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ABSTRACT
Classic query optimization techniques, including predicate push-
down, are of limited use for machine learning inference queries, be-
cause the user-defined functions (UDFs) which extract relational
columns from unstructured inputs are often very expensive; query
predicates will remain stuck behind these UDFs if they happen to
require relational columns that are generated by the UDFs. In this
work, we demonstrate constructing and applying probabilistic predic-
ates to filter data blobs that do not satisfy the query predicate; such
filtering is parametrized to different target accuracies. Furthermore,
to support complex predicates and to avoid per-query training, we
augment a cost-based query optimizer to choose plans with appro-
priate combinations of simpler probabilistic predicates. Experiments
with several machine learning workloads on a big-data cluster show
that query processing improves by as much as 10×.
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1 INTRODUCTION
Relational data platforms are increasingly being used to analyze data
blobs such as unstructured text, images or videos [5, 11, 36, 48]. Quer-
ies in these systems begin by applying user-defined functions (UDFs)
to extract relational columns from blobs. Consider the following
example which finds red SUVs from city-wide surveillance cameras:

SELECT cameraID, frameID,

𝒞1(ℱ1(vehBox)) AS vehType, 𝒞2(ℱ2(vehBox)) AS vehColor

FROM (PROCESS inputVideo

PRODUCE cameraID, frameID, vehBox

USING VehDetec tor)
WHERE vehType = SUV ∧ vehColor = red;

Here,VehDetector extracts vehicle bounding boxes from each video
frame. ℱ1 and ℱ2 extract relevant features from each bounding box,
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and finally 𝒞1 , 𝒞2 are classifiers that identify the vehicle type and color
using the extracted features.

How can we execute such machine learning inference queries
efficiently? Clearly, traditional query optimization techniques such as
predicate pushdown are not useful here, because they will not push
predicates below the UDFs that generate the predicate columns. In
the above example, vehType and vehColor are available only after
VehDetector, 𝒞 andℱ have been executed. Even when the predicate
has low selectivity (perhaps 1-in-100 images have red SUVs), every
video frame has to be processed by all the UDFs. Figure 1 shows a
typical query plan for this query.

Input→ VehDetec tor → ℱ1 ,ℱ2 → 𝒞1 , 𝒞2 → σSUV ∧ σred → Result

Figure 1: The query plan to retrieve red SUVs from traffic surveillance
videos. Materializing the vehType and the vehColor columns (underlined)
takes 99.8% of the query cost.

Input→ PPSUV , PPred → VehDetec tor → ℱ1 ,ℱ2 → 𝒞1 , 𝒞2 → σSUV ∧ σred

→ Result

Figure 2: We construct and apply probabilistic predicates (PPs) to filter data
blobs that do not satisfy the predicates.

It is tempting to simplify the problem by separating the machine-
learning components from the relational portion. For example, some
component exogenous to the data platform may pre-process the
blobs and materialize all the necessary columns; a traditional query
optimizer is then applied on the remaining query. This approach
may be feasible in certain cases but is, in general, infeasible. In many
workloads, the queries are complex and use many different types of
feature extractors and classifiers; pre-computing all possible options
would be expensive. Moreover, pre-computing will be wasteful for ad-
hoc queries since many of the columns with extracted features may
never be used. In surveillance scenarios, for example, ad-hoc queries
typically obtain retroactive video evidence for traffic incidents. While
some videos and columns may be accessed by many queries, some
may not be accessed at all. Finally, for online queries (e.g., queries on
live newscasts or broadcast games), it could be faster to execute the
queries and ML components directly on the live data.

In this work, our goal is to accelerate machine learning inference
queries with expensive UDFs. Specifically, we propose the notion
of probabilistic predicates (PPs). PPs are binary classifiers on the
unstructured input which shortcut subsequent UDFs for those data
blobs that will not pass the query predicate; the query cost is therefore
reduced. As shown in Figure 2, if the query predicate has a small
selectivity and the PP is able to discard half of the frames that do not
have red SUVs, the query may speed up by 2×.

Furthermore, whereas conventional predicate pushdown produces
deterministic filtering results, filtering with PPs is parametric over a
precision-recall curve; different filtering rates (and hence speed-ups)
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are achievable based on the desired accuracy. Notice that we have
departed from the strict boolean semantics of a predicate. However,
machine learning queries are inherently tolerant to error because
even the unmodified queries have machine learning UDFs with some
false positives and false negatives. We show that injecting PPs does
not change the false positive rate but can increase the false negative
rate. We develop a mechanism to bound the query-wide accuracy
loss by choosing which PPs to use and how to combine them. Our
experiments show sizable speed-ups with negligibly small accuracy
loss on a variety of queries and datasets.

We find that different techniques to construct PPs are appropriate
for different inputs and predicates (e.g., based on input sparsity, the
number of dimensions and whether subsets of the input that pass
and fail the predicate are linearly separable). We use several PP con-
struction techniques (e.g., linear SVMs, kernel density estimators,
DNNs) and use model selection to pick an appropriate technique
that has high execution efficiency, high data reduction rate and low
false negatives.

We also propose new query optimization techniques to support
complex predicates and ad-hoc queries.We showhow to integrate PPs
into queries that have selects, projects and foreign-key joins. These
techniques reduce the number of PPs that have to be trained. Our
system only trains PPs for simple predicates and relies on the query
optimizer to choose, for a complex or ad-hoc predicate, appropriate
combinations of available PPs based not just on the selectivity of the
PPs but also on their accuracy.

We have prototyped probabilistic predicates in a large production
data-parallel query processing cluster at Microsoft [11]. We demon-
strate the usefulness of PPs on various commonly occurring machine
learning inference tasks over different large-scale datasets such as doc-
ument classification on LSHTC [40], image labeling on ImageNet [31],
COCO [35] and SUNAttributes [41] and video activity recognition
on UCF101 [46]. We also show how to run more complex queries on
the traffic video feeds from tens of cameras. Our experiments indic-
ate that running online/batch machine learning inference with PPs
achieves as much as 10× speedup with different predicates compared
with executing the queries as-is.

To summarize, our key contributions are:
● A simple but broadly applicable design which incorporates a
variety of PP construction techniques to accelerate online and
batch machine learning inference queries.

● A query optimizer extension that matches complex predicates
with available PPs and determines their parameters to meet
the desired accuracy.

● Implementation and experiments on several real-world ma-
chine learning queries and datasets.

2 MACHINE LEARNING INFERENCE
We consider the problem of querying non-relational input such as
videos, audios, images, unstructured text etc. This problem is crucial
to many applications and services.

Consider for example the analysis of surveillance video [14]; re-
cently, there have been city-wide deployments with over thousands of
cameras [2], body cameras worn by police [4] and security cameras
deployed at homes. Some example inference queries include:

Q1: Find cars with speed ≥ 80 mph on a highway.
Q2:What is the average car volume on each lane?

Q3: Find a black SUV with license plate ‘ABC123’.
Q4: Find cars seen in camera C1 and then in C2 .
Q5: Send text to phone if any external door is opened.
Q6: Alert police control room if shots are fired.

To answer such queries, multiple machine learning UDFs such
as feature extractors, classifiers etc. are applied on the input. The
subsequent rowsets are filtered, sometimes implicitly (e.g., video
frames without vehicles are dropped in Q2). Queries may also contain
grouping, aggregation (e.g., Q2) and joins (e.g., Q4).

It is easy to see that thematerialization cost, i.e., time and resources
used to execute the machine learning UDFs, would dominate in pro-
cessing these queries. It is also easy to see that materialization is
query-specific; while there is some commonality, in general, differ-
ent queries invoke different feature extractors, regressors, classifiers
etc. Considering all the possible queries that may be supported by a
system, the number of distinct UDFs on the input is vast. Hence, a
priori application of all UDFs on the input has a high cost. Further-
more, the query predicates may be rather complex, and the queries
can be both online and offline. Security alerts, such as Q5 and Q6,
are time-sensitive. Moreover, Q2may be executed online to update
driving directions [23] or to vary the toll price of express lanes in
realtime [10].

Beyond surveillance analytics, many applications share the above
three aspects: large materialization cost, diverse body of machine
learning UDFs, latency and/or cost sensitivity. We review a few such
applications in Table 1. The materialization cost in these systems
ranges from milliseconds to seconds per input data item, which can
be significant when millions of data blobs are generated in a short
period of time in, say, a video streaming system. Since queries use
many different UDFs, offline systems would need large amounts of
compute and storage resources to pre-materialize the outputs of all
possible UDFs. Online systems which often require rapid responses
can also become bottlenecked by the latency to pre-materialize UDFs.

Recently, many systems support triggers over live video streams
(newscasts, sportscasts etc.) [1]; the user specifies a trigger such as
“music concert” and the system finds matching video feeds by ana-
lyzing a large corpus of live video feeds (e.g., from youtube live or
periscope). These systems also satisfy the three aspects above: the
space of possible triggers that a user can specify is quite large, apply-
ing machine learning functions on live feeds dominates the query
cost, and query selectivity is small if only a small number of feeds
match the trigger and the query is latency-sensitive because users
expect a quick answer.

3 IDEAS AND CHALLENGES
To reduce the execution cost and latency of the machine learning
queries, suppose we can apply a filter directly on the raw input which
discards input data that will not pass the original query predicate.
Cost decreases because the UDFs following the filter only have to
process inputs that pass the filter; a higher data reduction rate r of
the filter leads to larger possible performance improvement. Let the
cost of applying the filter and the UDF be c and u respectively; then
the gains from early filtering will be 1

1−r+(c⇑u)×. Hence, the more
efficient the early filter is relative to the UDFs (small c⇑u), the larger
the gains will be.Moreover, the query performance can becomeworse
(instead of improving) if r ≤ c⇑u, i.e., the early filter has a smaller



System Features Classifiers/Regressors Materialization Cost (sec) Query predicate Selectivity

Online Ads recommendations [42] Bag-of-words Collaborative Regressor 10−2 — 10−1 1 binary 1-in-hundreds
Video recommendations [16] Browse history Bayesian Regressor 10−1 — 101 1 binary 1-in-thousands

Credit card fraud [47] Physical loc. etc. Neural Network 10−2 — 10−1 1 binary 1-in-thousands
Offline Video tagging [24] Keypoints SVM w/ RBF kernel 10−1 — 101 n categorical 1-in-thousands

Spam filtering [6] Bag-of-word Naive Bayes Classifier 10−2 — 10−1 1 binary 1-in-several
Image tagging [37, 55] Keypoints Collaborative Regressor 10−1 — 101 n categorical 1-in-thousands

Table 1:We examine queries from a few machine learning systems and list the features and classifiers that were used. Typical materialization costs are shown for
each data item. We also list characteristics of typical predicates (number and type of clauses, selectivity).

data reduction relative to its additional cost; hence, only filters that
have a large data reduction rate will speedup the query.

Another important consideration is the accuracy of the early filter;
since the original UDFs and query predicate will process input that
is passed by the early filter, the false positive rate of the query is
unaffected. However, the filter may drop input data that would pass
the original query predicate, i.e., can increase false negatives. Unlike
queries on relational data, machine learning applications have an in-
built tolerance for error since the original UDFs in the query also have
some false positive and false negative rate. Hence, it is feasible, in our
experience, to ask the users to specify a desired accuracy threshold a.
Some queries, such as Q1 and Q2 in §2, tolerate a known amount of
inaccuracy.
Challenges. To achieve sizable query speedup with desired accuracy,
the following questions become important. First, how to construct
these early filters? Since the raw input does not have the columns
required by the original query predicate, constructing early filters is
not akin to predicate pushdown [34] and is not the same as ordering
predicates based on their cost and data reduction [17]. Instead, we
propose to train binary classifiers that group the input blobs into those
that disagree and those that may agree with the query predicate. The
former are discarded, and the latter are passed to the original query
plan. We call these classifiers probabilistic predicates (PPs), because
each PP has associated values for the tuple ∐︀data reduction rate, cost,
accuracỹ︀; it is possible to train PPs with different tuple values.

Next, how to construct probabilistic predicates that are useful,
i.e., those that have a good trade-off between data reduction rate,
cost and accuracy? Success in partitioning the data into two classes,
a class that passes the original query predicate and the other that
does not, depends on the underlying data distributions. A predic-
ate can be thought of as a decision boundary separating the two
classes. Intuitively, any classifier that can identify inputs far away
from this decision boundary can be a useful PP. However, the nature
of the inputs and the decision boundary affects which classifiers are
effective at separating the two classes. We use different techniques
to build PPs– linear support vector machine (SVM) [50] for linearly
separable cases, and kernel density estimator (KDE) [43] and deep
neural networks [33] for non-linearly separable cases. We note that
PPs can also be created using any other classifier technique (e.g., [9]).
To handle data blobs with high dimensionality, we utilize sampling,
principal component analysis (PCA) [28] and feature hashing [53].
We apply model selection to choose appropriate classification and
dimensionality reduction techniques.

A third question is how to support complex predicates and ad-hoc
queries? Since query predicates can be diverse, trivially constructing
a PP for each query is unlikely to scale. Consider the example in Fig-
ure 2, a PP trained for red ∧ SUV cannot be applied to red ∧ car
or blue ∧ SUV . Moreover, ad-hoc queries with previously unseen

predicates cannot be supported. To generalize, we propose to only
build PPs per simple clause and have the query optimizer, at query
compilation time, assemble an appropriate combination of PPs that
(1) has the lowest cost, (2) is within the accuracy target and (3) is
semantically implied by the original query predicate; i.e., the PP com-
bination has to be a necessary condition of the query predicate (since
we use PPs to drop blobs that are unlikely to satisfy the predicate).
We will show in §6 how we extend a standard cost-based predicate
exploration procedure to generate various possible plans that use
one or more of the available PPs and stay within the given accuracy
threshold; our QO then picks the lowest cost plan from among these
alternatives.
Scope, limitations, and connections. More precisely, we build prob-
abilistic predicates for clauses of the form f (g i(b), . . .) ϕ v, where
f , g i are functions, b is an input blob, ϕ is an operator that can be
=, ≠, <, ≤, >, ≥ and v is a constant. As noted above, we build PPs using
a diverse set of techniques and only for clauses that have useful ∐︀data-
reduction, accuracy, cost̃︀. Using these PPs, our QO can support
predicates that contain arbitrary conjunctions, disjunctions or nega-
tions of the above clauses. Furthermore, we show in Appendix A.4
how to inject PPs into queries that have selections, projections and
foreign-key joins.

Some important limitations are worth noting. Predicates that do
not decompose onto individual inputs are not supported; for example
SELECT * FROM T1,T2 WHERE ℱ(T1.a, T2.b) > 0 and ℱ
is not a separable function. UDFs that are not deterministic (e.g.,
those that have random components or adapt to the input) are also
not supported because the mapping from the input to the predicate
outcome, which the PPs learn and use, will also have to adapt along
with the UDF.

The basic intuition behind probabilistic predicates is akin to that
of cascaded classifiers in machine learning [51, 52]; a more efficient
but inaccurate classifier can be used in front of an expensive classifier
to lower the overall cost. Typical cascades, however, use classifiers
that have equivalent functionality (e.g., all are object detectors). In
contrast, PPs are not equivalent to the UDFs that they bypass; ag-
nostic to the functionality of the UDFs that are bypassed, PPs are
always binary predicate-specific classifiers. Without this specializa-
tion (reduction in functionality), it may be impossible to obtain a
classifier that executes over raw input and still achieves good data
reduction without losing accuracy. Furthermore, typical cascades
accept and reject input anywhere in the pipeline; while this could
work for selection queries whose output is simply a subset of the
input, it will not easily extend to queries having projections, joins or
aggregations. In general, our PPs apply directly on an input and reject
irrelevant blobs; the rest of the input is passed to the actual query.



Figure 3: Comparing the unmodified system on the left with the proposed
system on the right. Key changes are in the training and use of probabilistic
predicates (PPs). See § 4 for details.

Our technical advances are in identifying and building useful PP
classifiers (§5) and a deep integration with the QO (§6); the former
involves careful model selection and the latter generalizes applicabil-
ity to complex predicates and adhoc queries. A related system [27]
identifies correlations between input columns and a user-defined
predicate and then learns a probabilistic selection method which
accepts or rejects inputs, based on the value of the identified correl-
ated input columns, without evaluating the user-defined predicate.
A contemporaneous system [29] uses a specialized DNN and video-
specific filtering techniques such as background subtraction to speed
up object detection on videos. Probabilistic predicates have broader
applicability and offer comparable or more gains as we show empiric-
ally in §8. Both the above systems accept blobs early and hence do
not easily extend beyond selection queries. Furthermore, the prob-
abilistic selection method used in [27] maintains state per distinct
value of the correlated input columns; the proposed extension to
handle multiple predicates and joins substantially increases the state
needed (exponential in # of predicates and per distinct combined
value of the correlated columns and join columns [26]). The above
systems also pick a specialized pipeline per query, i.e., need training
for each query. Since we train PPs for simple predicates and use the
QO to generalize, our approach can help many more queries, even
those that are previously unseen, at lower training and runtime costs.
Empirical comparisons and some more details are in §8.

4 SYSTEMDESIGN

Language support for UDFs: Similar to recent query languages that
support user defined functions (UDFs) [11, 12, 36], our query language
offers some new templates for UDFs; a developer can implement a
UDF by inheriting from the appropriate UDF template. The processor
template, which we saw earlier in §1, encapsulates row manipulators;
they produce one or more output rows per input row. Processors
are typically used to ingest data and per-blob ML operations such
as feature extraction. Reducers encapsulate operations over groups
of related items. Context-based ML operations, such as object track-
ing which uses an ordered sequence of frames from a camera, are
built as reducers. On the query plan, reducers may translate to a
partition-shuffle-aggregate. Combiners encapsulate custom joins, i.e.,
operations over multiple groups of related items. Similar to a join,
they can be implemented in a few different ways, e.g., broadcast join,
hash join etc. More details can be found in our previous work [36].
System inputs and outputs: With the above background, the inputs
to our system are queries that may optionally have one or more user
functions defined using the offered templates. The outputs are query
results. As shown in Figure 3(a), the baseline system computes a query
plan using a cascades-style cost based query optimizer. Our proposed
architecture, shown on the right, extends the baseline system in two
ways: it trains and injects probabilistic predicates into query plans.

The architecture has slight differences based on whether it is used in
an online or batch context as we will describe next.
Constructing PPs: The basic task of constructing a probabilistic
predicate uses binary labeled input data.The labels specify whether an
input blob passes or fails the predicate. The output is a PP annotated
with the predicate clause that it corresponds to, the cost of execution,
and the predicted data reduction vs. accuracy curve. Further details
are in §5.

The “outer loop” of deciding which clauses to train PPs for and how
to acquire labeled input, shown in Figure 3(b), is as follows. In a batch
system, we use historical queries to infer the simple clauses (defined
in §3) that appear frequently in the queries. To train probabilistic
predicates for these clauses, we find that labeled input data is some-
times already available because a similar corpus was used to build
the original UDFs (e.g., training the classifiers). Alternatively, we
can generate the labeled corpus by annotating the query plans; i.e.,
the first query to use a certain clause will output labeled input in
addition to its query results. In an online system, the above process
runs contemporaneously with the query execution. That is, at cold
start when no PP is available, the query plans output labeled inputs
for relevant clauses; periodically or when enough labeled input is
available, the PPs are trained and subsequent runs of the query use
query plans containing the trained PPs.
Applying PPs: Our modified query optimizer, shown in Figure 3(c)
takes two additional inputs compared to the baseline QO: a list of
trained probabilistic predicates and a desired accuracy threshold for
the query. As described in §6, the modified query optimizer injects
appropriate combinations of PPs for each query based on the accur-
acy threshold; the PPs, shown in the figure as green dotted circles,
execute directly on the raw inputs and the remaining query plan is
semantically equivalent to the original query plan.

5 TRAINING INDIVIDUAL PPS
In this section, we describe the details of building a probabilistic
predicate (PP). A PP for predicate clause p is uniquely characterized
by the triple PPp = {𝒟,m, r(︀a⌋︀} where:
Training Set𝒟 is the portion of data blobs on which PPp is construc-
ted. Each blob x ∈ 𝒟 has an associated label ℓ(x) which is +1 for
blobs that agree with p, and −1 for those that disagree with p.
Approachm is the filtering strategy picked by our model selection
scheme, indicatingwhich classification f (⋅) and dimension reduction
ψ(⋅) algorithms to use. The cost of the PP can be read from Table 2
for different approaches.
Data reduction rate r(︀a⌋︀ is the portion of data blobs filtered by PPp
given the above settings. a ∈ (︀0, 1⌋︀ is the target accuracy, e.g., 1.0 or
0.95. We will train PPs that are parametrized with a target accuracy.

5.1 PP classifier 1: linear SVM
To identify data blobs that disagree with p, we consider linear support
vector machines (SVMs) [50] which are well-known binary classifiers.
A linear SVM classifier has the form of:

flsvm(ψ(x)) = w
T
⋅ ψ(x) + b, (1)



Approach Space complexity Computational complexity Applicability(per n input) Training (per n input) Testing (per input)
Dim. reduction ψ(⋅) Classifier f (⋅) ψ cost f cost ψ cost f cost ψ cost f cost Nonlinear Dense High-dim

None, ψ(x) = x
Linear SVM - O(d) - O(max(n , d)min(n , d)2) - O(d) X ✓ ✓
KDE - O(nd) - O(n log d) - O(n′ log d) ✓ ✓ X
DNN - O(dm ) - O(bn(c f + cb + cu)) - O(c f ) ✓ ✓ ✓

PCA, ψ(x) = xP Linear SVM O(ddr ) O(dr ) O(min(n2d , nd2)) O(nd2
r ) O(d) O(dr ) X ✓ ✓

KDE O(ddr ) O(ndr ) O(min(n2d , nd2)) O(n log dr ) O(d) O(n′ log dr ) ✓ ✓ ✓
Feature Hashing, Linear SVM - O(dr ) O(nd) O(nd2

r ) O(d) O(dr ) X X ✓
ψ(x) = ∑ j η( j) ⋅ x j KDE - O(ndr ) O(nd) O(n log dr ) O(d) O(n′ log dr ) ✓ X ✓

Table 2: Complexity of different PP approaches for different dimension reduction ψ and classifier f techniques. n is the number of data items in the (sampled)
training set; d (dr ) is the number of dimensions in vector x (that remain after dimensionality reduction); n′ is the number of neighbor nodes in the k-d tree; dm
is the number of parameters in the DNN model; b is the number of epochs; c f ⇑cb⇑cu are the forward/backward propagation/update costs. We assume dr ≪ n.

d-(x)
x

d+(x) /

h

w flsvm(x) fkde(x)=

Figure 4:Demonstration of computing f (x) by the PP classifiers. Left: SVM-
based PP tries to find the decision boundary w. Right: 1-D visualization of
the +1/-1 densities (dark circles for +1 and white circles for -1). KDE-based PP
measures fkde(x) = d+(x)⇑d−(x)where d . is estimated with a neighborhood
of h.

where ψ(x) denotes a dimension reduction technique to project the
input blob x onto fewer dimensions. We will discuss different dimen-
sion reduction techniques later in §5.4. w is a weight matrix and b is
a bias term; the training fits f (⋅) to the labels ℓ(⋅) of the blobs in the
training set𝒟 [25].
Constructing the PP: Equation 1 can be interpreted as a hyperplane
that separates the labeled inputs into two classes as shown in Figure 4
(left). Perfect separation may not always be possible and hence we
use the following decision function to predict the labels:

PP(x) = { +1 if f (ψ(x)) > th(︀a⌋︀
−1 otherwise (2)

where th(︀a⌋︀ is a decision threshold under the desired filtering ac-
curacy a. It is easy to see that different values of th(︀a⌋︀ will produce
different accuracy and reduction ratio. For example, with th = −∞ all
blobs will be predicted to pass the predicate (PP(x) = +1), leading to
zero reduction and perfect accuracy a = 1. We choose the parametric
threshold th(︀a⌋︀ as follows:

th(︀a⌋︀ = max th s. t. ⋃︀{x ∈ 𝒟 ∶ f (ψ(x)) > th}⋃︀
⋃︀{x ∈ 𝒟 ∶ ℓ(x) = +1}⋃︀

≥ a. (3)

It is useful to note that since the decision function is deterministic
regardless of the th(︀a⌋︀ value, a PP parametrized for different accur-
acy thresholds can be built without retraining the SVM classifier.
Figure 5 and Appendix B show examples of choosing th(︀a⌋︀. Finally,
the reduction ratio achieved by the PP can be computed as:

r(︀a⌋︀ = 1 − ⋃︀{x ∈ 𝒟 ∶ f (ψ(x)) > th(︀a⌋︀}⋃︀
⋃︀𝒟⋃︀

(4)

Usage notes: Linear SVMs have pros and cons. They can be trained
efficiently (see Table 2) and have small cost at test. However, linear
SVMs yield a poor PP if (a) the input blobs are not linearly separable
or (b) meeting the desired filtering accuracy results in a small data

th0.7f(x)→ th0.9th1

Figure 5: Data rows are ranked in ascending order according to their f (x)
values. Dark and white circles represent data blobs with +1 and -1 labels re-
spectively. Threshold th(︀a⌋︀ is chosen to be the largest threshold value that
correctly identifies an a portion of the +1 data points.

reduction. Using non-linear SVM kernels (e.g., RBF kernel [50]) is
a potential fix; however, the computational complexity significantly
increases for both training and inference, resulting in practically
ineffective PPs.We introduce an alternate classificationmethod below
that is effective even when the problem is not linearly-separable.

5.2 PP classifier 2: KDE
Machine learning blobs such as images and videos are high dimen-
sional and not always linearly-separable. Here, we construct a non-
parametric PP classifier that does not assume any underlying data
distribution. Intuitively, a set of labeled blobs can be translated into a
density function such that the density at any location x indicates the
likelihood of its belonging to the set. Consider the density functions
in Figure 4 (right). We propose to compute two density functions for
the blobs in the training set according to their labels; let d+(ψ(x))
and d−(ψ(x)) be the density (likelihood) that ψ(x) has a +1 or -1
label, respectively. As shown in the figure the density functions may
overlap. As before, ψ(x) denotes a dimension reduction technique.
We then have the following kernel density estimator:

fkde(ψ(x)) = d+(ψ(x))⇑d−(ψ(x)). (5)
Intuitively, data points x with a true label of +1 should have a higher
value on d+(ψ(x)) than d−(ψ(x)), leading to a high fkde value;
similarly if x has a true label of -1, fkde should be low.

To build the density functions d+ and d−, we leverage kernel
density estimation (KDE) [43]. d+(ψ(x)), the density of points with
+1 labels, is defined as

d+h (ψ(x)) =
n
∑

i=0,ℓ i=+1
K(

ψ(x) − ψ(xi)
h

) (6)

where h is a fixed parameter indicating the size of ψ(x)’s neighbor-
hood that we should look into. K is the kernel function to normalize
ψ(x)’s neighborhood and we use a Gaussian kernel which yields
smooth density estimations. d−(ψ(x)) is defined similarly over data
blobs having −1 labels. We choose h using cross-validation; Silver-
man’s rule of thumb [45] can also be used to pick an initial h.
Constructing thePP: To complete the construction of a probabilistic
predicate using the KDE method, we note that Equations 2, 3, 4 can
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Figure 6: Left: structure of a fully connected neural network. Wi are differ-
ent fully connected layers. Right: formula at layer i. The input f 0fcn(x) = x.

be applied by using fkde in place of flsvm. In particular, as with the
case of the linear SVM PP, we can parametrize the KDE PP without
retraining the classifier.
Usage notes: Probabilistic predicates using the KDE method are
effective even when the underlying data is not linearly separable;
however this comes with some additional cost during test as noted
in Table 2. In particular, applying the KDE PP at test timemay require
a pass through the entire training set because the densities d+ and
d− are computed based on the distance between the test point x
and each of the training points. To avoid this, we use k-d tree [8], a
data structure that partitions the data by its dimensions. Similar data
points are assigned to the same or nearby tree nodes. With a k-d tree,
the density of an input blob x is approximately computed by applying
Eq. 6 only on ψ(x)’s neighbors retrieved from the k-d tree (i.e., n′
nodes as shown in Table 2 where n′ ≪ n, the number of training
samples). The retrieval complexity is (on average) logarithmic in the
feature length of the input blob.

5.3 PP classifier 3: DNN
To demonstrate how the core classification methods can be exten-
ded, we consider the case of building a PP using a deep neural net-
work (DNN) [33]. As shown in Figure 6, the classifier can have mul-
tiple fully connected layers interpreted as multiplying an input blob
with different weight matrices sequentially. The function g i , imple-
mented as ReLU, sigmoid etc., is a non-linear activation applied after
each fully connected layer, introducing non-linearity to the whole
model.
Constructing the PPs: We argue that the PP design can incorpor-
ate any classifier that can be cast as a real-valued function with a
threshold (i.e., as f in Eq. 2); the applicability of the classifier, of
course, depends on the data distribution, predicates and classifier
costs. In particular, DNNs also fit this requirement and we build
DNN PPs by using ffcn from Fig. 6 in equations 2, 3 and 4.
Usage notes: DNNs have shown promising classification perform-
ance in various ML applications [31, 32]. However, the number of
parameters to train is much larger (e.g., weight matrices) than the
other classifiers we have discussed. Hence, training a DNN requires
more data and the training cost is significant. In practice, PPs built
using DNNs are appropriate for queries and predicates that (a) have
very expensive UDFs (e.g., a large DNN), (b) have a large training
corpus or (c) repeat frequently to justify higher training costs.

5.4 Dimension reduction ψ(⋅)
In practice, input blobs havemany dimensions; for example, in videos,
each pixel in a frame or an 8x8 patch of pixels can be construed as a
dimension. In bag-of-words representations of natural language text,

each distinct word is a dimension and the vector x for a document is
the frequency of its words. When the dimensionality increases, the
Euclidean distances used to compute w ⋅ x and x − xi lose discrimin-
ative power. Our overall approach to address this concern is to apply
dimension reduction techniques before the classifier. However, this
is optional, i.e., ψ(x) can be x.
Principal Component Analysis (PCA) [28] is a popular technique
for dimension reduction. The input x is projected using ψ(x) = xP,
where P is the linear basis extracted from the training data. We note
two aspects. First, even when the underlying data is not linearly separ-
able, applying PCAs does not prevent the subsequent classifier from
identifying blobs that are away from the decision boundary. Second,
computing the PCA basis using singular value decomposition is quad-
ratic in either the number of blobs in the training set or in the number
of dimensions O(min(n2d , nd2

)) [19]. To speed this up further, we
compute PCA over a small sampled subset of the training data 𝒟,
trading off reduction rate for speed. Note the formulas in Table 2
where n can be either the full training set or the sampled subset.
Feature Hashing (FH). Feature hashing [53] is another popular di-
mension reduction technique which can be thought of as a simplified
form of PCA that requires no training and is well-suited for sparse
features. It uses two hash functions h and η as follows:

∀i = 1 . . . dr , ψ(h ,η)i (x) =
d
∑
j=1

1h( j)=i ⋅ η( j) ⋅ x j , (7)

where the first hash function h(⋅) projects each original dimension
index ( j = 1 . . . d) into exactly one of dr dimensions and the second
hash function η(⋅) projects each original dimension index into ±1,
indicating the sign of that feature value. Thus the feature vector is
reduced from d to dr dimensions. It is easy to see that feature hashing
is inexpensive and it has been shown to be unbiased [53]. However,
if the input feature vector is dense, hash collisions are frequent and
classifier accuracy becomes worse.

5.5 Model Selection
Thus far, we have described three techniques to construct PPs and
two dimension reduction techniques, all of which can be used with or
without sampling the training data and several parameter choices (e.g.,
number of reduced dimensions dr for FH); this leads tomany possible
techniques for PPs. As we describe next, we expect future systems to
use a few other techniques. Hence, it is crucial to determine quickly
which technique is the most appropriate for a given input dataset. We
use the following model selection.

Given different PP methodsℳ, we select the best approach m by
maximizing the reduction rate rm for that approach:

m = arg max
m∈ℳ

rm(︀a⌋︀. (8)

Furthermore, these methods have different applicability constraints
as summarized in Table 2. We first pruneℳ using these applicab-
ility constraints. To compute rm(︀a⌋︀ quickly, we use a sample of the
training data, fix a = 0.95, randomly choose a few different simple
clauses, train the classifiers described above and use the technique
that performs better. Our experiments show that the input dataset has
the strongest influence on technique choice; that is, given a certain



type of input blobs, the same PP technique is appropriate for different
predicates and accuracy thresholds etc.

5.6 Other PP details
Overfitting: To avoid overfitting on the training data, we randomly
divide the input set of blobs𝒟 into training and validation portions.
The classifiers are trained using the training portion𝒟train but the
accuracy-data reduction curve r(︀a⌋︀ is calculated on the validation
portion𝒟val.
Classifiers built for a PP on predicate p can be reused for the PP
on predicate ¬p: Given the classifier functions (e.g., flsvm, fkde)
built for a predicate p, note that multiplying these functions with
−1 yields the corresponding classifier functions for predicate ¬p.
Hence, the PP for predicate ¬p can reuse the classifier and compute
equations 3 and 4 with −1 ∗ f instead.
Input feature to PP is a simple representation of the data blob, e.g.,
raw pixels for images, concatenation of raw pixels over consecutive
frames (of equal duration) for videos, and tokenized word vectors for
documents.

6 QUERY OPTIMIZATIONOVER PPS
In §5, we have seen how to construct PPs for simple clauses. Here,
we describe interaction with the query optimizer which achieves the
following goals.

First, for a query with a complex predicate or previously unseen
predicate, which PPs may be useful? Recall that a query can use any
available PP or combination of available PPs that is a necessary condi-
tion to the actual predicate. Given a complex query predicate 𝒫 , the
QO generates zero, one or more logical expressions ℰ that are equi-
valent or necessary conditions for 𝒫 but only contain conjunctions
or disjunctions over simple clauses. That is,𝒫 ⇒ ℰ . The challenge, as
we will show, is that there can be innumerably many choices of ℰ ; so
exploration of choices has to be quick and effective. Further details
are in §6.1.

Next, how to pick the best implementation over the available ex-
pressions of PPs while meeting the query’s accuracy threshold? For
individual PPs, their training already yields a cost estimate and the
accuracy v.s. data reduction curve. The challenge is to generate these
estimates for logical expressions over PPs. Our QO extension explores
different orderings of the PPs within an expression ℰ and explores
different assignments of accuracy to each PP which ensure that the
overall expression meets the query-level accuracy threshold. Further
details are in §6.2. The QO extension outputs a query plan with the
chosen implementation.
Example: Consider a complex predicate of the form: 𝒫 = (p ∨ q) ∧
¬r ∧ 𝒫rem. Here p, q and r are simple clauses for which PPs have
been trained and 𝒫rem is the remainder of the predicate. Each PP is
uniquely characterized in part by the simple clause that it mimics; we
use PPp to denote the PP corresponding to the simple clause p. Table 3
(right) shows the various possible expressions over PPs that may be
used to support this complex predicate. We note a few points here.
(1) Some parts of 𝒫 , such as 𝒫rem in this example, that are attached
by an ‘and’ can be ignored since PPs corresponding to the rest part
will be necessary conditions for 𝒫 . (2) When the predicate has a
conjunction over simple clauses, PPs for one or more of these clauses

Complex predicate Implied logical expr. over PPs

(p ∨ q) ∧ ¬r ∧𝒫rem

⇒ p ∨ q ⇒ PPp∨q ⇒ PPp ∨ PPq
⇒ ¬r ⇒ PP¬r
⇒ PP(p∨q)∧¬r ⇒ (PPp ∨ PPq) ∧ PP¬r
⇒ PP(p∧¬r)∨(q∧¬r) ⇒ PPp∧¬r ∨ PPq∧¬r ⇒

(PPp ∧ PP¬r) ∨ (PPq ∧ PP¬r)

Table 3: An example rewriting of a complex predicate to expressions having
conjunctions or disjunctions of probabilistic predicates.

can be used. This is shown in the first two rows of the table. (3) A
disjunction of two PPs, e.g., PPp∨PPq is a valid PP for the disjunction
p ∨ q. The proof follows from observing Figure 7; only blobs that do
not pass both the PPs will be discarded (shown using lines labeled
with a ‘−’). As before, there will be no false positives since the actual
predicate applies on the passed blobs but there can be some false
negatives. A similar proof holds for a conjunction as well; an example
is shown in Figure 8. Rows one and three of Table 3 show the use of
the disjunction and conjunction rewrite respectively. Such rewrites
substantially expand the usefulness of PPs; because otherwise PPs
would need to be trained not just for individual simple clauses but
for all combinations of simple clauses. (4) The predicate can also be
rewritten logically, leading to more possibilities for matching with
PPs; for example, (p ∨ q) ∧ ¬r⇔ (p ∧ ¬r) ∨ (q ∧ ¬r) leads to the
PP expression shown in the fourth and fifth row of the table. (5) The
number of implied expressions over PPs that correspond to a complex
predicate can be substantial; the table shows eight possibilities.

6.1 Complex predicate to expressions over PPs
The inputs are a complex predicate𝒫 and a set 𝒮 of trained PPs, each
of which corresponds to some simple clause, i.e., 𝒮 = {PPp}. The
goal is to obtain expressions ℰ that are conjunctions or disjunctions
of the PPs in 𝒮 which are implied by 𝒫 , i.e., 𝒫 ⇒ ℰ .

If there are m PPs, i.e., ⋃︀𝒮⋃︀ = m, and n of the PPs directly match
some clauses in a CNF representation of 𝒫 , then there are at least 2n
choices for ℰ . Since this problem has exponential-sized output, it will
require exponential time.

We offer a greedy solution that is based on the intuition that ex-
pressions withmany PPs will have higher execution cost; as seen in §3
early filters that have a high cost must have a relatively larger data
reduction in order to perform better than the baseline plan.

The input query predicate is sent to a wrangler which greedily
improves matchability with available PPs. Examples of the wrangling
rules include transforming a not-equal check into disjunctions of
equal checks (e.g., t ≠ 2⇒ t > 2 ∨ t < 2) or relaxing a comparison
check (e.g., t < 5⇒ t < 10). We defer the details to Appendix A.2.

Next, we convert predicates to expressions over PPs; examples
of which are shown in Table 3. For a predicate 𝒫 , let 𝒫/p denote
the remainder of the 𝒫 after removing a simple clause p. With this
notation, we use the rewrite rules below to generate expressions over
PPs. All of the expressions in Table 3 can be generated by repeated
application of the first three rewrite rules.

Rule R1: p ∧ (𝒫/p) ⇒ PPp , Rule R2: PPp∧q ⇒ PPp ∧ PPq ,
Rule R3: PPp∨q ⇒ PPp ∨ PPq , Rule R4: p ∧ (𝒫/p) ⇒ ¬PP¬p .

The fourth rule above helps for predicates with high selectivity; how-
ever, it has narrower applicability. For simplicity, we defer discussion
of this rule to Appendix A.3. To construct implied logical expressions
over PPs, we use the following greedy steps. (1) We limit the number
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Figure 7: Injected query plan for the pattern p ∨ q ⇒ PPp ∨ PPq

input→ PPp
+
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Figure 8: Injected query plan for the pattern p ∧ q ⇒ PPp ∧ PPq

of different PPs that are in any expression ℰ to be at most a small
configurable constant k. (2) We apply rules R2 and R3 only if the
larger clause (e.g., p ∨ q or p ∧ q) does not have an available PP in
𝒮 or if at least one of the simpler clauses has a PP that performs
better (a smaller ratio of cost to data reduction c

r(︀1⌋︀ indicates better
performance); intuitively, this prevents exploring possibilities that
are unlikely to perform better.

For the example in Table 3, suppose k = 2 and the set of available
PPs,𝒮 , in increasing order of c

r(︀1⌋︀ is{PPp∨q , PPp , PPp∧¬r , PPq∧¬r , PPq , PP¬r}.
It is easy to see that our algorithm only outputs three possibilities;
i.e., {ℰ} = {PPp∨q , PP¬r , PPp∧¬r ∨ PPq∧¬r}. The other possibilities
are pruned by our greedy checks.

6.2 Costing query plans with PP expressions
Given a set of expressions {ℰ} that are conjunctions or disjunctions
of PPs, the goal is to compute the lowest cost query plan which meets
query’s accuracy threshold. If some execution plan for ℰ has a per-
blob cost of c and reduction-vs-accuracy of r(︀a⌋︀, then (recall from §3
that) the query plan cost is ∝ c + (1 − r(︀a⌋︀) ∗ u, where u is the cost
per blob of executing the original query. u and a are inputs to the
algorithm but c and r(︀a⌋︀ have to be computed.

Since the order in which the PPs in ℰ execute and how the accur-
acy budget is allocated among the individual PPs crucially affect plan
cost, we have three sub-problems. First, we have to explore different
allocations of the query’s accuracy budget to individual PPs. Next,
we have to explore different orderings of PPs within a conjunction
or disjunction; this process recurses for nested conjunctions or dis-
junctions. Finally, after fixing both the accuracy thresholds and the
order of PPs, we have to compute the cost and reduction rate of the
resulting plan. The first problem translates to a dynamic program
which we omit for brevity. For the second part, recall that there are at
most k PPs in any ℰ ; if k is small, then all of the exponentially many
orderings can be explored. When k is large, we use the following
heuristic: consider ordering the PPs by the ratio of their intrinsic
c

r(︀1⌋︀ and then consider all other orderings that are an edit-distance
of at most 2 away from this greedy order. In practice, we found these
to be the most useful orderings. The last part, computing cost and
reduction rate given a fixed PP order and fixed accuracy thresholds,
proceeds inductively as follows.
Base case: ℰ = PPp . Here the cost and accuracy vs. data reduction
curve of ℰ is the same as that of PPp .
Conjunction: ℰ = ℰ1 ∧ ℰ2 . Let the cost of the two logical expressions
be c1 , c2 and their accuracy vs. data reduction curves be r1(︀a⌋︀, r2(︀a⌋︀
respectively. Figure 8 shows an example conjunction. Suppose each

PP has been given an accuracy threshold of a1 and a2 . We make
the simplifying assumption that the PPs are independent; a fix is
described in Appendix A.5. We now have:

a = a1 ∗ a2
r(︀a⌋︀ = r1(︀a1⌋︀ + r2(︀a2⌋︀ − r1(︀a1⌋︀ ∗ r2(︀a2⌋︀
c(︀a⌋︀ = min(c1 + (1 − r1(︀a1⌋︀) ∗ c2 , c2 + (1 − r2(︀a2⌋︀) ∗ c1)

(9)

Disjunction: ℰ = ℰ1 ∨ ℰ2 . Figure 7 shows an example disjunction.
With the same notation as in the case of conjunction and with similar
assumptions, we have:

a = a1 + a2 − a1 ∗ a2
r(︀a⌋︀ = r1(︀a1⌋︀ ∗ r2(︀a2⌋︀
c(︀a⌋︀ = min(c1 + r1(︀a1⌋︀ ∗ c2 , c2 + r2(︀a2⌋︀ ∗ c1)

(10)

Note the following intuitions for conjunction based on Eq. 9; ana-
logous intuitions apply for disjunctions. (1) Accuracy reduces mul-
tiplicatively. (2) Data reduction ratio improves but the marginal im-
provement is less when many PPs are used and if the individual
sub-expressions are already highly reductive. For example, if two ex-
pressions have a reduction rate of 0.1, the conjunction nearly doubles
its data reduction to 0.19; however when each reduction rate is 0.8
the conjunction only increases to 0.96. (3) The cumulative cost is
smaller when the sub-expression with the smaller c

r(︀a⌋︀ executes first.
Our heuristic algorithm above is based on these intuitions.

7 CASE STUDIES
We discuss four case-studies used in our experimental evaluations:
document analysis, image analysis, video activity recognition and
comprehensive traffic surveillance. The input datasets have num-
bers of dimensions ranging from thousands (e.g., low-res images) to
hundreds of thousands (e.g., bag-of-words representations of docu-
ments which can be very sparse). Some predicates are correlated (e.g.,
hierarchical labels of document and activity types in videos). The
selectivity of predicates also varies widely; some predicates have very
low selectivity (e.g., ‘has truck’ in traffic video). We evaluate different
machine learning queries on these datasets as described below.
Case1: Document analysis.We use the LSHTC [40] dataset which
contains 2.4M documents fromWikipedia. Each document is repres-
ented as a bag of words with a frequency value for each of 244Kwords;
this vector is sparse in practice. The LSHTC dataset classifies the doc-
uments into 400K categories. The mapping between documents and
categories is many-to-many; that is, a document can belong to many
categories and vice versa. The dataset also offers a hierarchy over
categories. We consider queries that retrieve documents having one
or more categories.
Case2: Image labeling. The SUNAttribute [41] dataset contains 14K
images of various scenes. The images are annotated with 802 binary
attributes that describe the scene, such as ‘is kitchen’, ‘is office’, ‘is clean’,
‘is empty’ etc. We consider queries that retrieve images having one or
more attributes. We also use the popular COCO [35] and ImageNet
datasets [31] in a similar manner; i.e., queries retrieve images that
contain one ormore labels. COCOcontains 120K images, each labeled
with one or more of the 80 object classes. We use a subset of 110K
images from ImageNet with the same 80 classes as in the COCO
dataset to evaluate the cross-domain application of PPs, i.e., training
PPs on COCO but testing on ImageNet.



Case3: Video activity recognition.Weuse theUCF101 video activity
recognition dataset [46], which has 13K video clips with durations
ranging from ten seconds to a few minutes. Each video clip is an-
notated with one of 101 action categories such as ‘applying lipstick’,
‘rowing’, etc. We consider the problem of retrieving clips that illustrate
an activity.
Case4: Comprehensive Traffic Surveillance Video Analytics. The
queries thus far retrieve (different) portions of the inputs. Here, we
consider the problem of answering comprehensive queries on traffic
surveillance videos. Our datasets include hours of surveillance videos
from the DETRAC [54] vehicle detection and tracking benchmark.
We design a query set, TRAF20 (§8.2), upon these videos; the queries
perform machine learning actions such as vehicle detection, color
and type classification, traffic flow estimation (vehicle speed and flow)
etc. While DETRAC already annotates vehicles by their types (sedan,
SUV, truck, and van/bus), we manually annotate the vehicles in the
video with their color (red, black, white, silver and other).

8 EVALUATION
The experiments shown in this section have the following purposes:
Validating individual PPs. The first-order question we are interested
in is how much speed-up can PPs offer to various machine learning
inference queries over unstructured input blobs. We inject a PP into
queries that have one simple predicate in §8.1. We also examine the
suitability of PPs that are trained using different techniques. Our
results will show that injecting PPs achieves speed-ups that are 3×–
19×more than a state-of-the-art baseline [27] on different machine
learning datasets.
Evaluation of our query processing system. Putting everything together,
§8.2 evaluates using PPs on complex query predicates in Microsoft’s
Cosmos big-data cluster [11]. We demonstrate the costs to construct
PPs on large datasets, how the QO chooses appropriate combina-
tions of available PPs and the inference costs of applying PPs. These
end-to-end experiments show that using probabilistic predicates can
accelerate real-worldmachine learning inference by up to 12.5× under
reasonable target accuracy and budget on training cost.

8.1 Micro-benchmarks on individual PPs

Dataset, predicates, UDFs and queries. To demonstrate that we can
train PPs for a variety of datasets, we evaluate using PPs on queries
that have one simple predicate. We use Cases 1-3 here; recall that the
queries check for inputs that match a given category. To support these
queries, we have built various feature extraction [15, 38] and classifier
[3] UDFs. The classifier output, per category, is a binary column
with value 1 if and only if the input blob matches that category, and
the query predicates check the value of this column. For Case1, we
randomly pick 140 categories, and use all categories for the other
datasets. In all, this experiment has about a thousand queries and
upwards of a thousand different UDFs.
Training PPs: For each query, we randomly take 60% of the entire
dataset as the training set to construct the PP classifiers; the validation
and testing set each takes 20% of the dataset. We also experiment
with different training sizes.

Figure 9: Whisker plots of the data reduction rates across various datasets.
Each bar is a whisker plot; the lines are the min and max reduction across
queries; the ends of the box are the 25th and 75th percentiles; the horizontal
line in the box is the 50th percentile and x marks the average. Different PP
techniques are used across datasets: # indicates PPs that use feature hashing
+ SVM, ∗ indicates PPs with PCA + KDE andˆindicates PPs with a DNN.

Metrics used in our evaluations include the selectivity sp of each
predicate p, the accuracy a of the PP which is the fraction of output
of the original query that is returned after using the PP, data reduction
ratio rp(︀a⌋︀ due to the PP at accuracy a. Note that accuracy is relative
to the ground truth labels; the UDFs can often be imperfect. We also
focus on the relative reduction (= rp(︀a⌋︀

1−sp ), which is the actual number
of input blobs that are dropped by the PP (rp(︀a⌋︀) divided by the
maximum possible number of input blobs that can be dropped by
the PP (1 − sp).
Can we train effective PPs? Building effective PPs depends on sev-
eral factors; here, we consider the following key elements. (1) Do we
have techniques that yield PPs with a good data reduction rate and
high accuracy on a variety of datasets? (2) Are PPs trained on one
dataset useful for other similar datasets?

Figure 9 shows whisker plots of the data reduction ratio (rp(︀a⌋︀)
from using PPs on different datasets. Each bar is a whisker plot;
the lines are the min and max reduction across queries; the ends
of the box are the 25th and 75th percentiles; the horizontal line in
the box is the 50th percentile and xmarks the average. A couple of
points are worth noting. With a strict accuracy target a = 1, the PPs
already achieve substantial data reduction. Half of the PPs on UCF101
filter more than 50% of the input. The data reduction varies across
datasets due in part to the nature of the datasets, the queries and the
predicates. Furthermore, a small trade-off in accuracy leads to much
larger improvements in the reduction rates, e.g., a 1% decrease of a
improves average data reduction by about 20% on COCO, ImageNet
and LSHTC. Such small changes are often acceptable for aggregation
queries (e.g., counting # of cars) or for queries where the desired
object occurs in multiple frames (e.g., amber alert queries).
Model selection. We also note that different PP training techniques,
as noted in the caption of Figure 9, achieve the best data reduction on
different datasets. The LSHTC document dataset is very sparse and
the query categories are linearly separable over the features, so feature
hashing + SVM leads to good PPs for Case1. Video activity recogni-
tion (UCF101) is not linearly separable but the different activities in
this dataset are distinctive, so PCA +KDE suffices here. Table 4 shows
that PPs using SVM achieve roughly 10% less data reduction. Image
category labels are not linearly separable and the blobs are highly
dimensional. For the relatively simple images in SUNAttribute, PCA



Dataset Approach Avg. data reduction r for accuracy a
r(︀1⌋︀ r(︀0.99⌋︀ r(︀0.9⌋︀

UCF101
PCA+KDE 0.47 0.56 0.64
PCA + SVM 0.35 0.45 0.54
Raw + SVM 0.35 0.47 0.59

COCO DNN 0.28 0.50 0.83
SVM 0.31

ImageNet DNN 0.71 0.84 0.96
SVM 0.39

DNN trained on COCO 0.25 0.49 0.82
Table 4: Comparing the data reduction achieved by PPs that use different
techniques. The best technique appears to improve data reduction by 10% to
20% in absolute terms. Finally, cross-training, i.e., using PPs trained on a
different albeit similar dataset appears promising.

Dataset Approach PP cost to ... Optimality for a
Train (per
1K rows)

Test a = 1 a = 0.9

UCF101 PCA+KDE 14s 3ms 0.55 0.77
LSHTC FH + SVM 1s 1ms 0.29 0.87
COCO DNN* 110s 10ms 0.28 0.83

Table 5: The latency to train and test PPs of different types as well as the

optimality gap for different accuracy targets, a, which is = avgp (
rp(︀a⌋︀
1−s p
); i.e.,

the average over all predicates of the fraction of blobs that are discarded by a
predicate which are discarded by the corresponding PP. * indicates w/ GPU.

+ KDE leads to good PPs. However, for the more complex images in
COCO and ImageNet (multiple objects in image etc., examples are
in Figure 15) DNNs are needed to get useful PPs. Table 4 shows that
SVM PPs on COCO and ImageNet achieve 20% to 40% lower data
reduction. Compared with state-of-the-art DNNs (e.g., ResNet [21]),
the DNN used for PPs here has 8 convolutional layers followed by a
fully connected layer and is relatively very light-weight. Yet, the DNN
PPs offer good data reduction. We believe that there is no silver bullet
(i.e., best for all cases) PP approach. We use simple heuristics, e.g.,
do not use feature hashing for dense features, use the least complex
model that returns a good data reduction etc. Nevertheless, model
selection is critical. Luckily, we also see that the behavior of PP ap-
proaches for a query and dataset can be estimated well by training on
a small sampled subset of the corpus which reduces the cost of model
selection. Another important aspect that reduces training and model
selection cost is the ability to cross-train; that is, if we can use PPs
trained on a dataset for other similar datasets. Table 4 shows in red
the data reduction achieved when the DNN PPs trained on COCO
are used on ImageNet. We see that cross-trained PPs are not as good
as PPs trained on the same dataset but they perform reasonably well
especially at relaxed accuracy targets; we consider this to be a low-cost
alternative to training DNN PPs on each dataset.
Costs. Table 5 reports the time to train a PP per 1000 input blobs
and the time to test on each input blob. As expected, we see that the
KDE and SVM PPs can process several hundreds of blobs per second
per thread. Using a GPU, the DNN PPs can process only about one
hundred blobs per second. The training costs are also much larger
for DNN PPs. All of these timing measurements were performed on
a desktop running linux with an Intel i7-5930K processor, 16 GB of
RAM and an Nvidia 1080Ti GPU.
Optimality. Table 5 also estimates an optimality gap of sorts; that
is, what fraction of all the input blobs that can possibly be dropped
by a PP, because the blobs will not satisfy the predicate, are actually
dropped by that PP (= rp(︀a⌋︀

1−sp ). The table shows values averaged over

Target a Method LSHTC SUNAttribute UCF101
0.99 PP 0.51 0.43 0.56

PCA + Joglekar et al. [27] 0.19 0.11 0.09
Speed-up 2.7x 3.9x 6.2x

Joglekar et al. [27] 0.16 0.05 0.03
Speed-up 3.2x 8.6x 19x

Target a Method LSHTC SUNAttribute UCF101
0.90 PP 0.81 0.46 0.64

PCA + Joglekar et al. [27] 0.36 0.15 0.14
Speed-up 2.3x 3.1x 4.6x

Joglekar et al. [27] 0.25 0.09 0.05
Speed-up 3.2x 5.1x 12.8x

Table 6: Empirical reduction rates on three datasets with different target
filtering accuracy.

all predicates. By normalizing with predicate selectivity, this number
tells us the room for improvement. We see that the PPs described
in this paper only achieve 28% to 55% of the optimal data reduction
at a = 1 but at relaxed accuracy target of a = 0.9 they are closer to
optimal. Hence, we believe that more work on novel PP techniques
is warranted especially at high accuracy targets although it is apriori
unclear that more data reduction can be achieved without also paying
higher training and/or execution time costs.
Comparing with Joglekar et al. [27]We compare the PP classifiers
with Joglekar et al [27], a system optimized for processing expens-
ive predicates. This work leverages correlation between the input
columns and the UDF outputs; consequently, they drop early based
on the values of the input columns. We use their code and treat each
dimension of our blobs as an input column. We compare with our
PPs at different target accuracy settings (a = .99⇑.90) on 10 randomly
picked queries from each of the three cases. Table 6 shows the compar-
ison based on the same amount of training data. The baseline system
can filter some of the sparse LSHTC inputs, since each dimension of
a text input depicts a word, and intuitively correlations exist between
words and the document label. However, the baseline method does
not work for dense machine learning blobs (e.g., images and videos).
The baseline system improves marginally when it is offered the results
of applying PCA over the raw data as input. The reason, we believe is
that a dimension in such blobs hardly means anything, and the correl-
ation is usually over some complex possibly non-linear combination
of multiple dimensions. On the contrary, our PPs are more suited to
handle machine learning blobs that have different data distributions.

8.2 Evaluating ML with PPs
TRAF-20 benchmark. The purpose of this section is to evaluate the
end-to-end system speed-up from injecting probabilistic predicates.
To the best of our knowledge, there is no off-the-shelf benchmark of
queries with machine learning UDFs and complex predicates. Hence,
we created a benchmark, TRAF-20, with 20 inference queries over
datasets from Case 4 (described in §7). Five predicate columns are
generated by different machine learning UDFs, including vehicle
color c and type t, speed s and direction (from i/to o).TheseUDFs are
trained over annotated inputs. The queries mimic retrieval of vehicles
that meet a specified predicate (e.g., an over-speed truck or an illegal
turn). TRAF-20 has complex predicates including disjunctions and
conjunctions of range, equality and inequality checks. Each query is
equally likely to have between one and four predicate clauses. There
are no nested predicates. Table 7 shows some example predicates from
TRAF-20. Suppose the speed column is discretized to 0 − 80 mph,



#clauses Query ID: Predicates (Type)
1 Q1: t=SUV (E), Q2: s > 60 (N), Q4: c≠white (I)
2 Q7: s > 60 & s < 65 (NR) , Q8: t∈{sedan,truck} (ER)
3 Q14: i=pt303 & (o=pt335 | o=pt306) (ECD)
4 Q20: t=SUV & c=red & i=pt335 & o=pt211 (EC)

Table 7: TRAF-20 predicate examples. We use ptX to indicate traffic inter-
sections in the dataset. E: equality check. I: inequality check. N: real numbers.
R: range check. C: conjunction. D: disjunction.

there are roughly 100 different values that different UDF-generated
columns can take. Hence, the space of potential query predicates is
about 1004 . Training a filter for every possible predicate may not be
feasible in practice.
Method and metrics.Wemimic the use of PPs in an online setting.
PPs are built upon the first 1GB of input data and UDF outputs; 80%
of the blobs are used for training and 20% for validation. Overall,
we have built 32 PPs, all of which are trained using SVMs, each cor-
responding to a single predicate clause. Our system executes query
plans having some appropriate combination of these PPs.

We report the training costs as well as the overall system speed-up
to process the subsequent data blobs.Wemeasure query performance
using two metrics: cluster processing time and query latency; these
metrics are commonly used in recent data-parallel systems [5, 11].
Cluster processing time is the overall cluster resource usage and
includes the cost of executing PPs, and query latency is the end-to-
end userwaiting time taking PPoverhead into account.We also report
the empirical reduction rate and the percentage of cluster processing
time saved by applying PPs. Note that query latency is affected by a
small number of outlier tasks and other scheduling artifacts; hence,
it is much more variable than the cluster processing time of queries.
Comparisons. We compare our query processing system, end-to-
end, with two baselines. (1) Optasia [36] is a relational data-parallel
platform for large-scale vision/ machine learning which is built upon
Microsoft Cosmos. It does not apply any early-filtering strategy. We
refer to this baseline as NoP in our experiments. Our system uses
a similar cost-based query optimizer to translate machine learning
scripts into relational operators. (2) Deshpande et al. [17], building
upon [7], optimally order multiple predicates such that cheap and
data-reductive predicates execute earlier in the plan. They also output
conditional query plans when predicate costs or selectivity vary (e.g.,
temp. > 40○C has low selectivity at night). However, they still require
predicate columns to be available on the inputs. We implement their
scheme in our query processing system and refer to it as SortP.
End-to-end results. Figure 10 illustrates the speed-up in cluster pro-
cessing time on 100 GBs of traffic surveillance videos relative to the
baseline without PPs (NoP). The queries on the x-axes are ordered in
increasing order of the speed-up. Table 8 reports the query execution
latency for different schemes when processing different amounts of
input. From Figure 10, we see that every scheme uses fewer resources
than NoP [36]; this is as expected, since in NoP all blobs go through
all UDFs. SortP [17] has a small speed-up (average is 1.2×) because
based on the ordering of predicates, when predicates have multiple
clauses, blobs that do not pass predicates early in the plan can avoid
being processed by the UDFs which generate columns for predic-
ates that are later in the plan. Note however that while SortP lowers
resource usage, it substantially increases the job latency because serial-
izing the predicates (and UDFs) leads to longer critical paths. We see
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Figure 10: Evaluating TRAF20 query set on 100 GB online data. The figure
shows the speed-up in cluster processing time relative to NoP, i.e., the total
resources used to answer a query by NoP divided by that used by each scheme.

System 33 GB 67 GB 100 GB
Query latency NoP [36] 0.37 0.69 1

PP (a=0.95) 0.22 0.39 0.61

Table 8: Normalized average query latency (including PP training/inference
overhead) on the TRAF-20 with different input sizes.

ID PP cons. #PPs PP inf. Sub.UDF Selectivity Reduction
4 27s 1 2ms 23ms 0.67 11%
8 68s 2 5ms 55ms 0.41 20%

20 155s 4 12ms 85ms 0.01 60%
Avg. 79s 2.5 6ms 52ms 0.20 59%

Table 9: Training and inference overhead for deploying PPs in online ma-
chine learning query processing. PP cons. is the PP construction time (nor-
malized to single thread) on 15K rows. PP inf. is the PP inference time per
row. Sub.UDF is the subsequent UDF cost per row. Selectivity, sp , is the frac-
tion of rows picked by query predicate. Reduction is NoP−PP

NoP where each term
is the cluster processing time to execute the query with the corresponding
scheme. Avg. is average over all TRAF-20 queries.

that our query processing system obtains large speed-ups in cluster
processing time as well as query latency; especially when accuracy
targets are relaxed. With an accuracy target of 1.0 (i.e., no false neg-
atives), queries receive an average speed-up of 1.4×. For a relaxed
accuracy target of 0.95, resource usage improvement ranges from
1.52× to 12.5× depending on the predicate and its selectivity, and the
average query in TRAF-20 speeds up by 3.2×. Furthermore the aver-
age query latency is 60% of the latency in NoP. These improvements
hold agnostic to data volumes; i.e., larger input sizes receive larger
reductions in latency as expected.
Details. Table 9 reports additional details on the costs of training
and applying PPs on some typical queries in TRAF-20 as well as
the average over all queries. We report here the time to train a PP
on one thread. We note in practice that multiple threads can be
used, model selection is done over sampled subsets and PPs trained
once are reused for other queries, all of which reduce the amortized
training latency per query.We see that PP training finishes inminutes.
The overhead of applying PPs is generally small, compared with the
subsequent machine learning UDFs. Our QO takes 80 to 100ms to
translate the query predicates into PP expressions and to parametrize
these expressions. Finally, the table also shows the selectivity of each
query predicate and the achieved data reduction in cluster processing
time (at a = 0.95). On average, we achieve a 59% reduction in cluster
processing time which is 74% of the theoretical maximum reduction
of 80% (because the average query selectivity is 0.20). This is a sizable
and promising speed-up for practical machine learning tasks. All of
the algorithmic modules in our system are implemented in C/C++.



PP Corpus Query predicate sel. # plans Est. r Picked and Alter. plans. (Est. r)

32 PPs t ∈ {SUV , van} 0.41 4 0.06–0.42 PPSUV ∨ PPvan (0.42), PP¬sedan ∧ PP¬truck (0.40), PP¬sedan (0.23)
s > 60 ∧ s < 65 0.05 18 0.02–0.79 PPs>60 ∧ PPs<65 (0.79), PPs>60∧s<70 (0.75), PPs>60 (0.55)

full coverage s > 60 ∧ s < 65 ∧ c = white ∧ t ∈ {SUV , van} 0.01 216 0.08–0.77 PPs>60 ∧ PPs<65 ∧ PP¬sedan ∧ PP¬truck ∧ PPwhite (0.77)
PPs>50 ∧ PPs<70 (0.43), PPs>60 ∧ PPs<65 ∧ PP¬sedan (0.52)

16 PPs half of t ∈ {SUV , van} 0.41 3 0.06–0.40 PP¬sedan ∧ PP¬truck (0.40), PP¬sedan (0.23)
above dropped s > 60 ∧ s < 65 0.05 6 0.02–0.75 PPs>60∧s<70 (0.75), PPs>60 (0.55)
at random% s > 60 ∧ s < 65 ∧ c = white ∧ t ∈ {SUV , van} 0.01 88 0.08–0.76 PPs>60 ∧ PPs<70 ∧ PP¬sedan ∧ PP¬truck ∧ PPwhite (0.76)

Table 10: For some example queries, understanding the nature of feasible PP expressions.

Query optimizer in action. To understand how the QO chooses PP
combinations, we show more detail for a few queries in TRAF-20. Re-
call from themethod description that there are five predicate columns
and our QO uses a corpus of 32 PPs while the number of possible
predicates is about 1004 . By construction this PP corpus completely
covers the space of the predicates, i.e., any possible predicate will
have at least one PP in the corpus that is a necessary condition. For
example, the vehicle type column t can take four different values
SUV , van, truck, sedan and the corpus contains PPs for t = SUV ,
t = van, t = truck and t = sedan. For numerical columns, we train
PPs for ≤ and ≥ comparisons on value boundaries, e.g., PPs for speed
are of the type s ≥ v1 ∈ {40, 50, 60} or s ≤ v2 ∈ {65, 70}. For typical
queries, Table 10 shows the query predicate, the number of avail-
able PP combinations that are feasible, the range of data reduction
rates achievable by the feasible PPs, the combination of available PPs
picked by the QO and the reduction rates for a few alternate plans.We
see that for many queries, the QO has a meaningful choice to make,
i.e., there are a lot of feasible PP combinations and picking one at
random is unlikely to yield close to the best possible data reduction.
The table also shows that the combination picked by the QO can
have multiple PPs even when the predicate has only a single clause.
Furthermore, the empirical observed reduction rates are close to the
estimated reduction rate and so the QO choice is nearly optimal. A
key point to emphasize is that because our QO prepares appropriate
PP combinations, the training overhead is reduced from per-query
(there are 1004 possible predicates) to just 32 PPs, one per simple
predicate clause. Table 10 also shows results for an even smaller PP cor-
pus, wherein for each predicate column we have randomly dropped
half of the PPs that are available on that column. We see that data
reduction rates of the best possible PP combination decrease but not
substantially. For example, for the predicate t ∈ {SUV , van}, data
reduction rate drops from 0.42 to 0.40.While more investigation and
empirical evidence is needed, our intuition is that a small corpus of
PPs suffices to provide sizable data reductions even when the space of
possible predicates is large (because a complex predicate will receive
data reduction as long as some combination of PPs in the corpus is a
necessary condition for the complex predicate).

9 RELATEDWORK
We reviewed some relevant works in §3 and in §8. Advanced indexing
techniques [18] and data cubes [20] leverage the predictable nature
of decision support queries and answer them directly from more
compact representation. However, these approaches do not work well
for machine learning inference on live streams such as audio and
video, where the queries are not known a priori or are more complex.

There is a rich literature on optimizing queries with predicates:
pushing predicates closer to input [49], optimal ordering of con-
junctions [22], normalizing disjunctive and other complex predic-
ates [30, 34] etc. When predicates rely on columns generated by user-
defined operators, [39] shows that performance-optimal ordering of
the UDFs and predicates is NP-hard. Our approach differs from these
works because it uniquely adds new probabilistic predicates (PPs)
rather than optimally ordering the existing predicates in the query.
Approximate predicates [44] are applied to pre-filter unlikely inputs
for expensive user-defined predicates; however they use the same
relation as the query predicates and are not for blobs. One recent
work observes that if existing column(s) in the data are correlated
with user-defined predicates, then a function over those column(s)
can be used to bypass the user-defined predicate [27]. While such
functions over correlated columns are (simple) PPs, in our experi-
ence, such correlated columns rarely exist for ML queries. Instead,
we train PPs using SVMs or kernel densities instead. For queries
that apply predictive models on relational data, [13] derives implied
predicates based on the details of the predictive model. Our approach
differs in two ways. First, PPs are trained without any knowledge of
the inference modules that are used in a query and hence PPs are
more broadly usable whereas [13] applies only to decision trees and
naive bayes classifiers and has a custom algorithm for each type of
predictive model. Second, PPs also apply on non-relational datasets.
NoScope [29] is a domain-specific model cascade for video data; it
uses background subtractors, frame sampling and a simple DNN in
front of the reference CNN and reports several orders of magnitude
improvement on video processing rate.While we show in Appendix B
comparable results on video datasets with simpler PPs, our system
differs from NoScope in supporting a wider range of queries (e.g.,
not just selections) and datasets (e.g., not only in the video domain).
IDK cascade [52] is another model cascade to accelerate heavy classi-
fication models using cheaper ones. The key difference is that PPs are
not functionally equivalent to the classifiers that they bypass and so
efficient PPs are available for a broader class of queries and datasets.

10 CONCLUSIONS
We focus on accelerating machine learning inference queries where
classic static or post-facto optimization techniques, such as building
indices or predicate push-down, are not feasible. Our key idea is to
use probabilistic predicates (PPs) which execute over the raw input,
without needing the predicate columns, and can successfully mirror
the original query predicates. While introducing only a configurable
amount of error, we show that PPs boost the performance of machine
learning queries by as much as 10× on various large-scale datasets.
This work is a first step towards our goal of optimizing the execution
of large-scale machine learning queries on big-data engines; many
open problems remain.
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A ADDITIONAL QODETAILS
A.1 Hardness of the QO problem.
Optimal choice of PPs to train: Given a query set and a constraint
on the overall training budget, consider the problem of choosing
which PPs to train so as to obtain the best possible speed-up over that
query set. Let TrainCostPPp be the cost to train PPp . Observe that
the PP for predicate p will help any query q for which p is a necessary
condition. Let QueriesPPp be the set of queries that will benefit if
PPp were to be trained. For each query q in this set, let rp(︀a⌋︀q denote
the data reduction rate achieved from using PPp on query q when
ensuring accuracy is above a. We also know that a query can use
more than one PPs. So, given a set of available PPs, 𝒫 , let r𝒫 (︀a⌋︀

q be
the best data reduction achieved by q through some combination of
PPs in 𝒫 . Finally, let𝒬 be the set of given queries, 𝒮 be the set of all
predicates in𝒬 as well as all necessary conditions of those predicates
and let T be the training budget. This problem becomes:

max
𝒫⊆𝒮

⎛

⎝
∑

q∈𝒬
r𝒫 (︀a⌋︀

q⎞

⎠
s.t. ∑

p∈𝒫
TrainCostPPp ≤ T . (11)

We show that this problem is NP-hard by reducing set cover to a
simple version of the above problem.
Proof: Recall that given a set of elements {1, 2, . . . , n} (called the uni-
verse) and a collection S of m sets whose union equals the universe,
the set cover problem is to identify the smallest sub-collection of S
whose union equals the universe. The reduction proceeds by creating
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a query for each element in the universe and a predicate correspond-
ing to each set in S with the understanding that training a PP for this
predicate will help all the queries whose elements belong to that set.
Hence, set the cost of training every PP to be the same and set the
reduction rates to be unit; that is a query will receive the maximum
benefit if it is covered by at least one PP. Note that the maximum
achievable benefit to these queries will be obtained only when the
union of the chosen sub-collection of sets equals the universe. To find
the smallest possible sub-collection of S, we can vary the training
budget from 1 to ⋃︀S⋃︀ = m and find the smallest training budget at
which the total benefit equals n. □

Optimal use of available PPs: Given a set of available PPs, 𝒫 , con-
sider the problem of finding a combination of PPs that offer the best
data reduction for a query q given accuracy target a. Let cp be the
cost and rp(︀a⌋︀ be the data reduction rate for a PP p ∈ 𝒫 . We can
show that this problem is NP-hard by reducing the knapsack problem
to a very simple version of the above problem.
Proof: For the purposes of this reduction, suppose that only con-
junctions of the available PPs are allowed. Furthermore, the above
problem has two parts: how to apportion the accuracy budget among
the available PPs and how to order the chosen PPs. Let us ignore the
second portion (ordering PPs), and the reduction then proceeds as
follows. Associate for each item a corresponding PP whose reduction
rate is equal to the value of the item if the accuracy budget to this PP
is at most log of the weight of the item and is zero otherwise. That is,
the PP will offer reduction rate (value) only if given at least as much
accuracy budget (weight). Set the log of the limit as the accuracy
budget; sum of logs is product of individual accuracy budgets as per
conjunction PP formula (Equation 9). □

A.2 Wrangling rules for complex predicates
Here we discuss how to wrangle predicate clauses so that they can be
exactly matched onto PPs.

● Not-equals check ( f (C) ≠ v): If the range of f (C) is finite and
discrete, then f (C) ≠ v ⇒ ⋁t∈Range( f (C))/v f (C) = t. For
example, if vehicle type ∈ {SUV , truck, car}, then type ≠
SUV ⇒ type = truck ∨ type = car. This wrangling is useful
if PPs exist only for the clauses on the left.

● Comparison: f (C) > v ⇒ f (C) > t,∀t ≤ v . The expres-
sion on the right relaxes the comparison and may be use-
ful if a PP has been trained for some value t. Another re-
write is possible when f (C) is finite and discrete, f (C) >
v ⇒⋁t∈Range( f (C)); t<v f (C) = t. Similar rewrites exist for
>, ≤, ≥.

● Range-check (v1 ≤ f (C) ≤ v2) is a special case of comparison
which is bounded on both sides and can be wrangled as above.

● No-predicate. If some columnset C in the query output has a
finite and discrete range, even a query with no predicate can
benefit from PPs because 1 ⇔ ⋁t∈Range(C) C = t. For the
above example of vehicle type, 1 ⇔ type = car ∨ type =
truck ∨ type = SUV .

A.3 Negation rewrites and other details
Recall the fourth predicate rewrite rule mentioned in §6.1:

Rule 4 : p ∧ (𝒫/p) ⇒ ¬PP¬p .

Figure 11 shows how such a PP can be used. This rule is quite powerful
because predicates that have high selectivity will not yield useful PPs
but their negations can achieve substantial data reductions. However,
the rule has somewhat narrower applicability. As shown in Figure 11,
blobs that fail the negative PP are output immediately; this requires
that the schema of the query output match the schema of the query
input; i.e., that the query be simply selecting a subset of blobs. Further,
the rule composes in a complex way with the other rules because its
application can lead to false positives.

input→ PP¬p
+
Ð→ Ω → p → output

−

Figure 11: Injected query plan for the pattern p⇒ ¬PP¬p

A.4 PP Seeding and pushdown rules
Table 11 describes our PP seeding and pushdown rules. We use a
placeholder to seed a possible PP, denoted Xp , and attempt to push
the placeholder down using these rules until it executes directly on
the raw input; note that only predicates on a raw input can possibly
be replaced with some combination of PPs. If not possible, the place-
holder is simply omitted by the QO from the final plan. In the first
rule, the expression on the right is less accurate, i.e., it has a given
amount of false positives and false negatives. For each subsequent
rule, the expressions have equivalent accuracy but the one on the
right can be more performant. Some rules hold only under certain
conditions. Pushdown below selection requires that the predicates p
and q are independent. For the foreign-key join rule, let R and S be
rowsets being equijoined on columnset𝒟 which is a primary key for
S and a foreign key for R. This rule holds if the selection performed
implicitly by the foreign-key join (recall: each row from R contributes
at most one row to the join output) is independent of the predicate
p. Finally, the pushdown rules for project change the columns in the
predicate to invert the effect of the projection.

Seed PP for select σp(R)
∼
⇔ σp(Xp(R))

PP over select Xp(σq(R))
∗
⇔ σq(Xp(R)) (additional conditions

needed)
PP over foreign-key
joins

Xp(R &𝒟 S)
∗
⇔ Xp(R) &𝒟 S if pc ⊆ Rc (additional

conditions needed)
PP over col renam-
ing project

Xp(π𝒞a→𝒞b (R))
∗
⇔ π𝒞a→𝒞b (Xp𝒞a→𝒞b

(R))

PP over project cre-
ating new columns

Xp(π f (𝒟)=d(R))
∗
⇔ π f (𝒟)=d(Xpd→ f (𝒟)(R))

Table 11: Pushdown rules for probabilistic predicates. See §A.4.

A.5 PPs on dependent predicates
In our experiments we have observed reasonable performance for
queries with multiple PPs. However, if the PPs upon multiple predic-
ate columns are dependent, the cost and reduction rate estimation
and therefore the PP planning will be suboptimal. In such case, we
apply a runtime fix. If we observe that the PP cost and reduction rate
at runtime differ dramatically from their estimations, we flag such
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Figure 12: Left: Original pipeline for video object detection; the reference
DNN is applied on every video frame. Right: Pipeline for NoScope. Rel. BS:
relative background subtraction. Ref. DNN: reference DNN.
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predicates as possibly dependent so that the QO will only use one
PP (and not a combination of dependent PPs) in the future for that
predicate. We also note that because practical accuracy targets are
very close to 1, the independence assumption can be replaced with
an upper bound that is fairly tight.

B SUPPLEMENTARY EXPERIMENTS
Comparison with NoScope. NoScope [29] is a system that retrieves
video frames containing certain objects such as vehicles or persons.
NoScope uses video-specific redundancy detection and light-weight
DNNs so that the expensive DNN object detector needs to process
only a few of the video frames. Figure 12 shows the original pipeline
for video object detection on the left and that used by NoScope on
the right. We constructed a similar pipeline inspired by PPs as shown
in Figure 13. The salient differences in our pipeline are three-folds.
(1) We apply a mask to eliminate unimportant video frame regions,
whereas NoScope has a full scope. (2) We improve the background
subtraction to a two-stage scheme. (3) To filter frames early, we use
simple SVMs instead of the DNNs used by NoScope.

In more detail, our pipeline consists of: (1) Masked sampler. As
in NoScope, we sample the video frames with different sampling
rates such as 1-in-15 frames or 1-in-30 frames. We also use a mask
to restrict the area-of-interest, i.e., to remove areas in the frame that
have low information. An example is the area in blue in Figure 14
which will not contain any target object; such masks are available for
most fixed surveillance cameras. (2)Absolute Background Subtraction.
We use a two-stage background subtraction (BS). The first absolute
BS eliminates any object against an empty footage (NoScope also
uses this). (3) Relative Background Subtraction. A similar BS module
is used to compare the current frame with the previous frame; this
module detects motion. Again we compute the difference area, and
if the area is below a threshold, we use the previous frame detection
result. (4) PP. We apply an SVM PP on the raw input. Unlike the
PPs used elsewhere in this paper, we configure two thresholds to not
only reject blobs that are unlikely to match the predicate but also to
accept blobs that are likely to match; this mimics a similar aspect
of NoScope. We perform the experiments on the coral video clip
provided by the NoScope authors. The video is 12 hours long. We

Figure 14: Left: we apply a mask, shown in blue, on the surveillance video to
restrict and accelerate the detection. Right: relative background subtraction
result; white regions are with motion.

System Video Data reduction Pipeline Accuracy
Pre-Proc. Early drop Speed-up

NoScope [29] coral 0.998 ∼0.90 3500x 0.998
coral 0.998 ∼0.95 5000x 0.98

PP coral 0.993 0.93 3000x 0.997
coral 0.9997 0.90 8200x 0.98

square 0.967 0.76 1300x 0.912

Table 12: Comparison with NoScope on the coral video clip. We show the
data reduction rate during pre-processing (Pre-Proc.) as well as that due to us-
ing lightweight pre-computation. Square is another video that was provided
by the NoScope authors but we did not find corresponding published results
in their paper.

Dataset PP ts=30% ts=40% ts=50%
SUNattribute PCA+KDE .31/.92/6s .32/.95/7s .35/.96/8s

UCF101 PCA+KDE .46/.92/10s .51/.97/12s .54/.98/14s
UCF101 RAW+SVM .26/.87/1s .39/.94/1s .43/.96/2s
LSHTC FH+SVM .40/.95/1s .45/.97/1s .48/.98/1s
COCO DNN* - - .81/.99/110s

Table 13: For different PPmethods on different datasets, with different train-
ing set sizes (ts=30%–50%) and an accuracy target of 0.99, the values shown
in each table entry are the average data reduction rate/ the achieved accuracy/
and the training time per 1000 inputs. * denotes experiments using a GPU.

train our SVM on the initial 10K frames. All of the components in
our pipeline are implemented in C/C++ and OpenCV.

As shown in Table 12, our pipeline achieves comparable if not
better performance. Notably, more than 99.3% of the frames are
filtered in the pre-processing stage itself. SVM filters are easier to
train and execute and do not require a GPU. Among all the 1.2M video
frames, in our pipeline, only hundreds of frames are processed by the
reference DNN object detector. NoScope, on the other hand, requires
GPUs to execute its lightweight DNNs and requires considerable
per-query training overhead to build these DNN filters. We also
note a few more points. (1) DNN-based early filters do not appear
necessary for the surveillance videos used by NoScope. Although, as
we saw with the case of ImageNet, they are needed in other cases.
(2) Such pipelines are only amenable for selection queries since the
early filters both accept and reject frames. PPs on the other hand
only reject frames that will not contribute to the actual answer. (3)
Such pipelines require per-query training whereas in this paper we
extend to ad-hoc queries by constructing PPs for simple predicates
and using the QO to construct appropriate combinations of available
PPs for a given query.
How much training data is needed to construct PPs? Table 13
demonstrates the empirical data reduction rate and accuracy on the
test sets with different training sizes; PCA, if used, is based on the
same 1K rows. We note that more training data usually leads to better
PP classifiers in terms of reduction rate and accuracy. The training



Figure 15: Demonstration of different PP outputs on COCO. The figure shows confidences f for 4 different PPs. See text for explanation.

Figure 16: Demonstration of different PP outputs. The PPs are trained on COCO and applied on ImageNet. The figure shows confidences f for 4 different PPs.

cost grows sub-linearly with the training set size primarily because
PCA (for dimension reduction) has a considerable fixed cost. How-
ever, since the PCA basis is specific to a dataset, it can be reused across
PPs (we have not accounted for this above). We use feature hashing
for the document analysis dataset (which is sparse); FH is extremely
efficient, and combined with the linear SVM produces useful PPs.
On the other hand, although with impressive data reduction rates,
training cost for DNNs is relatively enormous.
Demonstrating PPs. Figure 15 visually demonstrates how PPs work.
We show for several example images, the confidence value computed
for four different PPs: ‘has person’, ‘has bicycle’, ‘has car’ and ‘has dog’.
Recall that a PP would drop blobs (images in this case) whose confid-
ence is below a threshold that is chosen based on desired accuracy;
the more blobs that can be dropped the larger the data reduction.

It is easy to see from these images that the gap between the con-
fidence for appropriate labels and inappropriate labels is large. PP
trained for ‘has person’ with a confidence threshold of 0.9 will achieve
a data reduction of 58% and an accuracy of 100%; this is the best pos-
sible data reduction because 5-out-of-12 pictures have a person in
them. PPhas_dog with a 0.7 confidence threshold will achieve a data
reduction of 83% and accuracy of 100%.These PPs use as input the raw
pixels from images. Finally, Figure 16 shows details for PPs trained
on COCO being applied on ImageNet.
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