse-engineer the style
of an automatic filter.

2 RELATED WORK
Automatic Photo Retouching. The state-of-the-art methods for

automatic retouching are mainly based on supervised learning from
paired images, which are obtained before and after editing by an
expert photographer. Most of these methods extract handcrafted fea-
tures, such as intensity distributions and scene brightness, from an
input image and learn to determine editing parameters with respect
to them. This approach has been employed for individual types of
post-processing operations, including global tonal adjustment using
Gaussian processes regression [Bychkovsky et al. 2011], image crop-
ping using support vector machines [Fang et al. 2014; Yan et al. 2015],
and color adjustment using a learning-to-rank approach [Yan et al.
2014] or with binary classification trees and parametric mapping
models [Wang et al. 2011].
With recent developments in machine learning, more informa-

tive features have been extracted from images using deep convolu-
tional neural networks. In contrast to the low-level image properties
represented by handcrafted features, the features from deep learn-
ing encode high-level semantic information, from which context-
dependent edits can be learned. Deep CNNs have led to clear im-
provements in a wide range of computer graphics applications,
including 3D mesh labeling [Guo et al. 2016] and locomotion mod-
eling [Peng et al. 2016]. For photo retouching, CNNs have been
utilized for spatially varying color mapping based on semantic in-
formation together with handcrafted global and local features [Yan
et al. 2016]. More recently, a CNN was trained to predict local affine
transforms in bilateral space [Gharbi et al. 2017], which can serve
as an approximation to edge-aware image filters and color/tone
adjustments.

Our system utilizes deep CNNs as well, but differs from these pre-
vious works in that it generates a meaningful sequence of edits that
can be understood and reproduced by users. Moreover, it performs
learning without paired image data. Not only is collecting unpaired
data more practical from a user’s perspective, but we believe that
it more closely conforms with the task of retouching. Unlike the
one-to-one mapping that is implicit in supervised learning, retouch-
ing is inherently a one-to-many problem, since for a given input
image there exist many possible solutions that are consistent with a
retouching style. Instead of learning to convert a given photograph
into a specific result, our technique learns to transform an image
into a certain style as represented by a photo collection.
Related to this is a method for finding exemplar images whose

color and tone style is compatiblewith a given input photograph [Lee

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

Exposure: A White-Box Photo Post-Processing Framework • X:3

et al. 2016]. This is done by semantically matching the input to clus-
ters of images from a large dataset, and then sampling from a set
of stylized images that match these clusters in chrominance and
luminance distributions. Matching through these two degrees of
separation may lead to exemplar images that differ drastically from
the input in content and composition (e.g., a landscape photo as a
style exemplar for a closeup image of a child). In such cases, map-
ping the chrominance distribution of the exemplar to the input may
produce unusual colorings. By contrast, our system models a style
from a collection of photos, and transforms the input image towards
this style, rather than to the statistics of a particular image.

Data-Driven Image Generation. Early methods for data-driven im-
age generation addressed problems such as texture synthesis [Efros
and Leung 2014] and super-resolution [Freeman et al. 2002] through
sampling or matching of image patches from a database. To gen-
erate a certain class of images such as handwritten digits or hu-
man faces, there has been some success using variational auto-
encoders [Kingma and Welling 2014; Rezende et al. 2014], which
construct images from a compressed latent representation learned
from a set of example images.

Generative Adversarial Networks. Recently, significant progress in
data-driven image generation has been achieved through generative
adversarial networks [Goodfellow et al. 2014]. GANs are composed
of two competing networks, namely a generator that learns to map
from a latent space to a target data distribution (e.g., natural images),
and a discriminator that learns to distinguish between instances
of the target distribution and the outputs of the generator. The
generator aims to better mimic the target data distribution based on
feedback from the discriminator, which likewise seeks to improve
its discriminative performance. Through this adversarial process,
GANs have generated images with a high level of realism [Radford
et al. 2016].

A conditional variant of GANs [Mirza and Osindero 2014] makes
it possible to constrain the image generation using information
in an input image. Conditional GANs have been applied to image
inpainting conditioned on the surrounding image context [Pathak
et al. 2016], inferring photographic images from surface normal
maps [Wang andGupta 2016], super-resolution from a low-resolution
input [Ledig et al. 2016], and image stylization for an input image
and a texture example [Li and Wand 2016]. These image-to-image
translation problems were modeled within a single framework un-
der paired [Isola et al. 2016] and unpaired [Zhu et al. 2017] settings.
These two methods are based on the observation that GANs learn a
loss function that adapts to the data, so they can be applied in the
same way to different image-to-image translation tasks. For Cycle-
GAN [Zhu et al. 2017] with unpaired training data, the translations
are encouraged to be “cycle consistent”, where a translation by the
GAN from one domain to another should be reverted back to the
original input by another counterpart GAN.
Our system also uses a type of conditional GAN, but instead of

directly generating an image, it outputs the parameters of filters
to be applied to the input image. As the filters are designed to be
content-preserving, this approach maintains the semantic content
and spatial structure of the original image, as is the case for Cycle-
GAN. Also, since the filters are resolution-independent, they can

be applied to images of arbitrary size (e.g., 24-megapixel photos),
even though GANs in practice can generate images of only limited
resolution (e.g., 512×512px in CycleGAN). In addition, the generated
filtering sequence represents conventional post-processing oper-
ations understandable to users, unlike the black-box solutions of
most CNNs. Concurrently to our work, another deep learning based
solution is proposed in [Fang and Zhang 2017], which also makes
use of a conditional GAN structure, but only for the “dramatic mask”
part of the system. In addition, multiple operations are learned sep-
arately, while in our work operations are optimized elegantly as a
whole, guided by the RL and GAN architecture.

Reinforcement Learning. Different from existing GAN architec-
tures, our conditional GAN is incorporated within a reinforcement
learning (RL) framework to learn a sequence of filter operations. RL
provides models for decision making and agent interaction with the
environment, and has led to human-level performance in playing
Atari games [Mnih et al. 2013] and even defeating top human com-
petitors at the game of Go [Silver et al. 2016]. In graphics, RL has
been successfully used for character animation [Peng et al. 2015,
2016, 2017; Peng and van de Panne 2017]. For natural language gen-
eration, a combination of RL and GAN was employed in [Yu et al.
2017] so that sequences consisting of discrete tokens can be effec-
tively produced. In our work, a filtering sequence is modeled as a
series of decision making problems, with an image quality evaluator
defined by the GAN discriminator as the environment.

On-camera enhancement of image quality. For mobile phone cam-
eras, methods have been developed to automatically enhance photos
within the imaging pipeline. These enhancements have included
image denoising [Liu et al. 2014] as well as exposure adjustment and
tone mapping [Hasinoff et al. 2016]. These techniques are aimed
at improving generic image quality and do not address emulating
retouching styles. Also, these methods operate on a set of burst
images to obtain data useful for their tasks. Our work can be em-
ployed in conjunction with such methods, for further processing to
improve or personalize the photographic style.

3 THE MODEL
Given an input RAW photo, the goal of our work is to generate a
result that is retouched to match a given photo collection. The photo
collection may represent a specific photographic style, a particular
photographer, or a more general range of image appearance, such
as an assembled set of photos that the user likes. In this section, we
elaborate on our modeling of the retouching process.

3.1 Motivation
In contrast to most methods that address a single post-processing
operation, a more comprehensive retouching process needs to ac-
count for different types of edits and how to apply them collectively.
For a human editor, retouching is done as a series of editing steps,
where each step is normally decided based on the outcome of the
previous step. This reliance on visual feedback exists even within a
single step of the process, since the parameters for an operation, of-
ten controlled with a slider, are interactively adjusted while viewing
real-time results, as shown in Figure 2.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

X:4 • Hu, Y. et al

Certainly, feedback is critical for choosing an operation and its
parameters. A photographer cannot in general determine a full
operation sequence from viewing only the original input image. We
postulate that an automatic retouching system would also benefit
from feedback and canmore effectively learn how to select and apply
a single operation at a time based on feedback than to infer the final
output directly from the input. Moreover, modeling retouching as a
sequence of standard post-processing operations helps to maintain
the photorealism of the image and makes the automatic process
more understandable to users.
We note that the notion of learning an operation sequence was

used in a learning-to-rankmodel for automatic color adjustment [Yan
et al. 2014]. Unlike their supervised approach which is trained on
collected sequences of editing operations from expert photogra-
phers, our system requires much less supervision, needing only a
set of retouched photos for training.

3.2 Post-processing as a decision-making sequence
Based on this motivation, the retouching process can naturally
be modeled as a sequential decision-making problem, which is a
problem commonly addressed in reinforcement learning (RL). RL is
a subarea of machine learning related to how an agent should act
within an environment to maximize its cumulative rewards. Here,
we briefly introduce basic concepts from RL and how we formulate
retouching as an RL problem.
We denote the problem as P = (S,A) with S being the state

space and A the action space. Specifically in our task, S is the
space of images, which includes the RAW input image and all inter-
mediate results in the automatic process, while A is the set of all
filter operations. A transition function p : S × A → S maps in-
put state s ∈ S to its outcome state s ′ ∈ S after taking action a ∈ A.
State transitions can be expressed as si+1 = p(si ,ai). Applying a
sequence of filters to the input RAW image results in a trajectory
of states and actions:

t = (s0,a0, s1,a1, . . . , sN−1,aN−1, sN)
where si ∈ S, ai ∈ A are states and actions, N is the number of
actions, and sN is the stopping state, as shown in Figure 3. A central
element of RL is the reward function, r : S × A → R, which
evaluates actions given the state. Our goal is to select a policy π
that maximizes the accumulated reward during the decision-making

Softwares, e.g.
Photoshop or
Lightroom

Photographer
or Colorist

Adjustments

Real-time Feedback

Fig. 2. Information flow in interactive photo post-processing. Our method
follows this scheme by modeling retouching as a decision-making sequence.

process. For this, we use a stochastic policy agent, where the policy
π : S → P(A) maps the current state s ∈ S to P(A), the set of
probability density functions over the actions. When an agent enters
a state, it samples one action according to the probability density
functions, receives the reward, and follows the transition function
to the next state.
Given a trajectory t = (s0,a0, s1,a1, . . . , sN), we define the re-

turn r
γ
k as the summation of discounted rewards after sk :

r
γ
k =

N−k∑
k ′=0

γk
′
r (sk+k ′ ,ak+k ′), (1)

where γ ∈ [0, 1] is a discount factor which places greater impor-
tance on rewards in the nearer future. To evaluate a policy, we define
the objective

J (π) = E
s0∼S0
t∼π

[
r
γ
0 |π

]
, (2)

where s0 is the input image, and S0 is the input dataset. Intuitively,
the objective describes the expected return over all possible trajec-
tories induced by the policy π . The goal of the agent is to maximize
the objective J (π), which is related to the final image quality by the
reward function r , as images (states) with high quality are more
greatly rewarded.

The expected total discounted rewards on states and state-action
pairs are defined by state-value functions V , and action-value
functions Q :

V π (s) = E
s0=s
t∼π

[
r
γ
0
]

(3)

Qπ (s,a) = E
s0=s
a0=a
t∼π

[
r
γ
0
]
. (4)

To fit our problem into this RL framework, we decompose actions
into two parts: a discrete selection of filter a1 and a continuous
decision on filter parameters a2. The policy also consists of two
parts: π = (π1,π2). π1 is a function that takes a state and returns
a probability distribution over filters, i.e. choices of a1; and π2 is
a function that takes (s,a1) and then directly generates a2. Note
that π1 is stochastic and requires sampling. Since there are practical
challenges in sampling a continuous random variable, we follow
recent practices by treating π2 deterministically, as described in
section 5.2.

4 FILTER DESIGN
In this section, we discuss the design of filters, i.e. the action space
A in our model.

4.1 Design Principles
For our system, we require the designs to adhere to the following
properties.

Differentiable. For gradient-based optimization of the policy π ,
the filters need to be differentiable with respect to their filter param-
eters. This differentiability is needed to allow training of the CNN by
backpropagation. Clearly, not all filters can be trivially modeled as
basic neural network layers; therefore, we propose approximations

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

Exposure: A White-Box Photo Post-Processing Framework • X:5

s0

s1

s2

s3

s4

s5

a0

a1

a2

a3

a4

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Contrast −0.95

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Exposure +1.81

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Tone

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Color

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Gamma 1/1.16

Fig. 3. An example trajectory of states (images) and actions (filter opera-
tions).

of such filters, such as piecewise linear functions in place of smooth
curves, to incorporate them within our framework.

Resolution-independent. Modern digital sensors capture RAW im-
ages at a high resolution (e.g., 6, 000 × 4, 000px) that is computa-
tionally impractical for CNN processing. Fortunately, most editing
adjustments can be determined without examining an image at
such high resolutions, thus allowing us to operate on downsampled
versions of the RAW images. Specifically, we determine filter pa-
rameters on a low-resolution (64 × 64) version of a RAW image and
then apply the same filter on the original high-resolution image.
This strategy is similar to that used by Gharbi et al. [2017] to reduce
computation on mobile devices. To this end, the filters need to be
resolution-independent.

Note that most GAN-based image generation techniques, like Cy-
cleGAN [Zhu et al. 2017], generate images of resolution at around
512 × 512px, since higher resolutions lead to not only greater com-
putational costs but also a significantly more challenging learning
task that requires greater training time and training data. We exper-
imentally compare our model to CycleGAN in section 6.1.

Understandable. The filters should represent operations that have
an intuitive meaning, so that the generated operation sequence
can be understood by users. This would be more interesting and
instructive to users than a “black-box” result. It would also enable

Neural
Network

Expo. W.B.
Gam. Satu.
Color Tone
Level Cst.

High-res Input Low-res Input

High-res Output Low-res Output

Contrast +0.95

action

gradient

im
g.

grad.

Fig. 4. The design principles of our filters (Contrast filter in this example):
1) They are differentiable and can thereby provide gradients for neural
network training; 2) Arbitrary-resolution images can be processed with
the filter; 3) What the filter does should be understandable by a human
user.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

X:6 • Hu, Y. et al

Table 1. Simple pixel-wise filters. For more details about the filters, please
refer to the supplemental material.

Operation Parameters Filter
Exposure E: exposure value pO = 2EpI
White Balance Wr ,Wд ,Wb : factors pO = (Wr rI ,WддI ,WbbI)
Color curves Ci,k : curve param. pO = (LCr (rI),LCд (дI),LCb (bI))

them to further adjust the parameters if they want. Though an
alternative is to generate a black-box result and then let users apply
edits to it, the black-box transformation might not be invertible,
leaving users unable to undo any unwanted effects.
These three design principles are illustrated in Figure 4.

4.2 Filter Details
Based on the aforementioned design principles, we developed fil-
ters that map an input pixel value pI = (rI ,дI ,bI) to an output
pixel value pO = (rO ,yO ,дO). Standard color and tone modifica-
tions, such as exposure change, white balancing, and color curve
adjustment, can be modeled by such pixel-wise mapping functions.
Examples of operations implemented in our system are listed in
Table 1 and visualized in Figure 5. Color curve adjustment, i.e., a
channel-independent monotonic mapping function, requires spe-
cial treatment for its filter to be differentiable, as described in the
following.

Curve representation. Weapproximate curves asmonotonic piecewise-
linear functions. Suppose we represent a curve using L parameters,
denoted as {t0, t1, . . . , tL−1}. With the prefix-sum of parameters de-
fined as Tk =

∑k−1
l=0 tl , the points on the curves are represented as

(k/L,Tk/TL). For this representation, an input intensity x ∈ [0, 1]
will be mapped to

f (x) = 1
TL

L−1∑
i=0

clip(L · x − i, 0, 1)tk .

Note that this mapping function is now represented by differen-
tiable parameters, making the function differentiable with respect
to both x and the parameters {tl }. Since color adjustments by pro-
fessionals are commonly subtle, color curves are typically close
to identity. We find that eight linear segments are sufficient for
modeling typical color curves.

5 LEARNING
Given the decision-making model for retouching and the differen-
tiable filters that make optimization possible, we discuss in this sec-
tion how the agent is represented by deep neural networks (DNNs),
how these networks are trained, and how the reward related to the
generated image quality is evaluated using adversarial learning. The
whole training cycle is shown in Alg. 1, and we elaborate on the
details in the following subsections.

5.1 Function approximation using DNNs
DNNs are commonly deployed as an end-to-end solution for ap-
proximating functions used in complex learning tasks with plentiful

data. Since convolutional neural networks (CNN) are especially
powerful in image-based understanding [Krizhevsky et al. 2012], we
use CNNs in our work. Among the CNNs are two policy networks,
which map the images into action probabilities π1 (after softmax) or
filter parameters π2 (after tanh). For policies π1 and π2, the network
parameters are denoted as θ1 and θ2, respectively, and we wish to
optimize θ = (θ1,θ2) so that the objective J (πθ) is maximized. In ad-
dition to the two policy networks, we also learn a value network and
a discriminator network, which facilitate training as later described.

All of these networks share basically the same architecture illus-
trated in Figure 7, while having different numbers of output neurons
according to what they output. For each CNN, we use four convo-
lution layers, each with filters of size 4 × 4 and stride 2. Appended
to this is a fully connected layer to reduce the number of outputs
to 128, and then a final fully connected layer that further regresses
the features into parameters we need from each network. The de-
terministic policy networks (one for each filter) for filter parameter
estimation share the convolutional layers, so that the computation
is made more efficient. CNNs are largely tailored for hierarchical
visual recognition, and we found that naively using them results in
unsatisfactory learning of agent policies and global statistics. There-
fore, following [Silver et al. 2016], we concatenate extra (spatially
constant) feature planes as additional color channels in the input.
For the discriminator network, the additional feature planes are
for the average luminance, contrast and saturation of the entire
image; for the policy and value networks, the feature planes are
eight boolean (zero or one) values that indicate which filters have
been used, and another plane denotes the number of steps that have
been taken so far in the retouching process.

5.2 Policy network training
The policy networks are trained using policy gradient methods,
which employ gradient descent to optimize parameterized policies
with respect to the expected return. As the policy π consists of two
parts (π1,π2) corresponding to the two decision-making steps (i.e.,
filter and parameter selection), they are learned in an interleaved
manner.
For filter selection, we sample π1, which is a discrete probabil-

ity distribution function π1(Fk) = P[a1 = Fk] over all choices of
filters F = {F1, F2, . . . , Fn }. Unlike other common differentiable
operations including convolution or activation, the partial deriv-
ative ∂J (π)/∂π (Fk) cannot be directly calculated, which presents
a challenge for backpropagation. We address this by applying the
policy gradient theorem [Sutton et al. 2000] to obtain an unbiased
Monte Carlo estimate of the gradient of J (π) with respect to π1.
For filter parameter selection, policy π2 is deterministic, so that it
is easier to optimize in a continuous space, and we formulate its
gradient using the deterministic policy gradient theorem [Silver
et al. 2014]. The policy gradients are thus expressed as

∇θ1 J (πθ) = E
s∼ρπ

a1∼π1(s)
a2=π2(s,a1)

[∇θ1 logπ1(a1 |s)Q(s, (a1,a2))], (5)

∇θ2 J (πθ) = E
s∼ρπ

a2=π2(s,a1)

[∇a2Q (s, (a1,a2)) ∇θ2π2(s,a1)], (6)

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

Exposure: A White-Box Photo Post-Processing Framework • X:7

Input

Exposure
+0.5

Gamma 2
Color Curve
(Boost Red)

Black & White
+0.5

White Blanace
(Blue)

Saturaion
+0.5

Tone Curve Contrast +0.8

Output

Gradient

Fig. 5. Visualizations of the eight differentiable filters. Gradients are displayed with a +0.5 offset so that negative values can be properly viewed. For the
white balance filter, we visualize the gradient with respect to the red channel parameter; for the tone/color curves, we differentiate with respect to the first
parameter of the curve/red curve.

𝑥

𝑓(𝑥)

1&
'

(
'

(
)

1(𝑇')

𝑂

𝑇(

𝑇)
𝑇&

𝑡-

𝑡(
𝑡)

𝑡&

Fig. 6. Representation of a curve using regressed parameters.

where ρπ is the discounted state distribution defined as

ρπ (s) =
∞∑
k=0
P(sk = s)γk ,

and Q is the value function defined in Eqn. 4.
To calculate these gradients, we apply the actor-critic algorithm [Sut-

ton et al. 2000], where the actor is represented by the policy networks
and the critic is the value network, which learns the state-value
function V ν : S → R of Eqn. 3 for estimating expected returns.
With the critic, the action-value function Qπ can be computed by
unfolding its definition (Eqn. 4) and expressing it in terms of the
state-value function:

Qπ (s,a) = E
s0=s
a0=a
t∼π

[r (s0,a0) + γV π (p(s0,a0))].

Plugging this into Eqn. 6 gives us the supervision signal for learning
π2.

We optimize the value network by minimizing

Lv = E
s∼ρπ ,a∼π (s)

[
1
2
δ2

]
,

whereδ is the temporal difference (TD) error:δ = r (s,a)+γV (p(s,a))−
V (s). Note that δ represents the Monte Carlo estimate of the ad-
vantage A(s,a) = Q(s,a) −V (s), i.e., how much the value of action
a exceeds the expected value of actions at state s . For calculating
the gradient of π1 in Eqn. 5, the Q-value Q(s,a) can be substituted
by the advantage A(s,a), which effectively reduces sample variance
and can conveniently be computed as the TD error δ . Note that the
gradient of π2 requires no Monte Carlo estimation, thus we directly
calculate it by applying the chain rule on the gradient of Q , instead
of using the advantage A.

Reward and discount factor. The ultimate goal is to obtain the
best final result after all operations. For this, we set the reward as
the incremental improvement in the quality score (modeled by a
discriminator network in the following subsection) plus penalty
terms (described in Sec. 5.4). We set the discount factor as γ = 1 and
allow the agent to make five edits to the input image. This number
of edits was chosen to balance expressiveness and succinctness of
the operation sequence.

5.3 Quality evaluation via adversarial learning
To generate results as close to the target dataset as possible, we
employ a GAN, which is composed of two parts, namely a gener-
ator (i.e., the actor of the previous subsection in our case) and a
discriminator. The two parts are optimized in an adversarial manner:
the discriminator is trained to tell if the image is from the target
dataset or was generated by the generator; the actor aims to “fool”
the discriminator by generating results as close to the target dataset

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

X:8 • Hu, Y. et al

64×64×3
and

64×64×
#extra planes

input
low-res image

64×64×(3 +
#extra planes)

32×32×32
8×8×128 4×4×25616×16×64

Conv layers:
4×4 stride	2 convolution

128

Fully
Connected

Deterministic policy:
𝑛6 = #filter parameters
tanh activation

Discriminator:
𝑛6 = 1
no activation

Value:
𝑛6 = 1
no activation

Stochastic policy:
𝑛6 = #filters
softmax activation

Network Architecture
(for policy/value/critic networks)

𝑛6

LeakyReLU activation after each layer (leak=0.2)

Fig. 7. The general network structure shared by all networks in our system.

ALGORITHM 1: Training procedure
Input: Input datasets DRAW and Dretouched; batch size b = 64, learning

rates αθ = αω = 5 × 10−5, αν = 5 × 10−4, ncritic = 5
Output: Actor model θ = (θ1, θ2), critic model v , and discriminator model

w
Initialize replay memory with 2, 048 RAW images;
while θ has not converged do

for i in 1..ncritic do
Sample a batch of b finished images from replay memory;
Sample a batch of b target images from Dtarget;
w ← w − αw ∇wLw ;

end
Draw a batch B of b images from replay memory;
Delete images in the batch that are already finished;
Refill deleted images in the batch using those from DRAW;
Apply one step of operation to the images: B′ = Actor(B);
θ1 ← θ1 + αθ ∇θ1 J (πθ);
θ2 ← θ2 + αθ ∇θ2 J (πθ);
v ← v − αv ∇vLv ;
Put new images B′ back into replay memory;

end

as possible, so that the discriminator cannot distinguish the differ-
ence. The two networks are trained simultaneously, and an ideal
equilibrium is achieved when the generated images are close to the
targets.
In this work, we use a popular variant of the traditional GAN

called the Wasserstein GAN (WGAN) [Arjovsky et al. 2017], which
uses the Earth Mover’s Distance (EMD) to measure the difference
between two probability distributions. It has been shown to stabi-
lize GAN training and avoid vanishing gradients. The loss for the

discriminator1 D is defined as

Lw = E
s ∈ρπ

[D(s)] − E
s ∈target dataset

[D(s)] . (7)

The discriminator D is modeled as a CNN with parameters denoted
as w . The “negative loss” (quality score) for the generator, whose
increment serves as a component of the reward in our system, is

− Lactor = E [D(s)] . (8)

Intuitively, the discriminator aims to give large values for images in
the target collection, and small ones to retouched images produced
by the generator. On the other hand, the actor (generator) aims to
submit an output at a state where the discriminator gives a larger
value, meaning that the final image appears more similar to those
in the target dataset. Following [Gulrajani et al. 2017], we use a
gradient penalty instead of weight clipping in the discriminator.

5.4 Training stabilization
Both RL algorithms and GANs are known to be hard to train. To
address this issue, we utilized the following strategies to stabilize
the training process.

Exploitation vs. exploration. Awell-known tradeoff exists between
exploitation and exploration, namely whether to devote more atten-
tion on improving the current policy or to try a new action in search
of potentially greater future reward. This is especially challenging
for our two-stage decision making problem, as focusing on one
filter may lead to under-exploitation of filter parameter learning for
other filters. To avoid such local minima, we penalize π1 if its action

1The discriminator is referred to as the “critic” in [Arjovsky et al. 2017]. We use the
term “discriminator” here to distinguish it from the critic in our actor-critic framework.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

Exposure: A White-Box Photo Post-Processing Framework • X:9

proposal distribution is too concentrated, i.e., has low entropy. This
is done by reducing its reward:

R′ = R − 0.05 ©­«log |F | +
∑
F ∈F

π1(F) logπ1(F)
ª®¬ .

In addition, we found that the agent may use a filter repeatedly
during a retouching process, such as by applying two consecutive
exposure adjustments rather than combining them into a single step.
For a more concise retouching solution, we “teach” the agent to
avoid actions like this by penalizing filter reuse: if the agent uses
a filter twice, the second usage will incur an additional penalty
of −1. To implement this, the agent needs to know what filters
have been applied earlier in the process, so we append this usage
information as additional channels in the image (denoted as state
planes in Fig. 7). Encouraging the agent to exploit each filter to its
maximum potential also leads to greater exploration of different
filters.

Experience Replay. Trajectories at consecutive time steps in the
training process are highly correlated. Since such temporally un-
varied training data can drive the network to a local minimum, we
improve training stability through the use of experience replay [Lin
1993], where previously processed states are randomly sampled
from the replay memory of 2, 048 images and used in training. This
strategy helps to reduce sample correlation and stabilizes training. In
our adversarial learning setting, this approach also helps to reduce
model oscillation as observed in [Shrivastava et al. 2016].

6 RESULTS
In this section, we present implementation details, a validation, and
applications of our system.

Implementation details. TensorFlow [Abadi et al. 2015], a deep
learning framework which provides automatic differentiation, is
used to implement our system. Following the design of filters pre-
sented in Section 4, the retouching steps are represented as basic
differentiable arithmetic operations. For estimation of retouching
actions and parameters, we downsample the high-resolution in-
put image to 64 × 64px . The estimated actions and parameters are
subsequently applied to the full-resolution image at run time.
All of the networks are optimized using Adam [Kingma and Ba

2015], with a base learning rate of 5 × 10−5 for both of the policy
networks and the discriminator, and 5 × 10−4 is used for the value
network. During training, the base learning rate is exponentially
decayed to 10−3 of the original value. Training takes less than 3
hours for all experiments.

Efficiency and model size. Thanks to the resolution-independent
filter design, the computation of our method is fast: an unoptimized
version takes 30ms for inference on an NVIDIA TITAN X (Maxwell)
GPU. The model size is small (< 30MB) and therefore can be conve-
niently shipped with a mobile application or digital camera. This
opens up the possibility of providing users with automatically re-
touched images in the camera viewfinder in real time.

Datasets. We utilize two sources of training data:

• The MIT-Adobe FiveK Dataset. Bychkovsky et al. [2011]
compiled a photo dataset consisting of 5, 000 RAW images
and retouched versions of each by five experts. In this work,
we randomly separate the dataset into three parts: (part 1)
2, 000 input RAW images, (part 2) 2, 000 retouched images
by retoucher C, and (part 3) 1, 000 input RAW images for
testing. The three parts have no intersection with each
other.

• The 500px Dataset. We crawled professionally retouched
photos from two artists on 500px.com. The two sets of data
have relatively consistent styles, and are comprised of 369
and 397 photos each.

Error Metrics. The novel learning framework enables our system
to take advantage of unpaired training data, which requires error
metrics different from previous work.
It is shown in [Hwang et al. 2012] and that the l2 loss may not

accurately reflect visual quality. This problem is especially apparent
when a dataset exhibits multi-modal appearance or style, such as
black-and-white apples retouched into red (e.g., RGB = (1, 0, 0)) or
green (RGB = (0, 1, 0)) with a 50% probability for each. As pointed
out in [Isola et al. 2016; Pathak et al. 2016; Zhang et al. 2016], use
of simple loss functions like l1 or l2 can lead to “blurry” results for
image generation. For the apples example, a CNN with an l2 loss
will end up generating yellow (RGB = (0.5, 0.5, 0)) apples, which
minimizes the loss but may produce styles that do not even exist in
the dataset. Multi-modality naturally exists in retouching, since the
same artist may retouch an image in different ways. The inconsistent
nature of retouching is exhibited in the MIT-Adobe FiveK dataset
and was also observed in [Yan et al. 2016].

Therefore, even if input-output pairs do exist for some tasks, the
l2 loss may not be a suitable learning metric. However, how to auto-
matically evaluate the perceptual quality of style learning remains
an open problem. Though such metrics are difficult to design and
are sometimes unreliable, for development and debugging purposes,
it would still be good to have an automatic way to roughly measure
howwell the model fits the target data. Toward this end, we evaluate
the similarity of generated images to target images based on their
distributions of image properties. In [Isola et al. 2016], the distances
of L, a, b distributions are measured using the intersections of their
histograms in the output and target datasets. In our work, we use
luminance, contrast, saturation as three descriptive features of
image styles, and measure the distance of their distributions in the
output and target images using histogram intersections. A detailed
explanation of this metric is given in the supplemental document.
In addition to histogram intersections, we employ user studies

via Amazon Mechanical Turk (AMT) for perceptual evaluation of
this work. For each group of outputs from a given method, we
randomly choose 100 images and ask users to rate the image. The
user is presented with one output image (with target style image
thumbnails, if necessary) at a time and is prompted to give a score
from 1 (worst) to 5 (best) to each image, based on image quality
and style. 5 ratings are collected for each image, resulting in 500
ratings for each group of outputs. Please refer to the supplemental
document for more details about our AMT experiments.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

500px.com

X:10 • Hu, Y. et al

6.1 End-to-end Post-Processing and Style Learning
Most previous methods for automatic photo post-processing are
based on supervised learningwhich requires paired data [Bychkovsky
et al. 2011; Dale et al. 2009; Gharbi et al. 2017; Hwang et al. 2012;
Yan et al. 2016]. It is only recently that a series of works [Kim et al.
2017; Liu and Tuzel 2016; Zhu et al. 2017] based on GANs have
made possible the utilization of unpaired data. We compare our
results with those of CycleGAN, another deep learning approach for
image generation using only unpaired data. Note that in contrast to
CycleGAN, our method has no limitation on resolution, since the
filters are resolution-independent and filter operations estimated
from low-res images can be identically applied to high-res inputs.

We conducted three sets of experiments using RAW images from
part 1 of the MIT-Adobe FiveK dataset as input. For the target
datasets we use images from expert C in the MIT-Adobe FiveK and
the two artists from 500px.com, respectively. Though Pix2pix [Isola
et al. 2016] needs paired data towork, we still include its performance
on a test using paired data from part 1 of the MIT-Adobe FiveK
dataset.
For the first experiment with images from expert C as target

images, visual results are shown in Figure 8 and Figure 9, and quan-
titative results are listed in Table 2. It can be seen that Pix2pix and
CycleGAN generate vivid color but lead to edge distortions and
degraded image quality, making them unsuitable for high-quality
post-processing tasks. Using the publicly available implementation
of CycleGAN from the authors [Zhu et al. 2017], training takes 30
hours for generating images of resolution 500 × 333px2.

For the style learning experiments with the 500px artists, quanti-
tative results are shown in Table 3 and Table 4, and visual results
are displayed in Figure 10. No comparison results can be generated
for Pix2pix, since no paired training data is generally available for
images downloaded from the web.

Discussion. It can be seen that our method outperforms strong
baselines in the user study, with higher user ratings than Pix2pix
(which relies on much stronger supervision from paired training
data), likely due to the fact that our images have no blurry artifacts.
CycleGAN, the unpaired version of Pix2pix, does not perform as
well, likely due to much weaker supervision from only unpaired
data. It is worth noting that during the user study, the image res-
olution we used was around 500 × 333px, so that the resolution

2We used fineSize=128 in the authors’ implementation (https://github.com/junyanz/
CycleGAN).

Table 2. Quantitative results on general post-processing (using expert C in
MIT-Adobe FiveK as training target dataset).

Approach Histogram Intersection User Rating
Luminance Contrast Saturation

Ours 71.3% 83.7% 69.7% 3.43 ± 0.04
CycleGAN 61.4% 71.1% 82.6% 2.47 ± 0.04
Pix2pix 92.4% 83.3% 86.5% 3.37 ± 0.04
Human - - - 3.30 ± 0.04
Expert C 100% 100% 100% 3.66 ± 0.03

Table 3. Quantitative results on style learning (using artist A in 500px as
training target dataset).

Approach Histogram Intersection User Rating
Luminance Contrast Saturation

Ours 82.4% 80.0% 71.5% 3.39 ± 0.04
CycleGAN 63.6% 45.2% 71.8% 2.69 ± 0.04
500px artist A 100% 100% 100% 3.72 ± 0.04

Table 4. Quantitative results on style learning (using artist B in 500px as
training target dataset).

Approach Histogram Intersection User Rating
Luminance Contrast Saturation

Ours 85.2% 91.7% 83.5% 3.22 ± 0.04
CycleGAN 60.1% 79.4% 83.4% 2.86 ± 0.04
500px artist B 100% 100% 100% 3.40 ± 0.04

problem of CycleGAN and Pix2pix may not be very pronounced.
However, at higher output resolutions, it becomes clear that our
method generates images of much higher quality, as shown in Fig-
ure 9. The deconvolution structure of CycleGAN and Pix2pix enable
them to generate structural transformations of images, e.g. painting
stripes on horses to generate zebras. However, on our task, such a
capability can bring distortion artifacts. The Contrast histogram
intersection score for CycleGAN on the artist A experiment (Table 3)
is lower than the other metrics. We hypothesize the reason to be
that its small receptive field (1/3 of the whole image width) does
not adequately capture low-frequency image variations, which is a
feature of this artist. A larger receptive field or downsampled image
could be used for CycleGAN, but this would require more training
data and would produce even lower-resolution outputs.
In conclusion, the results of our system on the retouching prob-

lem are very promising. We note though that Pix2pix and Cycle-
GAN can produce extraordinary results on image translation with
structural transformations, while our system is tailored for photo
post-processing and is not capable of such structural transforma-
tions.

6.2 Reverse Engineering Black-box Filters
Our work is not the first attempt to mimic the effects of black-box
filters. Previous methods [Gharbi et al. 2017; Yan et al. 2016] have
shown excellent results in doing so for Instagram/Photoshop filters.
However, these learned filters do not reveal how the original filter
works, i.e. we are only getting another black-box out of an existing
one.

Our method not only generates visually pleasing results, but also
reveals how this process is done step by step, as shown in Figure 1
and 3 (on expert C from the MIT-Adobe FiveK dataset), Figure 11
(on artist A from 500px), Figure 12 (on artist B from 500px) and
Figure 13 (on the black-box filter “Nashville" from Instagram). This
is the first time such understandable result can be obtained to the
best of our knowledge.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN

Exposure: A White-Box Photo Post-Processing Framework • X:11

Human (expert) CycleGAN Pix2pix Human (novice) Our method

Fig. 8. Results of human expert, CycleGAN, Pix2pix, normal human, and our method on expert C from the MIT-Adobe FiveK Dataset.

Interestingly, with the help of our system, we can even write
explicit code for a black-box filter based on the estimated operation
sequence, as illustrated in Figure 13 and 14.We believe this capability
can greatly help advanced users to gain insight into the artistic styles
of particular photographers.

The variation of learned operation sequences from certain target
dataset reveals how consistent the images styles are. We find that for
the “Nashville” filter, the operation sequences are basically the same,

while for human artists the sequences vary more. This observation
matches the previous discussions regarding the error metric and
the multi-modal nature of human retouching.

6.3 Comparison with human users
Unlike image classification, retouching is a challenging task for
most ordinary people. While they can judge how good-looking
an image is, it is often challenging for them to generate a nicely

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

X:12 • Hu, Y. et al

Input

CycleGAN Pix2pix Ours

Zoom-in views

Fig. 9. Comparison to CycleGAN and Pix2pix results. While they can pro-
duce good tone and color compared to the input, our method additionally
has no distortion and no limit on image resolution.

retouched photo. Though experts prefermanually retouching photos
for maximum control, one of the main goals of our system is to help
ordinary users to obtain better photos automatically. Therefore, we
examine how normal users perform at this task, and how our system
compares to them.
We developed a graphical user interface (Figure 15) to measure

human performance on this task. We provide exactly the same set
of operations to the user as to the network, except for curve-based
edits we provide 3 control points instead of 8 to make the interface
more user-friendly. To introduce our software to the user, we show
them a short tutorial video before they start. 100 images from 10
users are collected, and their performance is given in Table 2. It can
be seen from the user study that our method can generate results
that are preferable to those produced by these users.

7 CONCLUDING REMARKS
Inspired by the retouching process of expert photographers, we pro-
posed a general framework for automatic photo post-processing that
utilizes reinforcement learning to reveal an understandable solution
composed of common image manipulations, generative adversarial
networks that allow training from unpaired image data, and differen-
tiable, resolution-independent filters to make network optimization
possible over a variety of editing operators and for arbitrary image
sizes. The effectiveness of this method was demonstrated through
quantitative and qualitative comparisons. This framework is general
enough to incorporate a broader set of operations, which we hope
can make it even more versatile.

Certain low-level image filters, such as for pixel-level denoising,
may be challenging to model as resolution-independent, differen-
tiable filters, and thus may not fit into our framework. Without de-
noising, the image noise in shadows may become more pronounced
after operations that boost brightness, as seen in Figure 12. Denois-
ing ideally should be applied to the input image prior to using our
framework. Other failure cases are presented in Figure 16.
For learning to retouch photos, we have only 2 × 103 training

images compared with the 1.4 × 107 images in ImageNet for image
classification. It would be meaningful in future work to 1) build
larger datasets of RAW photos, and 2) transfer or reuse the knowl-
edge distilled from ImageNet to the retouching problem.

In addition, it is possible to replace the actor-critic RL architecture
and the Wasserstein GAN structure with other related alternatives.
We find that much human labor and expertise is required to properly
set the hyper-parameters to stabilize the training process.We believe
that using more stable RL and GAN components will make this
process easier and lead to even better results.

Figure. 17 and 18 exhibit some final examples of retouched photos
by our system.We hope that not onlymachines but also all interested
people can understand the secrets of digital photography better, with
the help of our “Exposure” system.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

Exposure: A White-Box Photo Post-Processing Framework • X:13

50
0p
x
ar
tis
tA

50
0p
x
ar
tis
tB

O
ur
s

Cy
cl
eG

A
N

O
ur
s

Cy
cl
eG

A
N

Fig. 10. Learning the styles of two artists from 500px.com, using our system and CycleGAN.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

X:14 • Hu, Y. et al

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Gamma 1/1.62

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Exposure +1.58

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Contrast +0.57

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Tone

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Color

Fig. 11. Example of a learned retouching operation sequence from artist A
(500px).

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Gamma 1/2.02

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Exposure +1.30

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Tone

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Color

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Saturation +1.00

Fig. 12. Example of a learned retouching operation sequence from artist
B (500px). Note that different from artist A, photos from artist B are more
saturated, which is reflected in this learned operation sequence.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

Exposure: A White-Box Photo Post-Processing Framework • X:15

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Gamma 1/3.00

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Exposure +0.41

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Color

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Expo. Tone
Gam. Cst.
W.B. BW
Satu. Color

Tone

Fig. 13. Example of a learned operation sequence on the “Nashville” filter
from Instagram.

Code based on the learned trajectory

Images generated by the code

Images generated by the black-box filter

Fig. 14. With the operation sequence estimated by our system, we can write
code that mimics certain black-box filters.

Fig. 15. The graphical user interface for collecting retouching data from
ordinary users. An intensity histogram of the current image and curves of
color/tone curve operations are displayed.

Fig. 16. Example failure cases. Our method sometimes does not produce
good tones for faces, as no special consideration is taken in our general
framework of this particularly important aspect of photos. Also, our system
may have limited ability to improve input photos that contain poor content,
composition or lighting conditions.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

X:16 • Hu, Y. et al

Fig. 17. More photos retouched by our system, trained on expert C from
MIT-Adobe FiveK dataset.

Fig. 18. More photos retouched by our system, trained on artist A (left
column) and artist B (right column) from 500px.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

Exposure: A White-Box Photo Post-Processing Framework • X:17

SUPPLEMENTAL DOCUMENT
Filter Design Details
Contrast, Saturation, and Black & White Filters. These filters are

designed similarly, with an input parameter that sets the linear
interpolation between the original image and the fully enhanced
image, i.e.,

pO = (1 − p) · pI + p · Enhanced(pI).
For Contrast:

EnhancedLum(pI) =
1
2
(1 − cos(π × (Lum(pI)))),

Enhanced(pI) = pI ×
EnhancedLum(pI)

Lum(pI)
,

where the luminance function Lum(p) = 0.27pr + 0.67pд + 0.06pb .
For Saturation:

EnhancedS(s,v) = s + (1 − s) × (0.5 − |0.5 −v |) × 0.8,
Enhanced(pI) = HSVtoRGB(H (pI),EnhancedS(S(pI),V (pI)).V (pI)),
where H , S , and V are HSV channels of a pixel.

For Black and White:

Enhanced(pI) = RGB(Lum(pI), Lum(pI), Lum(pI)).

Tone and Color Curves. We use a differentiable piecewise-linear
mapping function to represent curves, as detailed in the main paper.
For tone curves, the same curve is applied to the image, and the slope
of each segment in the curve is in [0.5, 2.0]. For color, a separate
curve is applied to each of the three color channels, with slopes in
[0.9, 1.1]. The bounds on the curve slopes reflect the fact that human
artists do not usually apply sharp color curves, but sometimes may
use a strong tone curve.

Experimental Details
MIT-Adobe FiveKDataset Partitions. TheMIT-Adobe FiveK dataset

is randomly separated into three parts, which are listed in the data
files FiveK_train1.txt, FiveK_train2.txt and FiveK_test.txt. For
the test set, we select 100 random images employed in the user study
on AMT, as listed in file FiveK_test_AMT.txt.

Histogram Intersection Details. The quantities for histogram in-
tersection are defined as follows:

• Luminance is defined as the mean pixel luminance (defined
previously as Lum.)

• Contrast is defined to be twice the variance of pixel lumi-
nance.

• Saturation is defined as the mean pixel saturation (the “S”
value in the HSL color space).

The results are separated into 32 equal bins within the interval
[0, 1], i.e. [0, 1/32), [1/32, 2/32), . . .
However, with only 1, 000 sample images, only about 31.25 im-

ages will be placed in each bin on average, resulting in significant
measurement noise. Therefore, we augment the data for histogram
intersection by cropping 16 patches in each image, and measure the
histogram quantities on these 16, 000 image patches. Please refer
to the accompanying code (histogram_intersection.py) for the
detailed algorithm on measuring this error metric.

Fig. 19. Our AMT UIs for user studies.

Amazon Mechanic Turk. The AMT interfaces for evaluation are
shown in Figure 19.

Human performance measurement. We present the users a short
video (with subtitles) demonstrating how our software should be
used. The user studies take about 3 minutes per image (roughly 30
minutes for each user to retouch 10 images). We do not enforce any
time limit on the task. All 10 users are highly educated and their
ages range from 20 to 30.

Scalability in Resolution. The ability to process high-resolution
images is critical in professional photography. In Figure 20, 21 and 22,
we show high-resolution results from our method, Pix2pix, and
CycleGAN. It is clear that our method produces images with the
highest quality on high-resolution images.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

X:18 • Hu, Y. et al

Fig. 20. Our method can cleanly handle images of any resolution.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

Exposure: A White-Box Photo Post-Processing Framework • X:19

Fig. 21. Pix2pix result.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

X:20 • Hu, Y. et al

Fig. 22. CycleGAN result.

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

Exposure: A White-Box Photo Post-Processing Framework • X:21

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,MartinWattenberg,Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. (2015). http://tensorflow.org/ Software
available from tensorflow.org.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein gan. arXiv
preprint arXiv:1701.07875 (2017).

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. 2011. Learning
photographic global tonal adjustment with a database of input/output image pairs.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE,
97–104.

Kevin Dale, Micah K. Johnson, Kalyan Sunkavalli, Wojciech Matusik, and Hanspeter
Pfister. 2009. Image restoration using online photo collections. In International
Conference on Computer Vision.

Alexei Efros and Thomas Leung. 2014. Texture synthesis by non-parametric sampling.
In International Conference on Computer Vision.

Chen Fang, Zhe Lin, Radomir Mech, and Xiaohui Shen. 2014. Automatic image cropping
using visual composition boundary simplicity and content preservation models. In
ACM Multimedia. 1005–1008.

Hui Fang and Meng Zhang. 2017. Creatism: A deep-learning photographer capable of
creating professional work. arXiv preprint arXiv:1707.03491 (2017).

William T. Freeman, Thouis R. Jones, and Egon C. Pasztor. 2002. Example-based
super-resolution. 22, 2 (2002), 56–65.

Michael Gharbi, Jiawen Chen, Jonathan T. Barron, Samuel W. Hasinoff, and Fredo
Durand. 2017. Deep bilateral learning for real-time image enhancement. 36, 6
(2017).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In
Advances in neural information processing systems. 2672–2680.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron
Courville. 2017. Improved Training of Wasserstein GANs. arXiv preprint
arXiv:1704.00028 (2017).

Kan Guo, Dongqing Zou, and Xiaowu Chen. 2016. 3D Mesh Labeling via Deep Convo-
lutional Neural Networks. 35, 1 (2016).

Samuel W. Hasinoff, Dillon Sharlet, Ryan Geiss, Andrew Adams, Jonathan T. Barron,
Florian Kainz, Jiawen Chen, and Marc Levoy. 2016. Burst photography for high
dynamic range and low-light imaging on mobile cameras. 35, 6 (2016).

Sungju Hwang, Ashish Kapoor, and Sing Bing Kang. 2012. Context-based automatic
local image enhancement. In European Conference on Computer Vision.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2016. Image-to-image
translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004
(2016).

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim. 2017. Learn-
ing to discover cross-domain relations with generative adversarial networks. arXiv
preprint arXiv:1703.05192 (2017).

Diederik Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
International Conference on Learning Representations.

Diederik Kingma and Max Welling. 2014. Auto-encoding variational bayes. In Interna-
tional Conference on Learning Representations.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, ZehanWang, and
Wenzhe Shi. 2016. Photo-Realistic Single Image Super-Resolution Using a Generative
Adversarial Network. In Advances in neural information processing systems.

Joon-Young Lee, Kalyan Sunkavalli, Zhe Lin, Xiaohui Shen, and In So Kweon. 2016.
Automatic content-aware color and tone stylization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2470–2478.

Chuan Li and Michael Wand. 2016. Precomputed real-time texture synthesis with
markovian generative adversarial networks. In European Conference on Computer
Vision.

Long-Ji Lin. 1993. Reinforcement learning for robots using neural networks. Ph.D.
Dissertation. Fujitsu Laboratories Ltd.

Ming-Yu Liu and Oncel Tuzel. 2016. Coupled generative adversarial networks. In
Advances in neural information processing systems. 469–477.

Ziwei Liu, Lu Yuan, Xiaoou Tang, Matt Uyttendaele, and Jian Sun. 2014. Fast burst
images denoising. 33, 6 (2014).

Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784 (2014).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602 (2013).

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros.
2016. Context Encoders: Feature Learning by Inpainting. In Computer Vision and
Pattern Recognition.

Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. 2015. Dynamic terrain traversal
skills using reinforcement learning. ACM Transactions on Graphics (TOG) 34, 4
(2015), 80.

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-Adaptive Loco-
motion Skills Using Deep Reinforcement Learning. 35, 4 (2016).

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. 2017. Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 41.

Xue Bin Peng and Michiel van de Panne. 2017. Learning locomotion skills using
DeepRL: does the choice of action space matter?. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. ACM, 12.

Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised representation
learning with deep convolutional generative adversarial networks. In International
Conference on Learning Representations.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic Back-
propagation and Approximate Inference in Deep Generative Models. In International
Conference on Machine Learning.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang, and Russ
Webb. 2016. Learning from Simulated and Unsupervised Images through Adversarial
Training. arXiv preprint arXiv:1612.07828 (2016).

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural networks and
tree search. Nature 529, 7587 (2016), 484–489.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. 2014. Deterministic policy gradient algorithms. In Proceedings of the 31st
International Conference on Machine Learning (ICML-14). 387–395.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems. 1057–1063.

Baoyuan Wang, Yizhou Yu, and Ying-Qing Xu. 2011. Example-based image color and
tone style enhancement. In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 64.

Xiaolong Wang and Abhinav Gupta. 2016. Generative image modeling using style and
structure adversarial networks. In European Conference on Computer Vision.

Jianzhou Yan, Stephen Lin, Sing Bing Kang, and Xiaoou Tang. 2014. A learning-to-rank
approach for image color enhancement. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2987–2994.

Jianzhou Yan, Stephen Lin, Sing Bing Kang, and Xiaoou Tang. 2015. Change-based
image cropping with exclusion and compositional features. International Journal of
Computer Vision 114, 1 (2015), 74–87.

Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, and Yizhou Yu. 2016. Auto-
matic photo adjustment using deep neural networks. ACM Transactions on Graphics
(TOG) 35, 2 (2016), 11.

Lantao Yu,Weinan Zhang, JunWang, and Yong Yu. 2017. SeqGAN: Sequence Generative
Adversarial Nets with Policy Gradient.. In AAAI. 2852–2858.

Richard Zhang, Phillip Isola, and Alexei A Efros. 2016. Colorful image colorization. In
European Conference on Computer Vision. Springer, 649–666.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired Image-
to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv preprint
arXiv:1703.10593 (2017).

ACM Transactions on Graphics, Vol. X, No. X, Article X. Publication date: January XXXX.

http://tensorflow.org/

	Abstract
	1 Introduction
	2 Related Work
	3 The Model
	3.1 Motivation
	3.2 Post-processing as a decision-making sequence

	4 Filter Design
	4.1 Design Principles
	4.2 Filter Details

	5 Learning
	5.1 Function approximation using DNNs
	5.2 Policy network training
	5.3 Quality evaluation via adversarial learning
	5.4 Training stabilization

	6 Results
	6.1 End-to-end Post-Processing and Style Learning
	6.2 Reverse Engineering Black-box Filters
	6.3 Comparison with human users

	7 Concluding Remarks
	References

