
47

On Automatically Proving the Correctness of math.h
Implementations

WONYEOL LEE˚, Stanford University, USA

RAHUL SHARMA,Microsoft Research, India

ALEX AIKEN, Stanford University, USA

Industry standard implementations of math.h claim (often without formal proof) tight bounds on floating-

point errors. We demonstrate a novel static analysis that proves these bounds and verifies the correctness

of these implementations. Our key insight is a reduction of this verification task to a set of mathematical

optimization problems that can be solved by off-the-shelf computer algebra systems. We use this analysis

to prove the correctness of implementations in Intel’s math library automatically. Prior to this work, these

implementations could only be verified with significant manual effort.

CCS Concepts: • Software and its engineering → Formal software verification; Correctness; • Math-
ematics of computing → Mathematical software;

Additional Key Words and Phrases: floating-point, verification, transcendental functions, rounding error,

correctness

ACM Reference Format:
Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2018. On Automatically Proving the Correctness of math.h
Implementations. Proc. ACM Program. Lang. 2, POPL, Article 47 (January 2018), 32 pages. https://doi.org/10.

1145/3158135

1 INTRODUCTION
Industry standard math libraries, such as Intel’s implementation of math.h, have very strict cor-

rectness requirements. In particular, Intel guarantees that the maximum precision loss, i.e., the
difference between the computed floating-point value and the actual mathematical result, is very

small. However, to the best of our knowledge, this claim is not backed by formal proofs. Establishing

the correctness of these implementations is non-trivial: the error bounds are tight (see below),

floating-point operations have rounding errors that are non-trivial to reason about, and these

high performance libraries are full of undocumented code optimization tricks. We describe a novel

automatic verification technique capable of establishing the correctness of these implementations.

For example, consider the sin function of math.h. Since it is a transcendental, for most floating-

point inputs, sinx is an irrational number inexpressible as a 64-bit double precision floating-point

number. Most standard libraries guarantee that the maximum precision loss is strictly below one

ulp, i.e., if the exact mathematical result sinx is in the interval pd1,d2q where d1 and d2 are two
consecutive floating-point numbers, then the computed result is generally either d1 or d2. This

˚
Author did part of the work as a research intern at Microsoft Research Bangalore, India.

Authors’ addresses: Wonyeol Lee, Computer Science, Stanford University, USA, wonyeol@cs.stanford.edu; Rahul Sharma,

Microsoft Research, India, rahsha@microsoft.com; Alex Aiken, Computer Science, Stanford University, USA, aiken@cs.

stanford.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/1-ART47

https://doi.org/10.1145/3158135

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.

https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135
https://doi.org/10.1145/3158135


47:2 Wonyeol Lee, Rahul Sharma, and Alex Aiken

requirement is difficult to meet because of floating-point rounding errors. Consider, for example,

what happens if we implement x4 using x ˚ x ˚ x ˚ x. For some inputs the precision loss of this

implementation is more than one ulp.

An algorithm for computing sinx was verified to be correct, i.e., meeting the one ulp bound, for

any x P r´2
63,263s by Harrison using the proof assistant HOL Light [Harrison 2000b]. Constructing

such machine-checkable proofs requires a Herculean effort and Harrison remarks that each proof

can take weeks to months of manual effort [Harrison 2000a]. In our own recent work [Lee et al.

2016], we proved an error bound of 9 ulps for Intel’s sin implementation over the input interval

r´ π
2
, π
2

s automatically, i.e., in most cases there can be at most 9 floating-point numbers between the

computed and the mathematically exact result for any input in r´ π
2
, π
2

s. In this paper, we focus on

automatically proving much tighter error bounds. We describe an analysis that is fully automatic

and, for example, proves that the maximum precision loss of sin is below one ulp over the input

interval r´π ,π s.

The main source of imprecision in previous work stems from modeling every floating-point

operation as having a rounding error about which worst-case assumptions must be made. However,

floating-point operations do not always introduce rounding errors. In particular, there are several

exactness results that describe conditions under which floating-point operations are exact, i.e., the
floating-point operation gives the mathematical result. For example, although 2

100 ´ 1 “ 2
100

(due

to rounding errors), 0.5 ´ 0.25 is exactly equal to 0.25 in floating-point arithmetic. An important

example of such an exactness result is Sterbenz’s theorem [Sterbenz 1973], which says that when

two floating-point numbers are close to each other then their subtraction is exact. Our approach to

improving the provable error bounds is to identify floating-point computations that are exact and

thus avoid introducing unneeded potential rounding errors into the modeling of those computations.

Our main technical contribution is in reducing the problem of checking whether an exactness

result applies to a set of mathematical optimization problems that can be solved soundly and

automatically by off-the-shelf computer algebra systems. For example, our analysis checks the

closeness conditions in Sterbenz’s theorem by solving four optimization problems.

We apply this analysis to the benchmarks of [Lee et al. 2016; Schkufza et al. 2014], i.e., Intel’s
sin, tan, and log. For log, we prove that for all valid inputs the precision loss is below one ulp.

We are not aware of any other formal correctness proof of this implementation. Previous to this

work, the best known provable error bound for log was 10
14
ulps by [Lee et al. 2016], which says

the implementation is provably correct only up to two decimal digits. We note that our proof is

computationally intensive and took more than two weeks of computation time on 16 cores (but is

also highly parallelizable). Next, we prove the correctness of sin for inputs between ´π and π .
Recall that sinx is periodic and our results can be extended to all valid inputs at the expense of

more computational resources. For tan, we proved correctness only for a part of the input interval.

In particular, our abstractions lose precision and the inferred bounds, though sound, are imprecise

for inputs near
π
2
(§7). The previously known bounds for tan were loose (up to several orders of

magnitude greater than the bounds we prove) and are sometimes not guaranteed to be sound [Lee

et al. 2016].

Our main contributions are as follows:

‚ We show a novel automatic analysis that systematically uses exactness results about floating-

point arithmetic. In particular, the analysis verifies that the result of a floating-point operation

is exact by solving several mathematical optimization problems soundly.

‚ We describe the first technique that automatically proves the correctness of transcendental

functions in industry standard math libraries. Prior to this work, these implementations could

only be verified with significant manual effort.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:3

‚ We present the properties of floating-point used in these proofs. Some of these properties are

only well-known to floating-point experts, and others are new in the sense that they have

not been stated explicitly in the literature.

The rest of the paper is organized as follows. §2 motivates our analysis using an example.

§3 discusses the basics of floating-point and rounding errors. §4 and §5 present the two major

components of our method: An abstraction of floating-point is described in §4 and proven to be

sound; the analysis is described in §5. The analysis uses some well-known results (§5.1, 5.2, 5.3, 5.6)

and other results about floating-point that we have proven (§5.4, 5.5) and found useful. §6 mentions

some interesting implementation details and §7 evaluates the analysis on a number of functions

from math.h. Finally, §8 discusses related work and §9 concludes.

2 MOTIVATION
We discuss an example on which standard analyses produce very imprecise bounds and show how

the precision can be recovered by applying exactness results. Consider Intel’s log implementation

of the natural logarithm function over the input interval X “ r4095{4096,1q. The complete log
implementation is quite complicated but if we restrict the inputs to the small interval X , it can be

significantly simplified. For an input x P X , log first computes the following quantity:

rpxq “

ˆˆ

p2 b xq a
255

128

˙

b
1

2

˙

‘

ˆˆ

255

128

b
1

2

˙

a 1

˙

(1)

where f denotes the floating-point operation corresponding to the real-valued operation ˚ P

t`,´,ˆ,{u. Then log returns vpxq “ v3 ‘v2 ‘v5 ‘v4 ‘v1, where v1, ¨ ¨ ¨ ,v5 are computed as:

v1 “ pd1 b nq ‘ t1 ‘ r

v2 “ pd1 b nq ‘ t1 av1 ‘ r

v3 “ pd2 b nq ‘ t2

v4 “ rc2 ‘ pc3 b rq ‘ pc4 b pr b rqqs b pr b rq

v5 “ rppc5 ‘ pc6 b rqq b rq ‘ pc7 b r b pr b rqqs b ppr b rq b pr b rqq

Here every floating-point operation is assumed to be left-associative, r denotes rpxq, and the

floating-point constants ci , di , ti , and n are ci « p´1qi`1{i (i “ 2, ¨ ¨ ¨ ,7), d1 « plog 2q{16, d2 «

plog 2q{16 ´ d1, t1 « log 2, t2 « log 2 ´ t1, and n “ ´16, where log x is the natural logarithm

function.

A standard technique to automatically bound the maximum precision loss of such a floating-

point implementation is the well-known p1 ` ϵq-property (§3). The property states that for any

mathematical operator ˚ P t`,´,ˆ,{u, the result of a floating-point operation afb is pa˚bqp1`δq

for some |δ | ă 2
´53

. By applying the p1 ` ϵq-property to each floating-point operation of rpxq, we

obtain the following abstraction Apxq of rpxq:

Apxq fi

„ˆˆ

p2xqp1 ` δ0q ´
255

128

˙

p1 ` δ1q ˆ
1

2

˙

p1 ` δ2q `

ˆˆ

255

128

ˆ
1

2

˙

p1 ` δ3q ´ 1

˙

p1 ` δ4q

ȷ

p1 ` δ5q

“ px ´ 1q `

ˆ

x ´
255

256

˙

δ1 ` ¨ ¨ ¨ (2)

where each δi ranges over p´2
´53,2´53q. We callApxq an abstraction as it over-approximates rpxq,

i.e., @x P X .Dδ0, ¨ ¨ ¨ ,δ5. rpxq “ Apxq. Observe that the rounding errors accumulate with each

floating-point operation, and the maximum precision loss of the final result vpxq (a polynomial in

rpxq) is at least as large as the maximum precision loss of rpxq. Using the abstraction Apxq of rpxq,

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:4 Wonyeol Lee, Rahul Sharma, and Alex Aiken

1: Let x “ 2
p ˆ 1.д2 ¨ ¨ ¨д53 p2q

2: Compute s “ 1.д2 ¨ ¨ ¨д53 p2q and s
1 “ 1.д2 ¨ ¨ ¨д80 ¨ ¨ ¨ 0 p2q

3: Compute sinv “ 2
q ˆ 1.h2 ¨ ¨ ¨h80 ¨ ¨ ¨ 0 p2q such that sinv « 1{s

4: Compute rpxq “ ps a s 1q b sinv ‘ ps 1 b sinv a 1q

Fig. 1. The computation of rpxq in Intel’s implementation log of the natural logarithm function.

the maximum relative error of rpxq is bounded by:

max

xPX ,|δi |ă2
´53

ˇ

ˇ

ˇ

ˇ

Apxq ´ px ´ 1q

x ´ 1

ˇ

ˇ

ˇ

ˇ

Because of the term px ´ 255

256
qδ1 in the abstraction Apxq of rpxq, this error is at least

max

xPX

ˇ

ˇ

ˇ

ˇ

ˇ

x ´ 255

256

x ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ϵ (3)

Unfortunately the objective function in Eq. 3 is unbounded for x P X , and thus, using this analysis,

we are unable to bound the maximum relative error of the result.

A more precise analysis can bound the maximum relative error of rpxq. The key insight is that

some floating-point operations in Eq. 1 are exact and do not introduce any rounding errors. In

particular, the subtraction operations in Eq. 1 are exact according to Sterbenz’s theorem:aab is exact
whenever a is within a factor of 2 ofb (§5.2). Here, x P r4095{4096,1q and hence 1

2
¨ 255
128

ď 2x ď 2¨ 255
128

holds. Moreover, multiplication and division by 2 are also exact (§5.1). Using this information, we

can construct a more precise abstraction of rpxq. In particular, for an exact operation a f b, we
have a f b “ a ˚ b and we do not need to introduce δ variables. Since all the operations except

‘ in Eq. 1 are exact, we have rpxq “
``

2x ´ 255

128

˘

ˆ 1

2

˘

‘
``

255

128
ˆ 1

2

˘

´ 1

˘

. Therefore, by applying

the p1 ` ϵq-property only once to the operation ‘, we obtain the following abstraction A1pxq of

rpxq which is more precise than Eq. 2:

A1pxq fi

„ˆˆ

2x ´
255

128

˙

ˆ
1

2

˙

`

ˆˆ

255

128

ˆ
1

2

˙

´ 1

˙ȷ

p1 ` δ 1q “ px ´ 1q ` px ´ 1qδ 1

where δ 1
ranges over p´2

´53,2´53q. We use this more precise abstraction to find a better bound on

the maximum relative error of rpxq:

max

xPX ,|δ 1|ă2
´53

ˇ

ˇ

ˇ

ˇ

A1pxq ´ px ´ 1q

x ´ 1

ˇ

ˇ

ˇ

ˇ

ď 2
´53

(4)

Note that A1pxq does not contain the term px ´ 255

256
qδ1 unlike Apxq (Eq. 2), and we do not need to

solve the optimization problem of Eq. 3 that has an unbounded objective. In our analysis of log,
this step is the key to improving the error bound from the previously published bound of 10

14
ulps

to 0.583 ulps (§7).
In general, for any 64-bit double precision floating-point number (or any double) x ě 2

´1022
,

log computes the quantity rpxq as described in Figure 1. The log implementation first extracts

the exponent p and the 53-bit significand 1.д2 ¨ ¨ ¨д53 p2q of the double x (line 1), and constructs

two doubles s and s 1
that represent the significand of x and the result of masking out the 45 least

significant bits of the significand, respectively (line 2). It then computes a double sinv that is close to

1{s while having only an 8-bit significand (line 3). Using doubles s , s 1
, and sinv , log computes rpxq

that approximates s ˆ sinv ´ 1 (line 4). Note that, if we restrict inputs to r4095{4096,1q, s “ 2 b x ,
s 1 “ 255{128, sinv “ 1{2, and line 4 becomes Eq. 1.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:5

By using additional properties of floating-point arithmetic, we can show that all the operations

except the addition ‘ in line 4 of Figure 1 are exact for any input x ě 2
´1022

. The operation a

in s a s 1
is exact according to the Sterbenz’s theorem, because s 1{2 ď s ď 2s 1

for any x ě 2
´1022

.

The multiplication b in ps a s 1q b sinv is also exact according to the following property: a b b is

exact whenever σpaq ` σpbq ď 53, where σpdq for a double d denotes the number of significand

bits of d that are not trailing zeros (§5.4). Note that σps a s 1q ď 45 because the 8 most significant

bits 1,д2, ¨ ¨ ¨ ,д8 of s and s
1
are cancelled out during the subtraction s a s 1

, and that σpsinv q ď 8

by the definition of sinv ; thus, we have σps a s 1q ` σpsinv q ď 53 for any x ě 2
´1022

. Similarly, we

can show that the two operations in s 1 b sinv a 1 are also exact, using Sterbenz’s theorem and the

property of σp¨q.

Based on the above exactness results, we can tightly bound the maximum relative error of rpxq

for any x ě 2
´1022

. Since all the operations except ‘ in line 4 of Figure 1 are exact, the following is

an abstraction of rpxq for any x ě 2
´1022

by the p1 ` ϵq-property:

A2pxq fi rps ´ s 1q ˆ sinv ` ps 1 ˆ sinv ´ 1qsp1 ` δ2q “ ps ˆ sinv ´ 1q ` ps ˆ sinv ´ 1qδ2

where δ2
ranges over p´2

´53,2´53q. Using the abstraction A2pxq of rpxq, the maximum relative

error of rpxq for any x ě 2
´1022

is bounded by

max

xě2
´1022,|δ2|ă2

´53

ˇ

ˇ

ˇ

ˇ

A2pxq ´ ps ˆ sinv ´ 1q

s ˆ sinv ´ 1

ˇ

ˇ

ˇ

ˇ

ď 2
´53

This analysis generalizes the previous result (Eq. 4) that the maximum relative error of rpxq is

bounded by 2
´53

for x P r4095{4096,1q to the larger input interval x ě 2
´1022

. Note that we

cannot obtain such tight bounds on the maximum relative error without proving the exactness of

floating-point operations.

In the next three sections, we describe an analysis that automatically exploits such non-trivial

properties of floating-point arithmetic to tightly bound the maximum precision loss of floating-

point implementations. After defining metrics for precision loss, we present all the properties of

floating-point used in our analysis. Some of these are well-known to floating-point experts but not

to others, and some properties are new in the sense that they have not been stated explicitly in the

literature. Our main contribution is a reduction from the problem of automatically applying these

properties to mathematical optimization problems. For example, optimization problems are used to

check preconditions of the properties we use above (e.g., whether two values are within a factor of

2) and to compute relevant quantities (e.g., σp¨q).

3 BACKGROUND
A 64-bit double precision floating-point number (or a double) is defined as follows:

Definition 3.1. x P R is a double if for some s P t0,1u, дi P t0,1u (1 ď i ď 53), and p P Z,

x “ p´1qs ˆ 2
p ˆ д1.д2 ¨ ¨ ¨д53 p2q

where either (a) ´1022 ď p ď 1023 and д1 ‰ 0, or (b) p “ ´1022 and д1 “ 0 holds. We call s
the sign, p the exponent, and д1.д2 ¨ ¨ ¨д53 p2q the significand of the double x . We call x a subnormal
number if (b) holds.

Let F Ă R denote the set of all doubles including subnormals. We say x P R is in the subnormal
range if |x | ă 2

´1022
. In this paper F does not include ˘8 and NaN (not-a-number) which are

part of the IEEE 754 standard. These can be introduced by overflows and divide-by-0 errors and

we prove their absence for our benchmarks (§6). Furthermore, we do not discuss single-precision

floating-point numbers as 32-bit math.h implementations can be verified by exhaustive testing.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:6 Wonyeol Lee, Rahul Sharma, and Alex Aiken

To define floating-point operations, we first define a rounding fl : R Ñ F that converts a real
number to a double, as follows:

flprq fi argmin

dPF
|r ´ d|

The ties are broken by choosing the d with 0 in the least significant position. We use the “rounding

to nearest even” instead of other rounding modes (e.g., “rounding toward 0”) to define flp¨q, since it

is the default rounding mode for doubles in the IEEE 754 standard. Our techniques in this paper are

easily extended to support other rounding modes by modifying Theorem 3.2. Using the rounding

function flp¨q, we define a floating-point operation f as

x f y fi flpx ˚ yq

where ˚ P t`,´,ˆ,{u andx ,y P Fwith |x ˚ y| ď maxF. Here the operationwithout a circle denotes
a real-valued operation, while one with a circle denotes a floating-point operation. Throughout the

paper, we assume that each floating-point operation is left-associative.

The rest of this paper relies heavily on the following p1 ` ϵq-property that enables us to model

the rounding error of a floating-point operation:

Theorem 3.2. Let x ,y P F and ˚ P t`,´,ˆ,{u. Assume |x ˚ y| ď maxF. Then,

x f y “ px ˚ yqp1 ` δq ` δ 1

for some |δ | ă ϵ and |δ 1| ď ϵ 1, where ϵ fi 2
´53 and ϵ 1 fi 2

´1075 are constants.

The p1 ` ϵq-property states that each floating-point operation can introduce two kinds of errors, a

multiplicative error modeled by δ and an additive error modeled by δ 1
, but that each type of error

is always bounded by very small constants ϵ and ϵ 1
respectively, regardless of the operands x and

y. Here the constant ϵ is often called the machine epsilon.

To measure the rounding errors, we define three metrics: the absolute error, the relative error,

and the ulp (units in last place) error. Let r P R be an exact value and r 1 P R be an approximation.

The two standard metrics, the absolute/relative error of r 1
with respect to r , are defined as

ErrAbspr ,r 1q fi |r ´ r 1|, ErrRelpr ,r 1q fi

ˇ

ˇ

ˇ

ˇ

r ´ r 1

r

ˇ

ˇ

ˇ

ˇ

To define the ulp error, we introduce the ulp function ulpp¨q:

ulpprq “

#

2
k´52

for |r | P r2k ,2k`1q, where k P r´1022,1023s X Z

2
´1074

for |r | P r0,2´1022q

ulpprq represents the gap between two adjacent doubles x ,y P F that surrounds r , i.e., x ď r ă y if

r ě 0, and x ă r ď y if r ă 0. Using the ulp function ulpp¨q, the ulp error of r 1
with respect to r is

defined as

ErrUlppr ,r 1q fi
|r ´ r 1|

ulpprq

For example, the ulp error of a floating-point operation with respect to the corresponding exact

operation is always bounded by 0.5 ulps: ErrUlppx ˚ y,x f yq ď 1{2 for any x ,y P F with |x ˚ y| ď

maxF. Although the absolute/relative errors are widely known, the ulp error is more commonly

used than the other two when measuring the rounding error of math libraries. The absolute error

can be large even when the result is incorrect only in the least significant bit. The relative error

does not suffer from this problem but it is undefined at r “ 0. On the other hand, the ulp error

is proportional to the relative error (Theorem 3.3), is always defined, and hence is preferable.

Therefore, this paper focuses on the ulp error of floating-point implementations.

The ulp error is closely related to the relative error in the following way:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:7

expression e ::“ c | x | e f e | bit-maskpe,Bq

floating-point constant c P F
floating-point operation f P t‘,a,b,mu

bit-mask constant B P t1,2, ¨ ¨ ¨ ,52u

Fig. 2. The abstract syntax of our core language

Theorem 3.3. Let r P r´maxF,maxFs and r 1 P R. Then,

ErrUlppr ,r 1q ď ErrRelpr ,r 1q ¨
1

ϵ
if r ‰ 0

ErrRelpr ,r 1q ď ErrUlppr ,r 1q ¨ 2ϵ if |r | ě 2
´1022

As a corollary of the theorem, we have ErrUlppr ,r 1q P rErrRelpr ,r 1q{p2ϵq,ErrRelpr ,r 1q{ϵs for any

|r | P r2´1022,maxFs and r 1 P R.
We remark that slightly different definitions of the ulp function have been proposed [Muller

2005]: for example, [Goldberg 1991], [Harrison 1999], and [Kahan 2004]. However, these definitions

coincide on almost all doubles: Harrison’s and Kahan’s definition are identical on F, and Goldberg’s
definition is identical to the other two on Fzt2k : k P Zu. In this paper, we use Goldberg’s definition

for ulpp¨q, as it is the most widely known.

4 ABSTRACTION
In this section, we describe the syntax of the floating-point expressions we consider, the abstraction

that over-approximates behaviors of an expression, and the abstraction process.

Figure 2 defines the abstract syntax of the core language for our formal development. An

elementary expression e can be a 64-bit floating-point constant c , a 64-bit floating-point input x , an
application of a floating-point operation f to subexpressions, or an application of the bit-mask

operation bit-maskp¨, ¨q to a subexpression. The bit-mask operation bit-maskpe,Bq masks out B
least significant bits of e’s significand (1 ď B ď 52). For brevity, we describe our techniques for

elementary or uni-variate expressions, but they can easily be extended to expressions with multiple

inputs. Let X Ă R denote the input interval of an expression, i.e., the floating-point input x P X .
And let Epeq : X XFÑ F denote the concrete semantics of the language, i.e., the result of evaluating
e over an input x P X X F is given by Epeqpxq.

In the remaining parts of this paper, we use the following abstraction to over-approximate the

behaviors of an expression e:

Aδ⃗ pxq “ apxq `
ÿ

i

bi pxqδi where |δi | ď ∆i

The abstraction Aδ⃗ : X Ñ R is a function of x P X and δ⃗ “ pδ1, ¨ ¨ ¨ ,δnq P Rn , where each

δi represents a rounding error. Aδ⃗ pxq consists of two parts: apxq and the sum over bi pxqδi . The

first part apxq represents the exact result of e on an input x , which is obtained by replacing every

floating-point operation in e with its corresponding real-valued operation and by ignoring every bit-

mask operation. In particular, for our benchmarks apxq is non-linear, i.e., composed of polynomials

and rational functions in x . In the second part bi pxqδi represents an error term that arises from the

rounding error of one or more floating-point/bit-mask operation(s). Here the variable δi P r´∆i ,∆i s,

where ∆i P Rě0 is a constant. This abstraction is similar to the one described in [Solovyev et al.

2015].

We next define sound abstractions of expressions as follows:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:8 Wonyeol Lee, Rahul Sharma, and Alex Aiken

Definition 4.1. Aδ⃗ pxq is a sound abstraction of e if @x P X X F. Epeqpxq P tAδ⃗ pxq : |δi | ď ∆iu.

The abstractions form a partial order: Aδ⃗ pxq Ď A1

δ⃗ 1 pxq if @x P X X F. tAδ⃗ pxq : |δi | ď ∆iu Ď

tA1

δ⃗ 1 pxq : |δ 1
i | ď ∆1

iu. The abstractions higher up in the order are more over-approximate. The

goal of this section is to construct a sound abstraction of a given expression.

Before describing how to construct such an abstraction, we define the four elementary operations

on abstractions that over-approximate their real-valued counterparts. They are defined as:

Aδ⃗ pxq ‘A1

δ⃗ pxq fi Aδ⃗ pxq `A1

δ⃗ pxq

Aδ⃗ pxq aA1

δ⃗ pxq fi Aδ⃗ pxq ´A1

δ⃗ pxq

Aδ⃗ pxq bA1

δ⃗ pxq fi linearizepAδ⃗ pxq ˆA1

δ⃗ pxqq

Aδ⃗ pxq mA1

δ⃗ pxq fi Aδ⃗ pxq b invpA1

δ⃗ pxqq

Observe that ‘ and a are defined simply as ` and ´. On the other hand, the real-valued multipli-

cation of two abstractions may not be an abstraction because of δiδ j terms. To soundly remove

such quadratic δ terms, we introduce a new operation linearizep¨q:

linearize

˜

apxq `
ÿ

i

bi pxqδi `
ÿ

i,j

bi,jpxqδiδ j

¸

fi apxq `
ÿ

i

bi pxqδi `
ÿ

i,j

bi,jpxqδ 1
i,j

where |δ 1
i,j | ď ∆i∆j

Here δ 1
i,j is a fresh variable ranging over r´∆i∆j ,∆i∆j s. Using the new operation, b is defined

as the application of linearizep¨q to the real-valued multiplication of two abstractions. Note that

this abstraction is more precise than the ones considered in prior work that either bound all the

quadratic error terms by one ulp [Lee et al. 2016] or bound the coefficients of the quadratic terms

by constants obtained via interval analysis [Solovyev et al. 2015]. These constants can lead to

imprecise ulp error bounds when apxq « 0 and we give an example at the end of this section.

To define m, it is enough to define the operation invpAδ⃗ pxqq that over-approximates the inverse

of Aδ⃗ pxq. We first over-approximate Aδ⃗ pxq “ apxq `
ř

i bi pxqδi to obtain a simpler abstraction

apxq ` apxqδ 1
that has only one δ term, and then over-approximate the inverse of the simplified

abstraction,
1

apxq`apxqδ 1 “ 1

apxq
¨ 1

1`δ 1 , to obtain the final abstraction. This is formalized as:

inv

˜

apxq `
ÿ

i

bi pxqδi

¸

fi
1

apxq
`

1

apxq
δ2

where |δ2| ď
∆1

1 ´ ∆1
passumes ∆1 ă 1q

Here δ2
is a fresh variable and ∆1

is obtained by solving the following optimization problem:

∆1 “
ÿ

i

max

xPX

ˇ

ˇ

ˇ

ˇ

bi pxq

apxq

ˇ

ˇ

ˇ

ˇ

¨ ∆i

Throughout the paper, for any function f pxq and дpxq, the value of |f px0q{дpx0q| at x0 with

дpx0q “ 0 is defined as 0 if f px0q “ 0, and 8 if f px0q ‰ 0. Note that ∆1
bounds the relative error of

Aδ⃗ pxq with respect to its exact term apxq, i.e., ErrRelpapxq,Aδ⃗ pxqq ď ∆1
for all x P X and |δi | ď ∆i .

Technically, the above definition of invp¨q assumes ∆1 ă 1, but it can be extended to work even

when ∆1 ě 1. However, the condition ∆1 ă 1 holds for all applications of invp¨q in our benchmarks.

Next, we show that the four operations f defined above over-approximate their real-valued

counterparts:

Lemma 4.2. Aδ⃗ pxq ˚A1

δ⃗ pxq Ď Aδ⃗ pxq fA1

δ⃗ pxq for any ˚ P t`,´,ˆ,{u.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:9

e P dompK q K peq “ pAδ⃗ , q

pK ,eq ▷ pK ,Aδ⃗ q
Load

pK ,cq ▷ pK rc ÞÑ pc,falseqs,cq
R1

pK ,xq ▷ pK rx ÞÑ px ,falseqs,xq
R2

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q ˚ P t`,´,ˆ,{u

pK ,e1 f e2q ▷ pK 1,A1

δ⃗ q, where

$

&

%

δ 1 “ freshpϵq, δ2 “ freshpϵ 1q

A1

δ⃗ “ compressppA1, δ⃗ fA2, δ⃗ q b p1 ` δ 1q ‘ δ2q

K 1 “ K2re1 f e2 ÞÑ pA1

δ⃗ ,falseqs

R3

pK ,bit-maskpe1,Bqq ▷ pK1,A1, δ⃗ q

pK ,bit-maskpe1,Bqq ▷ pK 1,A1

δ⃗ q, where

$

&

%

δ 1 “ freshp2´52`Bq, δ2 “ freshp2´1074`Bq

A1

δ⃗ “ compresspA1, δ⃗ b p1 ` δ 1q ‘ δ2q

K 1 “ K1rbit-maskpe1,Bq ÞÑ pA1

δ⃗ ,falseqs

R4

Fig. 3. Rules for constructing an abstraction of an expression

Proof. We sketch the argument that linearizep¨q and invp¨q over-approximate their arguments.

The main observation is that tδiδ j : |δi | ď ∆i , |δ j | ď ∆ju Ď r´∆i∆j ,∆i∆j s, and t1{p1 ` δ 1q ´ 1 :

|δ 1| ď ∆1u Ď r´∆1{p1 ` ∆1q,∆1{p1 ´ ∆1qs Ď r´∆1{p1 ´ ∆1q,∆1{p1 ´ ∆1qs if ∆1 ă 1. The proof of

Lemma 4.5 shows apxq ` apxqδ 1
with |δ 1| ď ∆1

over-approximates Aδ⃗ pxq. □

The rules for constructing a sound abstraction of e are given in Figure 3. In the rules,K (andK 1
)

represents a cache, a mapping from expressions to tuples of size 2, which stores already computed

analysis results. A cache is defined to be sound if for any e P dompK q withK peq “ pAδ⃗ ,bq,Aδ⃗ is a

sound abstraction of e and b “ true implies that e is not atomic and the last operation of e is exact.
The judgment pK ,eq ▷ pK 1,Aδ⃗ q denotes that given a sound cache K , our analysis of e constructs

a provably sound abstraction Aδ⃗ of e and a sound cache K 1
that stores both previous and new

analysis results. The function freshp∆q returns a fresh variable δ with the constraint |δ | ď ∆. The
operationsAδ⃗ pxq b p1 ` δ 1q andAδ⃗ pxq ‘ δ 1

are defined as a special case ofAδ⃗ pxq bA1

δ⃗ pxq and

Aδ⃗ pxq ‘A1

δ⃗ pxq:

Aδ⃗ pxq b p1 ` δ 1q fi Aδ⃗ pxq bA1

δ⃗ pxq where A1

δ⃗ pxq “ 1 ` 1 ¨ δ 1

Aδ⃗ pxq ‘ δ 1 fi Aδ⃗ pxq ‘A1

δ⃗ pxq where A1

δ⃗ pxq “ 0 ` 1 ¨ δ 1

For now, let us ignore the operation compressp¨q. The rule Load is applied first whenever applicable;

other rules are applied only when the rule Load is not applicable (i.e., an analysis result of an

expression is not found in the current cache). The rule R3 is based on the p1 ` ϵq-property1, and

the rule R4 is based on the following lemma about abstracting the bit-mask operation:

Lemma 4.3. Given x P F and B P t1,2, ¨ ¨ ¨ ,52u, let y P F be the result of masking out B least
significant bits of x ’s significand. Then for some |δ | ă 2

´52`B and |δ 1| ď 2
´1074`B ,

y “ xp1 ` δq ` δ 1

1
For ˚ P t ,̀ ´u, we can soundly remove the term ‘δ2

from the rule R3 by Theorem 5.8 in §5.5 (see R14 in Figure 8).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:10 Wonyeol Lee, Rahul Sharma, and Alex Aiken

The rules in Figure 3 (with compressp¨q erased) can be used to construct a sound abstraction, but

the final abstraction can potentially have a huge number of δ variables. Specifically, for Ai, δ⃗ pxq

with ki δ variables (i “ 1,2), A1, δ⃗ pxq bA2, δ⃗ pxq has pk1 ` 1qpk2 ` 1q ´ 1 δ variables. Using this

fact, we can prove that the abstraction of e can potentially have more than 2
k δ variables, where

k is the number of floating-point/bit-mask operations in e . This property holds because for each

floating-point/bit-mask operation, we need to apply either the rule R3 or R4 both of which introduce

new p1 ` δ 1q terms and perform the operation p¨ ¨ ¨ q b p1 ` δ 1q. Thus, constructing an abstraction

based on the rules in Figure 3 without compressp¨q is intractable.

To address this issue, we re-define the operation Aδ⃗ pxq b p1 ` δ 1q as:

Aδ⃗ pxq b p1 ` δ 1q fi apxq ` apxqδ 1 `
ÿ

i

bi pxqδ 1
i where |δ 1

i | ď ∆i p1 ` ∆1q

Here a given variable δ 1
ranges over r´∆1,∆1s and δ 1

i is a fresh variable. Note that under the new

definition, Aδ⃗ pxq b p1 ` δ 1q now has k ` 1 (instead of 2k ` 1) δ variables for any Aδ⃗ pxq with k δ

variables, and it still over-approximates Aδ⃗ pxq ˆ p1 ` δ 1q:

Lemma 4.4. Aδ⃗ pxq ˆ p1 ` δ 1q Ď Aδ⃗ pxq b p1 ` δ 1q

Proof. For tδi p1 ` δ 1q : |δi | ď ∆i , |δ
1| ď ∆1u Ď r´∆i p1 ` ∆1q,∆i p1 ` ∆1qs. □

This revised definition ofAδ⃗ pxq b p1 ` δ 1q resolves the issue to some extent, but not completely

because the number of δ variables is still exponential in the number of multiplications in e . To
this end, we define a new operation compresspAδ⃗ pxqq that significantly reduces the number of δ

variables in Aδ⃗ pxq, as follows:

compresspAδ⃗ pxqq fi apxq ` apxqδ 1 `
ÿ

iRS

bi pxqδi where |δ 1| ď
ÿ

iPS

γi

Here δ 1
is a fresh variable, and γi P Rě0Yt8u and the set S are computed as

γi “ max

xPX

ˇ

ˇ

ˇ

ˇ

bi pxq

apxq

ˇ

ˇ

ˇ

ˇ

¨ ∆i and S “

!

i :
γi
ϵ

ď τ
)

(5)

The operation compresspAδ⃗ pxqq can remove some δ variables in Aδ⃗ pxq, and how aggressively it

removes the δ variables is determined by a user-given constant τ P Rě0 (τ “ 10 in our experiments):

if τ is big, compresspAδ⃗ pxqq would have a small number of δ variables but can be too over-

approximate, and if τ is small, compresspAδ⃗ pxqq would capture most behaviors ofAδ⃗ pxq precisely

but can have many δ variables. Note that γi is computed by solving the optimization problem

(of a single variable) that also appears in the computation of invp¨q. The quantity γi represents
the contribution of the i-th error term bi pxqδi to the overall relative error of Aδ⃗ pxq with respect

to apxq; thus, from Theorem 3.3, γi{ϵ represents how much the error term bi pxqδi contributes to
the overall ulp error of Aδ⃗ pxq. Thus, the set S represents the indices of the error terms whose

contribution to the overall ulp error is small enough, i.e., ď τ ulps. The compressp¨q procedure

merges all the error terms of Aδ⃗ pxq that have such small contribution to the total ulp error, into a

single error term apxqδ 1
, and leaves all the other error terms of Aδ⃗ pxq as is. Conceptually, we can

set τ “ 8 and merge all δ terms into a single term. But for some cases, e.g., Theorem 5.2 in §5.3,

this merging can lead to very imprecise abstractions.

Like all the previous operations on abstractions, compressp¨q over-approximates its argument:

Lemma 4.5. Aδ⃗ pxq Ď compresspAδ⃗ pxqq

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:11

Proof. First, we show that for any i with γi ă 8 we have bi pxqδi Ď apxqδ 1
i , where |δ 1

i | ď γi .
Consider any i with γi ă 8 and any x P X . If apxq ‰ 0,

|bi pxqδi | “ |apxq| ¨

ˇ

ˇ

ˇ

ˇ

bi pxq

apxq
δi

ˇ

ˇ

ˇ

ˇ

ď |apxq| ¨

ˇ

ˇ

ˇ

ˇ

bi pxq

apxq

ˇ

ˇ

ˇ

ˇ

∆i ď |apxq| ¨ γi “ |apxqγi |

which implies tbi pxqδi : |δi | ď ∆iu Ď tapxqδ 1
i : |δ 1

i | ď γiu. If apxq “ 0, γi ă 8 implies bi pxq “ 0,

so we have tbi pxqδi : |δi | ď ∆iu “ t0u “ tapxqδ 1
i : |δ 1

i | ď γiu.
Next, it is easy to see that

ř

iPS apxqδ 1
i Ď apxqδ 1

, where |δ 1| ď
ř

iPS γi . Combining the two

facts implies

ř

iPS bi pxqδi Ď apxqδ 1
. Hence

ř

i bi pxqδi “
ř

iPS bi pxqδi `
ř

iRS bi pxqδi Ď apxqδ 1 `
ř

iRS bi pxqδi . □

We remark that the previous work on similar abstractions, [Goubault and Putot 2005; Solovyev

et al. 2015], does not use the compressp¨q operation.

Let us revisit the rules in Figure 3. The rules R3 and R4 use the re-defined operation p¨ ¨ ¨ qbp1`δ 1q

and the newly defined operation compressp¨q, to reduce the number of δ variables in the abstractions

of e1 f e2 and bit-maskpe1,Bq. Using these two operations, the rules can be applied to expressions

of practical sizes. We note that these two operations will be re-defined again in §5.3. Finally, we

establish the soundness of the rules:

Theorem 4.6. If p¨,eq ▷ pK 1,Aδ⃗ q then Aδ⃗ is a sound abstraction of e .

Proof. We generalize the above statement as: if pK ,eq▷ pK 1,Aδ⃗ q andK is a sound cache, then

K 1
is a sound cache and Aδ⃗ is a sound abstraction of e . We can prove this by induction on the

derivation tree of pK ,eq ▷ pK 1,Aδ⃗ q using Theorem 3.2 and Lemmas 4.2, 4.3, 4.4, and 4.5. □

We conclude this section by demonstrating that the abstraction used in [Solovyev et al. 2015] is

not sufficient to prove tight ulp error bounds. For example, consider Intel’s sin implementation of

the sine function over the input interval X “ r2´252, π
64

s. Since sin computes x ´ 1

6
x3 ` ¨ ¨ ¨ for an

input x P X , applying the p1 ` ϵq-property produces an abstraction of sin that contains the error

term ´ 1

6
x3δ1δ2δ3, where |δi | ă ϵ (i “ 1,2,3). In Solovyev et al.’s abstraction, the cubic error term

is over-approximated by a first-order error term Cδ 1
, where |δ 1| ă ϵ and C “ ϵ2 maxt|´ 1

6
x3| : x P

Xu « 2 ˆ 10
´37

. Hence with Solovyev et al.’s abstraction, a bound on the maximum ulp error of

sin over X (with respect to sinx) is at least 1

ϵ maxt|Cδ 1{ sinx | : x P X , |δ 1| ă ϵu « 2 ˆ 10
39
ulps,

which is too loose. The culprit is that Solovyev et al.’s abstraction has constant coefficients for

higher-order error terms and these terms become significant for inputs near zero.

5 EXPLOITING EXACTNESS PROPERTIES
Although the rules in Figure 3 can be used to construct a sound abstraction of an expression

e , the resulting abstraction can over-approximate the behaviors of e too imprecisely and fail to

prove a tight error bound of e . Consider a part of the implementation of log discussed in §2:

e “ p2 b xq a 255

128
with X “ r 4095

4096
,1q. As already explained, the operations b and a in e are

exact, i.e., introduces no rounding errors due to the exactness of multiplication by 2 and Sterbenz’s

theorem (Theorem 5.1), so Aδ⃗ pxq “ 2x ´ 255

128
is a sound abstraction of e . However, the rules

in Figure 3 generate A1

δ⃗ pxq “ p2x ´ 255

128
q ` p2x ´ 255

128
qδ1 ` ¨ ¨ ¨ as an abstraction of e by simply

applying the p1` ϵq-property to the b and a operation. The proof then usesA1

δ⃗ as an abstraction

of e , instead of using the more precise abstraction Aδ⃗ . This imprecision leads to the imprecise

error bound of 10
14
ulps [Lee et al. 2016] for log over X .

To prove a tighter error bound, we construct a more precise abstraction by avoiding the applica-

tion of the p1`ϵq-property whenever possible while maintaining soundness (Theorem 4.6). For each

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:12 Wonyeol Lee, Rahul Sharma, and Alex Aiken

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,0q ˚ P t`,´u

pK ,e1 f e2q ▷ pK2re1 f e2 ÞÑ pA1, δ⃗ ,trueqs,A1, δ⃗ q
R5

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,2
nq pn P Zq ˚ P tˆ,{u

pK ,e1 f e2q ▷ pK2re1 f e2 ÞÑ pA1, δ⃗ ˚ 2
n ,trueqs,A1, δ⃗ ˚ 2

nq
R6

pK ,e1q ▷ pK1,c1q
pK1,e2q ▷ pK2,c2q ˚ P t`,´,ˆ,{u

pK ,e1 f e2q ▷ pK2re1 f e2 ÞÑ pc 1,c 1 == c1 ˚ c2qs,c 1q, where c 1 “ c1 f c2
R7

Fig. 4. Rules for simple exact operations

floating-point operation e1 f e2, we first determine whether the operation f is exact or not using

some properties of floating-point arithmetic. If the particular operation f is exact, we simply use

A1, δ⃗ fA2, δ⃗ as a sound abstraction of e1 f e2, whereAi, δ⃗ is a sound abstraction of ei (i “ 1,2). In

contrast, the p1`ϵq-property instead yields the less precise abstraction pA1, δ⃗ fA2, δ⃗ qbp1`δ 1q‘δ2
.

The key to this approach is automatically determining whether a given floating-point operation is

exact, i.e., produces no rounding errors.

Some of the properties of floating-point that we use are well-known to floating-point experts

(§5.1, 5.2, 5.3, 5.6) and some are new (i.e., haven’t appeared explicitly in the literature) to the

best of our knowledge (§5.4, 5.5). We remark that it was challenging for us to rediscover these

properties and infer how to use them in automatic proofs of error bounds for practical floating-point

implementations.

5.1 Simple Exact Operations
We start with the simplest situation where a floating-point addition/subtraction or a floating-point

multiplication/division is exact: for any x ,y P F with y “ 2
n
for some n P Z, we have x f 0 “ x

if ˚ P t`,´u, and x f y “ x ˚ y if ˚ P tˆ,{u. In other words, floating-point addition by 0 is

always exact, and floating-point multiplication by an integer power of 2 is always exact because

multiplying x by a power of 2 changes only the exponent of x , not its significand.2

Figure 4 presents the rules based on the above property. The rule R5 considers the addi-

tion/subtraction case and the rule R6 considers the multiplication/division case
3
; their commutative

counterparts are omitted. The rule R7 considers the case where the evaluation result of e1 and e2
are exactly known as c1 and c2. In such a case, though the floating-point operation f in e1 f e2
may not be exact, we can know the exact evaluation result of the operation, c1 f c2, by partial

evaluation. Note that all the rules in the figure do not use the p1 ` ϵq-property.

2
Technically, x b 2

n “ x ˆ 2
n
may not hold if x ˆ 2

n
is very small (e.g., x “ 2

´1074
and n “ ´1) since the exponent of

a double cannot be smaller than ´1022.

3
Strictly speaking, the rule R6 is unsound according to Footnote 2. For a sound version of the rule R6, refer to the rule R6

1

(§A.2) which uses quantities σ peq and µpeq introduced in §5.4 and §5.5.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:13

5.2 Sterbenz’s Theorem
The next situation where a floating-point addition/subtraction is exact is described in Sterbenz’s

theorem [Sterbenz 1973]:

Theorem 5.1. Let x ,y P F with x ,y ě 0. Then
x

2

ď y ď 2x ùñ x a y “ x ´ y

The theorem says that the floating-point subtraction of x ě 0 and y ě 0 is exact whenever y is

within a factor of two of x .
Typical examples that make use of Sterbenz’s theorem are from range reduction steps that

reduce the computation of f pxq to the computation of дprq such that the range of r is much smaller

than that of x . A range reduction step used to compute log x has been discussed in §2 and at the

beginning of this section. Another common range reduction is:

n “ roundpKinv b xq, r “ x a pK b nq

where n is an integer, and Kinv ,K P Fą0 have a relationship that Kinv « 1{K . For example, if

K “ flpπq then this range reduction can reduce the computation of sinx to sin r for r P r´ π
2
, π
2

s. This

range reduction relies on Sterbenz’s theorem to guarantee that the operation a in the computation

of r is exact.
Before explaining how to exploit Sterbenz’s theorem in our framework, we point out that

Theorem 5.1 considers only the case x ,y ě 0. To cover the case x ,y ď 0 as well, we extend the

theorem in the following way: for any x ,y P F, if they satisfy

x

2

ď y ď 2x or 2x ď y ď
x

2

(6)

then x a y “ x ´ y. From now on, we refer to this extended theorem (instead of Theorem 5.1) as

Sterbenz’s theorem.

Next, we derive optimization problems, based on Sterbenz’s theorem, that can check whether

an operation a between two expressions e1 and e2 is exact. As e1 and e2 are functions of x , we
would like to check if the operation Epe1qpxq a Epe2qpxq is exact for all x P X X F. According to
Sterbenz’s theorem (Eq. 6), the operation is exact for all x P X X F if

@x P X X F.

ˆ

1

2

Epe1qpxq ď Epe2qpxq ď 2Epe1qpxq

˙

_

ˆ

2Epe1qpxq ď Epe2qpxq ď
1

2

Epe1qpxq

˙

(7)

However, we do not know Epei qpxq statically; rather we can construct its abstraction as described

in §4. Let Ai, δ⃗ be a sound abstraction of ei (i “ 1,2). From the definition of a sound abstraction,

for any x P X X F, we have Epe1qpxq “ A1, δ⃗ pxq and Epe2qpxq “ A2, δ⃗ pxq for some δ⃗ P ∆⃗, where

∆⃗ “ r´∆1,∆1s ˆ ¨ ¨ ¨ ˆ r´∆n ,∆ns. Using A1, δ⃗ and A2, δ⃗ , we strengthen Eq. 7 to Eq. 8:

@x P X .@δ⃗ P ∆⃗.

„ˆ

1

2

A1, δ⃗ pxq ď A2, δ⃗ pxq ď 2A1, δ⃗ pxq

˙

_

ˆ

2A1, δ⃗ pxq ď A2, δ⃗ pxq ď
1

2

A1, δ⃗ pxq

˙ȷ

(8)

Eq. 8 is stronger than Eq. 7 in two aspects: it is quantified over x that ranges over X (instead

of over X X F), and additionally over δ⃗ . The first change is motivated by the fact that checking

inequalities (and solving optimization problems) over X Ă R is easier than over the discrete set

X X F. The second change is necessary since we do not know statically which δ⃗ P ∆⃗ would satisfy

Epe1qpxq “ A1, δ⃗ pxq and Epe2qpxq “ A2, δ⃗ pxq for each x . Although Eq. 8 is easier to handle than

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:14 Wonyeol Lee, Rahul Sharma, and Alex Aiken

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

minx,δ⃗ pA2, δ⃗ ´ 1

2
A1, δ⃗ q ě 0

maxx,δ⃗ pA2, δ⃗ ´ 2A1, δ⃗ q ď 0

pK ,e1 a e2q ▷ pK 1,A1

δ⃗ q, where

"

A1

δ⃗ “ compresspA1, δ⃗ aA2, δ⃗ q

K 1 “ K2re1 a e2 ÞÑ pA1

δ⃗ ,trueqs

R8

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

minx,δ⃗ pA2, δ⃗ ´ 2A1, δ⃗ q ě 0

maxx,δ⃗ pA2, δ⃗ ´ 1

2
A1, δ⃗ q ď 0

pK ,e1 a e2q ▷ pK 1,A1

δ⃗ q, where

"

A1

δ⃗ “ compresspA1, δ⃗ aA2, δ⃗ q

K 1 “ K2re1 a e2 ÞÑ pA1

δ⃗ ,trueqs

R9

Fig. 5. Rules for applying Sterbenz’s theorem

Eq. 7, transforming it directly into optimization problems is still difficult because of the _ within

the quantifiers. We strengthen it further to obtain Eq. 9:

ˆ

@x .@δ⃗ .
1

2

A1, δ⃗ pxq ď A2, δ⃗ pxq ď 2A1, δ⃗ pxq

˙

_

ˆ

@x .@δ⃗ . 2A1, δ⃗ pxq ď A2, δ⃗ pxq ď
1

2

A1, δ⃗ pxq

˙

(9)

where x ranges over X and δ⃗ over ∆⃗. The left clause of Eq. 9 is logically equivalent to

˜

min

xPX ,δ⃗P∆⃗

pA2, δ⃗ ´
1

2

A1, δ⃗ q ě 0

¸

^

˜

max

xPX ,δ⃗P∆⃗

pA2, δ⃗ ´ 2A1, δ⃗ q ď 0

¸

(10)

involving two optimization problems that are sufficient to ensure e1 a e2 is exact.
The rules shown in Figure 5 are based on the above derivation. The rule R8 does not apply the

p1 ` ϵq-property if Eq. 10 holds. The rule R9 is based on the counterpart of Eq. 10 derived from the

right clause of Eq. 9. Note that in Figure 5 the rules for e1 ‘ e2 are omitted: they can be obtained

from the rules for e1 a e2 by negating A2, δ⃗ as x ‘ y “ x a p´yq for any x and y.

5.3 Dekker’s Theorem
The next property of floating-point arithmetic that we use to construct a more precise abstraction

is Dekker’s theorem [Dekker 1971]. The theorem suggests a way to compute the rounding error,

px‘yq´px`yq, of an operation x‘y. It is well-known that the rounding error r “ px‘yq´px`yq

is in fact a double for any x ,y P F, and Dekker’s theorem provides a way to recover r using only
floating-point operations on x and y:

Theorem 5.2. Let x ,y P F with |x ` y| ď maxF and r “ x ‘ y a x a y. Then

|x | ě |y| ùñ r “ px ‘ yq ´ px ` yq

The double r “ x ‘ y a x a y in the theorem represents the rounding error of x ‘ y.
Let us start with the rule R11 of Figure 6 that constructs a tighter abstraction of an expression

er “ e1 ‘e2 ae1 ae2 based on Dekker’s theorem. The rule first checks whether Dekker’s theorem is

applicable to the expression er , i.e., whether the condition P1 fi @x P X XF. |Epe1qpxq| ě |Epe2qpxq|

is satisfied. However, P1 cannot be checked statically and the rule actually checks a stronger

condition P2 fi minx,δ⃗ |A1, δ⃗ pxq| ě maxx,δ⃗ |A2, δ⃗ pxq| by solving optimization problems on a sound

abstraction Ai, δ⃗ of ei (i “ 1,2). The derivation of P2 from P1 is similar to the derivation of Eq. 10

from Eq. 7 in §5.2. Once the rule successfully checks that P2 is true, it constructs a sound abstraction

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:15

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q hasDekkerpe1 ‘ e2q

pK ,e1 ‘ e2q ▷ pK 1,A1

δ⃗ q, where

$

&

%

δ 1 “ freshpϵ ,trueq

A1

δ⃗ “ compressppA1, δ⃗ ‘A2, δ⃗ q b p1 ` δ 1qq

K 1 “ K2re1 ‘ e2 ÞÑ pA1

δ⃗ ,falsexδ 1yqs

R10

pK ,e1 ‘ e2q ▷ pK1, q

K1pe1q “ pA1, δ⃗ , q

K1pe2q “ pA2, δ⃗ , q

K1pe1 ‘ e2q “ p ,falsexδ 1yq

minx,δ⃗ |A1, δ⃗ | ě maxx,δ⃗ |A2, δ⃗ |

pK ,e1 ‘ e2 a e1 a e2q ▷ pK 1,A1

δ⃗ q, where

"

A1

δ⃗ “ compressppA1, δ⃗ ‘A2, δ⃗ q b δ 1q

K 1 “ K1re1 ‘ e2 a e1 a e2 ÞÑ pA1

δ⃗ ,falseqs

R11

pK ,e1 ‘ e2q ▷ pK1, q K1pe1 ‘ e2q “ p ,trueq

pK ,e1 ‘ e2 a e1 a e2q ▷ pK1re1 ‘ e2 a e1 a e2 ÞÑ p0,trueqs,0q
R12

Fig. 6. Rules for applying Dekker’s theorem

of er not by applying the p1 ` ϵq-property, but by applying Dekker’s theorem which says er is the
rounding error of e1 ‘ e2. Note that the rule requires a new operation Aδ⃗ pxq b δ 1

:

Aδ⃗ pxq b δ 1 fi Aδ⃗ pxq bA1

δ⃗ pxq where A1

δ⃗ pxq “ 0 ` 1 ¨ δ 1

Although the rule R11 constructs a tighter abstraction of er “ e1 ‘ e2 a e1 a e2 than the rule R3,

it does not fully capture the essence of Dekker’s theorem: the possibility of the rounding error of

x ‘y being exactly cancelled out by x ‘y a x ay. Such cancellation may not occur even with the

rule R11 because some δ variables can be replaced with or merged into fresh ones byAδ⃗ b p1`δ 1q

and compressp¨q.

We re-define the operationsAδ⃗ b p1` δ 1q and compressp¨q and introduce the rule R10 to ensure

that δ variables related to Dekker’s theorem are preserved (i.e., not replaced with or merged into

fresh variables). As a first step, each variable δi is associated with the predicate preservepδi q which
indicates whether δi should be preserved: preservepδi q “ true denotes that δi should be preserved,
whereas preservepδi q “ false denotes that merging δi is allowed. Using preservep¨q, we re-define

the following operations on abstractions:

Aδ⃗ pxq b p1 ` δ 1q fi apxq ` apxqδ 1 `
ÿ

iPR

bi pxqδ 1
i `

ÿ

iRR

pbi pxqδi ` bi pxqδ2
i q where

|δ 1
i | ď ∆i p1 ` ∆1q,

|δ2
i | ď ∆i∆

1

compresspAδ⃗ pxqq fi apxq ` apxqδ 1 `
ÿ

iRRXS

bi pxqδi where |δ 1| ď
ÿ

iPRXS

γi

Here δ 1
, δ 1

i , and δ2
i are fresh variables, S and γi are defined as before (Eq. 5), and R “ ti :

preservepδi q “ falseu. The re-defined operations preserve any δi with preservepδi q “ true.
Note that the previous definition of Aδ⃗ pxq b p1 ` δ 1q and compressp¨q is obtained by setting

preservepδi q “ false for all i .
In the rule R10 of Figure 6, the predicate hasDekkerpe1 ‘ e2q denotes that a given expression

contains er “ e1 ‘ e2 a e1 a e2 as a subexpression, and the value falsexδ 1y denotes that the

operation ‘ in e1 ‘ e2 may not be exact and the rounding error from this ‘ operation is modeled

by the variable δ 1
. The function freshp∆,bq returns a fresh variable δ with the constraint |δ | ď ∆

and preservepδq “ b; the previous function freshp∆q now denotes freshp∆,∆ ą ϵq, which implies

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:16 Wonyeol Lee, Rahul Sharma, and Alex Aiken

that by default only those δ variables from bit-mask operations are preserved. The antecedent

of the rule R10 indicates that Dekker’s theorem can possibly be applied to e1 ‘ e2 and er . In this

case the rule sets preservepδ 1q to be true, where δ 1
denotes the rounding error of e1 ‘ e2, and

prevents δ 1
from being removed. Note that the rule R11 uses this δ 1

in an abstraction of er to make

the cancellation possible. The rule R10 does not add an absolute error term δ2
(|δ2| ď ϵ 1

) in its

consequent by the refined p1 ` ϵq-property (Theorem 5.8 in §5.5).

To illustrate how the rules R10 and R11 are applied, consider an expression e “ e1 a pe2 ‘ e3q
over X “ r1,2s, where e1 “ x ‘ 1, e2 “ x ‘ 1 a x a 1, and e3 “ 0.01 b x b x . The expression e
accurately computes 1 ` x ´ 0.01x2 by subtracting e2 (which evaluates exactly to the rounding

error of e1 by Dekker’s theorem) from e1. Analyzing e with the rules R10 and R11 produces the

following derivation tree:

¨ ¨ ¨

hasDekkerpe1q
R10

p¨,e1q ▷ pK1,A1, δ⃗ q

x ‘ 1 P dompK1q
Load

pK1,x ‘ 1q ▷ pK1, q

K1pxq “ px , q

K1p1q “ p1, q

K1px ‘ 1q “ p ,falsexδ1yq

minx,δ⃗ |x | ě maxx,δ⃗ |1|

R11

pK1,e2q ▷ pK2,A2, δ⃗ q pK2,e3q ▷ ¨ ¨ ¨
R3

pK1,e2 ‘ e3q ▷ ¨ ¨ ¨
R3

p¨,e1 a pe2 ‘ e3qq ▷ p¨ ¨ ¨ ,A1

δ⃗ q

HereA1, δ⃗ pxq “ px`1q`px`1qδ1,K1 “ r1 ÞÑ p1,falseq,x ÞÑ px ,falseq,e1 ÞÑ pA1, δ⃗ ,falsexδ1yqs,

A2, δ⃗ pxq “ px ` 1qδ1, K2 “ K1re2 ÞÑ pA2, δ⃗ ,falseqs, and A1

δ⃗ pxq “ p1 ` x ´ 0.01x2q ` p1 ` x ´

0.01x2qδ 1
, where |δ1| ď ϵ and |δ 1| ď 1.041ϵ . The above derivation tree states that an abstraction of

e1 and of e2 are constructed as A1, δ⃗ and A2, δ⃗ . Note that the abstraction A2, δ⃗ of e2 is px ` 1qδ1,

the error term of A1, δ⃗ which models the rounding error of x ‘ 1. Hence the final abstraction A1

δ⃗
of e does not contain the error term px ` 1qδ1 due to its cancellation, which is what we desired.

The rule R12 in Figure 6, based on Lemma 5.3, deals with the specific case when e1 ‘ e2 is exact.
The lemma says that if x ‘ y is exact then x ‘ y a x a y “ 0 regardless of the ordering between x
and y.

Lemma 5.3. Let x ,y P F and r “ x ‘ y a x a y. Then

x ‘ y “ x ` y ùñ r “ 0

Note that there are several variants of Theorem 5.2 and Lemma 5.3, and Figure 6 omits the

corresponding variants of the rules R10, R11, and R12 for brevity. For instance, one variant of

Theorem 5.2 is: |y| ě |x | implies r “ ´ppx a yq ´ px ´ yqq where r “ x a px a y ‘ yq. The rules

based on each such variant of Theorem 5.2 and Lemma 5.3 can be designed analogously to the

rules R10, R11, and R12 by focusing on different expressions (e.g., x a y and x a px a y ‘ yq) and

extending the definition of hasDekkerp¨q accordingly.

5.4 Nonzero Significand Bits
The next floating-point property we exploit is based on σpdq, the number of the significand bits of

d P F that are not trailing zeros. To formally define σp¨q over a subset of R, we define the exponent
function expntp¨q as:

expntprq fi

#

k for |r | P r2k ,2k`1q where k P r´1022,1023s X Z

´1022 for |r | P r0,2´1022q

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:17

Using expntp¨q, we define the function σ : r´maxF,maxFs Ñ Zě0 Y t8u as follows: for r ‰ 0,

σprq fi

#

maxti P Zě1 : fi ‰ 0u if defined

8 otherwise

where f1. f2 f3 ¨ ¨ ¨p2q is the binary representation of r{2expntpr q
(fi P t0,1u for all i), and σp0q fi 0.

For example, σp5{8q “ 3 since expntp5{8q “ ´1 and 5{8 “ 2
´1 ˆ 1.01p2q, and σp1{5q “ 8 since

1{5 “ 2
´3 ˆ 1.10011001 ¨ ¨ ¨p2q.

The following theorem uses σp¨q to determine if a floating-point operation is exact:

Theorem 5.4. Let x ,y P F with |x ˚ y| ď maxF where ˚ P t`,´,ˆ,{u. Then

σpx ˚ yq ď 53 ùñ x f y “ x ˚ y

The theorem follows directly from the observation: σprq ď 53 iff r P F for any r P r´maxF,maxFs.
It holds because every double has a 53-bit significand and every real number with a 53-bit significand

is representable as a double.

To make use of this theorem, we must compute σpx ˚ yq. The following two lemmas can be

used to bound σpx ˚ yq, given σpxq and σpyq (or their upper bounds). First, Lemma 5.5 handles

multiplication:

Lemma 5.5. Let x ,y P F with |xy| ď maxF. Assume x ,y ‰ 0. Then

σpx ˆ yq ď σpxq ` σpyq ` k

where k “ mintn P Zě0 : |xy| ě 2
´1022´nu.

The intuition is that multiplying two integers of n andm digits produces an integer of at most

n `m digits. The integer k in the lemma is necessary to consider the case when |xy| ă 2
´1022

.

Second, Lemma 5.6 handles addition and subtraction:

Lemma 5.6. Let x ,y P F with |x ` y| ď maxF. Assume x ,y ą 0 and expntpxq ě expntpyq. Then

σpx ` yq ď maxtσpxq,σpyq ` ∆eu ` k

σpx ´ yq ď maxtmaxtσpxq,σpyq ` ∆eu ´ mintl ,expntpxq ` 1022u,0u

where ∆e “ expntpxq ´ expntpyq, k “ mintn P Zě0 : |x ` y| ă 2
expntpxq`1`nu, and l “ maxtn P

Zě0 : |x ´ y| ă 2
expntpxq`1´nu.

The lemma says that when σpxq and σpyq are fixed, σpx ` yq and σpx ´ yq decrease as x and y get

closer to each other (since it makes ∆e smaller and l larger). In the lemma, the integer k represents

whether there is a carry-over during the addition x ` y, as k “ 0 if no carry-over and k “ 1

otherwise. The integer l is subtracted from the upper bound on σpx ´ yq to consider the case when

x and y are close: if they are close enough, some of x ’s most significant bits can be cancelled out by

y’s corresponding significant bits during the subtraction x ´ y, thereby reducing σpx ´ yq. The

term mint¨ ¨ ¨ ,expntpxq ` 1022u is necessary to consider the case when |x ´ y| ă 2
´1022

.

Note that Lemma 5.6 is a generalization of Sterbenz’s theorem. We are unaware of any previous

work that proves this lemma. Moreover, this lemma is a general fact about floating-point that may

have applicability beyond this paper.

We present the rule based on Theorem 5.4 in Figure 7. To apply Theorem 5.4, we need to track

σpeq for each expression e , which is defined as:

σpeq fi maxtσpEpeqpxqq : x P X X Fu

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:18 Wonyeol Lee, Rahul Sharma, and Alex Aiken

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1q
K2pe2q “ p , ,σ2q

σ 1 “ bound-σp˚,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q
˚ P t`,´,ˆ,{u

σ 1 ď 53

pK ,e1 f e2q ▷ pK 1,A1

δ⃗ q, where

"

A1

δ⃗ “ compresspA1, δ⃗ fA2, δ⃗ q

K 1 “ K2re1 f e2 ÞÑ pA1

δ⃗ ,true,σ
1qs

R13

Fig. 7. Rule for using σp¨q

Algorithm 1 bound-σp˚, f1, f2,σ1,σ2q

1: Let D “ dompf1q
2: if ˚ “ ` then
3: Compute ∆e P Zě0 such that @x⃗ P D. |expntpf1px⃗qq ´ expntpf2px⃗qq| ď ∆e
4: if @x⃗ P D. expntpf1px⃗qq ě expntpf2px⃗qq then
5: if @x⃗ P D. f1px⃗qf2px⃗q ě 0 then
6: Compute k P Zě0 such that @x⃗ P D. |f1px⃗q ` f2px⃗q| ă 2

expntpf1px⃗qq`1`k

7: return maxtσ1,σ2 ` ∆eu ` k

8: if @x⃗ P D. f1px⃗qf2px⃗q ă 0 then

9: Compute

"

l P Zě0 such that @x⃗ P D. |f1px⃗q ` f2px⃗q| ă 2
expntpf1px⃗qq`1´l

em1 P Z such that @x⃗ P D. expntpf1px⃗qq ě em1

10: return maxtmaxtσ1,σ2 ` ∆eu ´ mintl ,em1 ` 1022u,0u

11: if @x⃗ P D. expntpf1px⃗qq ď expntpf2px⃗qq then
12: [symmetric to the above case]

13: return maxtσ1,σ2u ` ∆e ` 1

14: if ˚ “ ´ then
15: [similar to the case ˚ “ `]

16: if ˚ “ ˆ then
17: Compute k P Zě0 such that @x⃗ P D. |f1px⃗qf2px⃗q| ě 2

´1022´k

18: return σ1 ` σ2 ` k

19: if ˚ “ { then
20: return 8

The cacheK is extended to store an upper bound of σpeq for each e . The rule R13 computes σ 1
that

upper bounds σpe1 ˚ e2q via Algorithm 1, and then checks whether σ 1 ď 53. If the check passes,

the rule constructs an abstraction of e1 f e2 without applying the p1 ` ϵq-property.

Next, we discuss Algorithm 1 in more detail. For brevity, the algorithm uses the notation fi
to represent an abstraction Ai, δ⃗ (i “ 1,2); D represents X ˆ r´∆1,∆1s ˆ ¨ ¨ ¨ ˆ r´∆n ,∆ns and x⃗

represents px ,δ1, ¨ ¨ ¨ ,δnq. With this notation Algorithm 1 upper bounds σpf1 ˚ f2q, given upper

bounds on σpf1q and σpf2q. Formally, the algorithm meets the following specification:

Lemma 5.7. Consider ˚ P t`,´,ˆ,{u, fi : D Ñ R, and σi P Zě0 for i P t1,2u and D Ă Rm . Let
σ 1 “ bound-σp˚, f1, f2,σ1,σ2q. Then for any x⃗ P D such that @i P t1,2u. σpfi px⃗qq ď σi ,

|f1px⃗q ˚ f2px⃗q| ď maxF ùñ σpf1px⃗q ˚ f2px⃗qq ď σ 1

Algorithm 1 (conservatively) returns 8 for division because the result of dividing two doubles

often has no representation with finite binary digits (e.g., 1{5 “ 2
´3 ˆ 1.10011001 ¨ ¨ ¨p2q).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:19

Algorithm 1 solves multiple optimization problems to compute the final bound. For example, to

obtain ∆e , we first compute remi ,eMi s (i “ 1,2), an interval bounding the range of expntpfi px⃗qq

over x⃗ P D, by solving optimization problems: emi “ expntpmint|fi px⃗q| : x⃗ P Duq and eMi “

expntpmaxt|fi px⃗q| : x⃗ P Duq. Next, ∆e is set to ∆e “ maxteM1 ´ em2,eM2 ´ em1u. For another

example, consider the if condition on line 5. The condition can be conservatively checked by

deciding whether pfm1 ě 0 ^ fm2 ě 0q _ pfM1 ď 0 ^ fM2 ď 0q holds, where fmi “ mintfi px⃗q :

x⃗ P Du and fMi “ maxtfi px⃗q : x⃗ P Du.

Now that the cache has been extended to store an upper bound of σpeq, we need to extend all

the previous rules accordingly and ensure that Theorem 4.6 holds. For instance, the rule R4 is

extended to

pK ,bit-maskpe1,Bqq ▷ pK1,A1, δ⃗ q K1pe1q “ p , ,σ1q

pK ,bit-maskpe1,Bqq ▷ pK 1,A1

δ⃗ q, where

$

’

’

&

’

’

%

δ 1 “ freshp2´52`Bq, δ2 “ freshp2´1074`Bq

A1

δ⃗ “ compresspA1, δ⃗ b p1 ` δ 1q ‘ δ2q

σ 1 “ mintσ1,53 ´ Bu

K 1 “ K1rbit-maskpe1,Bq ÞÑ pA1

δ⃗ ,false,σ
1qs

R4
1

because bit-maskpe1,Bq masks out B least significant bits of e1’s significand. We can prove that

Theorem 4.6 still holds, using the extended definition of a sound cache: a cache K is sound if for

any e P dompK q with K peq “ pAδ⃗ ,b,σq, Aδ⃗ and b satisfy the previous condition and σpeq ď σ .

5.5 Refined p1 ` ϵq-property
In some cases, the absolute error term δ 1

in Theorem 3.2 can be soundly removed according to the

following refined p1 ` ϵq-property:

Theorem 5.8. Let x ,y P F and ˚ P t`,´,ˆ,{u. Assume |x ˚ y| ď maxF. For any ˚ P t`,´u, and
for any ˚ P tˆ,{u with either x ˚ y “ 0 or |x ˚ y| ě 2

´1022, we have

x f y “ px ˚ yqp1 ` δq

for some |δ | ă ϵ .

The theorem states that the absolute error term δ 1
is always unnecessary for addition and subtraction,

and for the other operations it is unnecessary if the exact result of the operation is not in the

subnormal range. The theorem is standard and follows from three properties of floating-point:

ErrRelpr ,flprqq ă ϵ for any r P R not in the subnormal range, every double is a multiple of ulpp0q,

and any multiple of ulpp0q is a double if it is in the subnormal range.

To use Theorem 5.8 in constructing an abstraction of an expression e , we need to know whether

e can evaluate to a number between 0 and ˘2
´1022

. To this end, define a function µpeq ą 0 over

expressions, which denotes how close a non-zero evaluation result of e can be to 0:

µpeq fi mint|Epeqpxq| ‰ 0 : x P X X Fu

where minH “ 8. An important property related to µpeq is the following lemma:

Lemma 5.9. Let µ1,µ2 ą 0. Consider any d1,d2 P F such that |di | ě µi (i “ 1,2). Then

d1 ` d2 ‰ 0 ùñ |d1 ` d2| ě
1

2

ulppmaxtµ1,µ2uq

The lemma states that if the sum of two doubles is non-zero, then its magnitude cannot be smaller

than some (small) number. The lemma holds because there is a finite gap between any two con-

secutive doubles. To illustrate an application of the lemma, consider X “ r0,2s and e “ x a 1.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:20 Wonyeol Lee, Rahul Sharma, and Alex Aiken

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q
K2pe2q “ p , ,σ2,µ2q

σ 1 “ bound-σp˚,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q
µ1 “ bound-µp˚,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q ˚ P t`,´u

pK ,e1 f e2q ▷ pK 1,A1

δ⃗ q, where

$

’

’

&

’

’

%

δ 1 “ freshpϵq

A1

δ⃗ “ compressppA1, δ⃗ fA2, δ⃗ q b p1 ` δ 1qq

σ2 “ mintσ 1,53u, µ2 “ maxtfl
´

pµ1q,2´1074u

K 1 “ K2re1 f e2 ÞÑ pA1

δ⃗ ,false,σ
2,µ2qs

R14

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q
K2pe2q “ p , ,σ2,µ2q

σ 1 “ bound-σp˚,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q
µ1 “ bound-µp˚,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q

˚ P tˆ,{u

µ1 ě 2
´1022

pK ,e1 f e2q ▷ pK 1,A1

δ⃗ q, where

$

’

’

&

’

’

%

δ 1 “ freshpϵq

A1

δ⃗ “ compressppA1, δ⃗ fA2, δ⃗ q b p1 ` δ 1qq

σ2 “ mintσ 1,53u, µ2 “ maxtfl
´

pµ1q,2´1074u

K 1 “ K2re1 f e2 ÞÑ pA1

δ⃗ ,false,σ
2,µ2qs

R15

Fig. 8. Rules for applying the refined p1 ` ϵq-property

Algorithm 2 bound-µp˚, f1, f2,µ1,µ2q

1: Let D “ dompf1q
2: if 0 R tf1px⃗q ˚ f2px⃗q : x⃗ P Du then
3: return µ1 P R such that 0 ă µ1 ď mint|f1px⃗q ˚ f2px⃗q| : x⃗ P Du

4: else
5: if ˚ “ t`,´u then
6: return mint 1

2
ulppmaxtµ1,µ2uq,µ1,µ2u

7: else if ˚ “ ˆ then
8: return µ1µ2
9: else if ˚ “ { then
10: ComputeM2 P R such thatM2 ě maxt|f2px⃗q| : x⃗ P Du

11: return µ1{M2

Clearly e can evaluate to 0 (for an input x “ 1). However, from the lemma we can conclude

µpeq ě 1

2
ulpp1q “ 2

´53
, i.e., e can never evaluate to any value in p0,2´53q.

The rules based on Theorem 5.8 are given in Figure 8. To keep track of µpeq, the cache K is

extended to store a lower bound of µpeq for each e . Both the rules R14 and R15 first compute a

lower bound µ1
on µpe1 ˚ e2q using Algorithm 2. The rule R15 then checks whether µ1 ě 2

´1022
; if

the check passes, the rule constructs an abstraction of e1 f e2 without adding an absolute error

term δ2
, based on Theorem 5.8. On the other hand, the rule R14 does not add the absolute error

term δ2
regardless of whether µ1 ě 2

´1022
, also based on Theorem 5.8. Note that both rules set a

lower bound of µpe1 f e2q to maxtfl
´

pµ1q,2´1074u because the smallest positive double is 2
´1074

,

where fl
´

prq fi maxtd P F : d ď ru.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:21

Consider Algorithm 2. For brevity, the algorithm uses the notation of Algorithm 1 (e.g., fi to
represent an abstractionAi, δ⃗ ). Given lower bounds on µpf1q and µpf2q, the algorithm finds a lower

bound on µpf1 ˚ f2q using Lemma 5.9:

Lemma 5.10. Consider ˚ P t`,´,ˆ,{u, fi : D Ñ R, and µi P Rą0 for i P t1,2u and D Ă Rm . Let
µ1 “ bound-µp˚, f1, f2,µ1,µ2q. Then for any x⃗ P D such that @i P t1,2u. fi px⃗q “ 0 _ |fi px⃗q| ě µi ,

f1px⃗q ˚ f2px⃗q ‰ 0 ùñ |f1px⃗q ˚ f2px⃗q| ě µ1

Like Algorithm 1, Algorithm 2 requires solving optimization problems to obtain the final answer. For

instance, the if condition on line 2 can be conservatively checked by deciding whether 0 R rfm, fMs,

where fm “ mintf1px⃗q ˚ f2px⃗q : x⃗ P Du and fM “ maxtf1px⃗q ˚ f2px⃗q : x⃗ P Du.

Since the cache has been extended to store a lower bound of µpeq, we need to extend all the

previous rules and check Theorem 4.6 again. For example, the rules R1 and R2 are extended to

pK ,cq ▷ pK rc ÞÑ pc,false,σpcq,µpcqqs,cq
R1

1

pK ,xq ▷ pK rx ÞÑ px ,false,53,µpxqqs,xq
R2

1

We can prove that Theorem 4.6 is still true, by extending the definition of a sound cache: a cache

K is sound if for any e P dompK q with K peq “ pAδ⃗ ,b,σ ,µq, Aδ⃗ , b, and σ satisfy the previous

condition and µpeq ě µ. The complete rules appear in §A.2.

5.6 Bounding Ulp Error
The main goal of this paper is to find an ulp error bound Θulp of an expression e with respect to a

mathematical specification f pxq, i.e., to find Θulp such that

ErrUlppf pxq,Epeqpxqq ď Θulp for all x P X X F (11)

To achieve the goal, we first construct a sound abstraction Aδ⃗ pxq “ apxq `
ř

i bi pxqδi of e by

applying the rules discussed so far, and then compute a relative error bound Θrel of e with respect

to f pxq by solving the following optimization problems over x P X :

Θrel “ max

xPX

ˇ

ˇ

ˇ

ˇ

f pxq ´ apxq

f pxq

ˇ

ˇ

ˇ

ˇ

`
ÿ

i

max

xPX

ˇ

ˇ

ˇ

ˇ

bi pxq

f pxq

ˇ

ˇ

ˇ

ˇ

¨ ∆i

We can prove that Θrel is an upper bound on the relative error of e with respect to f pxq, i.e.,
ErrRelpf pxq,Epeqpxqq ď Θrel for all x P X X F, using the triangle inequality and the soundness of

Aδ⃗ pxq. Finally, Theorem 3.3 enables us to obtain Θulp “ Θrel{ϵ that satisfies Eq. 11.

However, the above approach often cannot prove an ulp error bound less than 1 ulp. To illustrate,

consider X “ r1,2s, e “ x ‘ 1, and f pxq “ x ` 1. Applying the rules R1
1
, R2

1
, and R14 to e gives an

abstraction Aδ⃗ pxq “ px ` 1q ` px ` 1qδ of e with |δ | ď ϵ , and we obtain Θrel “ 0 ` 1 ¨ ϵ “ ϵ and

Θulp “ ϵ{ϵ “ 1. But the tightest ulp error bound of e is in fact 0.5 ulps, as a single floating-point
operation always has a rounding error of ď 0.5 ulps.
To obtain an ulp error bound less than 1 ulp, we use the following property about ulp errors

which has been used to prove very precise ulp error bounds in [Harrison 2000b]:

Theorem 5.11. Let r P r´maxF,maxFs, d1,d2 P F, and ˚ P t`,´,ˆ,{u. Assume |d1 ˚ d2| ď

maxF. Then ErrUlppr ,d1 ˚ d2q ď 1 implies

ErrUlppr ,d1 f d2q ď ErrUlppr ,d1 ˚ d2q `
1

2

(12)

The theorem states that the ulp error of a floating-point operation is upper bounded by the ulp

error of the corresponding exact operation plus 1{2. Note that the condition ErrUlppr ,d1 ˚ d2q ď 1

in the theorem is necessary; Eq. 12 may not hold if ErrUlppr ,d1 ˚ d2q ą 1. For the case when

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:22 Wonyeol Lee, Rahul Sharma, and Alex Aiken

ErrUlppr ,d1 ˚ d2q ą 1, we can use the following similar statement: ErrUlppr ,d1 ˚ d2q ď 2
53
implies

ErrUlppr ,d1 f d2q ď ErrUlppr ,d1 ˚ d2q ` 1.

Using Theorem 5.11, we compute an ulp error bound Θulp,new of e tighter than Θulp as follows.

We first construct an abstraction A1

δ⃗ of e by applying the previous rules as before, but with the

assumption that the last operation of e is exact. Then we compute an ulp error boundΘ1
ulp fromA

1

δ⃗
(not from Aδ⃗ ) by following the exactly same steps as above. Finally, we obtain a new, tighter ulp

error bound of e by Θulp,new “ Θ1
ulp ` 1{2 if Θ1

ulp ď 1, or by Θulp,new “ Θ1
ulp ` 1 if 1 ă Θ1

ulp ď 2
53
.

Using Theorem 5.11, we can show that Θulp,new satisfies Eq. 11.

6 IMPLEMENTATION
We implement the techniques described in §4 and §5 using Mathematica 11.0.1. To solve opti-

mization problems that appear in constructing abstractions and computing error bounds, we use

Mathematica’s built-in functions MaxValue[¨ ¨ ¨ ] and MinValue[¨ ¨ ¨ ] that find the global maxi-

mum/minimum of an objective function soundly using analytical optimization (not numerical

optimization).

Most optimization problems occurring in our analysis involve abstractions, i.e., the minimization

or the maximization of an abstraction Aδ⃗ or its magnitude |Aδ⃗ |. However, these optimization

problems are multi-variate and are difficult to solve in general. Hence, our implementation computes

sound lower/upper bounds of these optimization objectives via Eq. (13)-(16), and uses these instead

of the exact minimization/maximization results as in [Lee et al. 2016; Solovyev et al. 2015].

max

xPX ,|δi |ď∆i
Aδ⃗ pxq ď max

xPX
apxq `

ÿ

i

max

xPX
|bi pxq| ¨ ∆i (13)

min

xPX ,|δi |ď∆i
Aδ⃗ pxq ě min

xPX
apxq ´

ÿ

i

max

xPX
|bi pxq| ¨ ∆i (14)

max

xPX ,|δi |ď∆i
|Aδ⃗ pxq| ď max

xPX
|apxq| `

ÿ

i

max

xPX
|bi pxq| ¨ ∆i (15)

min

xPX ,|δi |ď∆i
|Aδ⃗ pxq| ě min

xPX
|apxq| ´

ÿ

i

max

xPX
|bi pxq| ¨ ∆i (16)

In Eq. (13)-(16), the RHS represents a lower/upper bound of the LHS. As each RHS is a collection of

uni-variate optimization problems, it is much easier to solve.

Our implementation checks that the evaluation of an expression e does not introduce ˘8 or

NaNs (§3). For proving the absence of overflows, the inequality maxx,δ⃗ |A1

δ⃗ | ď maxF is checked

for every subexpression e 1
of e , where A1

δ⃗ is an abstraction of e 1
. For proving the absence of

divide-by-0 errors, the inequality 0 R rminx,δ⃗ A
1

δ⃗ ,maxx,δ⃗ A
1

δ⃗ s is checked for every e 1
such that

e2 m e 1
is a subexpression of e , whereA1

δ⃗ is an abstraction of e 1
. Our implementation checks these

conditions by solving additional optimization problems.

For some expressions e and input intervals X “ rl ,r s, our technique might produce imprecise

results. In such scenarios, typically we can subdivide the interval into two (or more) subintervals

rl1,r1s Y rl2,r2s “ rl ,r s such that separate analysis of the subintervals does yield tight bounds. This

situation arises because the preconditions of different exactness properties are satisfied on different

subintervals, but few or no such properties hold for the entire interval.

To prove tighter error bounds in such scenarios, our implementation works as follows. Let e
be an expression, X be an input interval, and Θulp,goal be an ulp error bound that we aim to prove

(we use Θulp,goal “ 0.53 in the evaluation). We first compute an ulp error bound Θulp by applying

our technique to e and X . If Θulp ď Θulp,goal or if we are out of computation budget, return Θulp.

Otherwise, we bisect X into two subintervals X1 and X2, recursively compute an ulp error bound

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:23

Input

Interval

Ulp Error

Bound

# of Intervals

Before Bisections

# of Intervals

After Bisections

Verification

Time (m)

Max Time

per Interval (s)

exp r´4,4s 7.552 13 13 0.52 2.5

sin
r´π ,π sz

p´2
´252,2´252q

0.530 66 142 68 446

tan
r 13

128
, 17π
64

q 0.595 9 22 40 495

r 17π
64
, π
2

q 13.33 8 8 10 81

log r2´1022,maxFs 0.583 4.2 ˆ 10
6

4.2 ˆ 10
6

461 hrs
˛

24

Table 1. Summary of results. For each implementation (column 1) and for each input interval (column 2),
column 3 shows the ulp error bound of the implementation over the input interval. Column 4 is the number
of the initial input intervals from column 2, and column 5 is the number of disjoint intervals obtained by
repeatedly bisecting the initial input intervals (until the ulp error bound of column 3 is obtained). Column 6
shows the total wall clock time taken to obtain the ulp error bound of column 3 (in minutes), and column 7
shows the maximum time taken to verify an initial input interval (in seconds). Here ˛ denotes that we used
16 instances of Mathematica in parallel; by default we run only one instance of Mathematica.

Θulp,i of e over Xi (i “ 1,2), and return the maximum of Θulp,1 and Θulp,2. Such approaches that

bisect input intervals are well-known and are a part of existing commercial tools [Delmas et al.

2009].

7 CASE STUDIES
We evaluate our technique on the benchmarks of [Lee et al. 2016; Schkufza et al. 2014] which

consist of implementations (exp, sin, tan, and log) of four different transcendental functions (ex ,
sinx , tanx , and log x ). The code in exp is a custom implementation used in S3D [Chen et al. 2009],

a combustion chemistry simulator; sin, tan, and log are taken from Intel
®
Math Library libimf

which is Intel’s implementation of the C library math.h and contains “highly optimized and very

accurate mathematical functions.”
4
All these implementations are loop-free programs, and have

been written directly in x86 assembly for the best performance. We remark that analyzing these

x86 implementations involves substantial engineering effort beyond what is described in this paper

or in [Lee et al. 2016], as modeling the semantics of the more complex x86 instructions correctly

and in detail is itself a significant undertaking and, at least so far, the overlap in instructions used

among the benchmarks we have studied has not been as much as might be hoped.

We find an ulp error bound of each x86 implementation P P texp,sin,tan,logu as follows. We

first apply the technique from [Lee et al. 2016] that eliminates bit-level and integer arithmetic

computations intermingled with floating-point operations using partial evaluation. The result

is that for each P with an input interval X , the method yields k different expressions e1, ¨ ¨ ¨ ,ek
in our core language (Figure 2), corresponding input intervals X1, ¨ ¨ ¨ ,Xk , and a (small) set H of

individual doubles (typically |H | ă 250) such that @i P t1, ¨ ¨ ¨ ,ku.@x P Xi X F. Ppxq “ Epei qpxq

and X X F “
Ť

1ďiďk pXi X Fq Y H . Let us call X1, ¨ ¨ ¨ ,Xk the initial input intervals from X . We

then find an ulp error bound Θulp,i of ei over Xi with respect to the exact mathematical function

f P tex , sinx , tanx , log xu for each 1 ď i ď k . Finally, we obtain an ulp error bound of P over X
with respect to f by taking the maximum of maxtΘulp,i : 1 ď i ď ku and maxtErrUlppf pxq,Ppxqq :

4
https://software.intel.com/en-us/node/522653

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.

https://software.intel.com/en-us/node/522653


47:24 Wonyeol Lee, Rahul Sharma, and Alex Aiken

x P Hu. Although the procedure of [Lee et al. 2016] relies on procedures that may need manual

intervention, these procedures have been automated for our benchmarks.

The results of applying our technique to these implementations are summarized in Table 1.

Columns 1 and 2 represent P and X , and column 3 represents the proved ulp error bound of P over

X with respect to f . Column 4 shows k , the number of the initial input intervals X1, ¨ ¨ ¨ ,Xk , while

column 5 shows the number of disjoint intervals after bisecting these initial input intervals (§6).

Column 6 shows the total wall clock time taken to obtain the bounds in column 3, and column

7 shows the maximum time taken to verify an initial input interval. In particular, the maximum

time taken by our analysis (for a given expression ei and an initial input interval Xi ) is less than 10

minutes.

Although the benchmarks of [Lee et al. 2016] include fdim (Intel’s implementation of fdimpx ,yq fi

x ´ y if x ą y and 0 otherwise), this benchmark is easy to verify and its correctness follows from

Theorem 5.11. On the other hand, verifying the other implementations exp, sin, tan, and log
require the exactness results discussed in §5, as explained below.

For the exp implementation, our technique finds an error bound of 7.552 ulps over the interval

r´4,4s in 31 seconds. An important step for proving this error bound is the application of rule

R8/R9. The error bound of 7.552 ulps is larger than Intel’s implementations as the developer

sacrificed precision for performance in this custom implementation; even assuming every floating-

point operation in exp is exact, the ulp error bound is 4.06 ulps over r´4,4s, and indeed we

typically observe error of 3-4 ulps on concrete inputs. The documentation of exp specifies that the

implementation is supposed to compute ex with “small errors” for inputs between ´2.6 and 0.12,
and we have successfully quantified the maximum precision loss formally.

In sharp contrast to such custom implementations, standard math libraries such as libimf claim

that the maximum precision loss is below one ulp. For sin, our technique finds an error bound of

0.530 ulps over the interval X “ r´π ,π szp´2
´252,2´252q in 68 minutes. We exclude the interval

p´2
´252,2´252q because the sin implementation we analyze is executed only for |x | P r2´252,90112q.

For inputs outside this range, different implementations are used. To prove the error bound, rules R8

and R9 (related to Sterbenz’s theorem, §5.2), rules R10, R11, and R12 (related to Dekker’s theorem,

§5.3), and rules R14 and R15 (related to the refined p1 ` ϵq-property, §5.5) are crucial.

Proving the error bound of sin shown in Table 1 requires us to analyze sin over 142 disjoint
intervals, the result of repeatedly bisecting the 66 initial input intervals. In particular, to verify

sin over X66 “ r63π{64,π s, we need to repeatedly bisect X66 to have 13 disjoint subintervals

r63π{64,y1q, ry1,y2q, ¨ ¨ ¨ , ry12,π s, where y0 “ 63π{64, y13 “ π , and yi “ pyi´1 ` y13q{2 (i “

1, ¨ ¨ ¨ ,12). We require many subintervals because the antecedents of the rules R11 and R12 are

valid only over small intervals.

For the tan implementation, our technique finds an error bound of 0.595 and 13.33 ulps over the

intervals r13{128,17π{64q and r17π{64,π{2q, respectively, in 50 minutes. We exclude the interval

r0,13{128q because our benchmark implementation is supposed to compute tanx precisely only

for |x | P r13{128,12800q. To obtain the error bounds, it is crucial to apply all the rules used in

verifying sin multiple times (R8, R9, R10, R11, R12, R14, and R15). Additionally, the rules R4
1
and

R13 (related to σp¨q, §5.4) are used to precisely abstract bit-mask operations (which are absent in

sin).
For tan over the input interval X “ r17π{64,π{2q, we obtain the error bound of 13.33 ulps. The

main culprit is the requirement that, though our abstractions can be non-linear in x , they must be

linear in each δ variable. For example, consider the following expressions that appear in tan:

e1 “ bit-maskpe0,18q, e2 “ bit-maskp1 m e1,35q, e “ 1 a e1 b e2

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:25

For simplicity, assume that the expression e0 has no rounding error, i.e., apxq is a sound abstraction

of e0, and we suppress any δ variable with |δ | ď ϵ . First, by a precise manual analysis, we show that e

computes the rounding error of the bit-mask operation in e2: from Lemma 4.3,д1px , δ⃗q “ apxqp1`δ1q

and д2px , δ⃗q “ 1

apxqp1`δ1q
p1 ` δ2q are over-approximations of e1 and e2, where |δ1| ď 2

´34
and

|δ2| ď 2
´17

; thus the following is an over-approximation of e (the operations a and b of e are
exact by Theorem 5.1 and 5.4).

дpx , δ⃗q “ 1 ´ д1px , δ⃗q ˆ д2px , δ⃗q “ 1 ´ apxqp1 ` δ1q ˆ
1

apxqp1 ` δ1q
p1 ` δ2q “ ´δ2

Note that the term p1 ` δ1q in д1 and д2 is exactly cancelled out in computing д. On the other

hand, the analysis of e using our abstractions proceeds as follows. First, A1, δ⃗ pxq “ д1px , δ⃗q is

a sound abstraction of e1. However, д2 is non-linear in δ1; by the rules R3 and R4, A2, δ⃗ pxq “
1

apxq
p1 ` δ 1

1
qp1 ` δ2q is a sound abstraction of e2, where |δ 1

1
| ď 2

´34
. Given A1, δ⃗ and A2, δ⃗ , the

following is a sound abstraction of e:

Aδ⃗ pxq “ 1´A1, δ⃗ pxqˆA2, δ⃗ pxq “ 1´apxqp1`δ1qˆ
1

apxq
p1`δ 1

1
qp1`δ2q « ´δ2´pδ1`δ 1

1
`δ1,2`δ 1

1,2q

where |δ1,2| ď 2
´51

and |δ 1
1,2| ď 2

´51
. These additional δ terms (compared to д) contribute signifi-

cantly to the error bound of 13.33 ulps for tan over X (since ∆1,2 and ∆1
1,2 are 2

´51 “ 4ϵ).
For the log implementation, we apply our technique to its complete input interval X “

r2´1022,maxFs and obtain an error bound of 0.583 ulps. The error bound implies that log mostly

returns the nearest double to the mathematically exact results. This verification requires all the

rules presented in §5. For log, we used 16 instances of Mathematica in parallel and required 461

hours of wall clock time to verify all four million cases. We note that this verification is highly

parallelizable as analyses over distinct input intervals can be run independently. From Table 1, we

observe that the average time and the maximum time taken to verify log over each initial input

interval are 6 seconds and 24 seconds, respectively.

Figure 9 shows our results graphically. For each graph, the x-axis represents the input values and

the y-axis represents the bounds on ulp error (in log scale) between an implementation and the

exact mathematical function. The ulp error bounds we prove are shown as solid blue lines, while

the ulp error bounds from [Lee et al. 2016] are shown by dotted green lines. Dashed yellow lines in

(b)-(e) denote the one ulp bound that we must prove to verify the correctness of sin, tan, and log.
The actual ulp errors on concrete inputs (from the set H and random samples) are shown by the

red dots. These ulp errors are calculated by comparing the output of an implementation with the

exact result computed by Mathematica.

In these graphs, lower bounds are tighter and the bounds proven by our analysis are much better

than that of [Lee et al. 2016] across the board. There are some inputs that we analyze but [Lee

et al. 2016] do not, e.g., sin near ˘π and logpxq for x ě 4. For such inputs, the green dotted

lines are missing. In (b), (c), and (e), our bounds are below one ulp and we successfully establish

the correctness of these implementations. Except for (d), the bounds we infer are tight and the

observed ulp errors on concrete inputs are close to the statically inferred bounds. In (d), although

our bounds are not tight enough to establish correctness, they are still sound. However, the bounds

from [Lee et al. 2016] in this graph are obtained by numerical optimization (as opposed to analytical

optimization) and are not guaranteed to be sound. Finally, although we only compare our approach

with [Lee et al. 2016] in Figure 9, other generic tools for floating-point verification such as [Darulova

and Kuncak 2014; Delmas et al. 2009; Solovyev et al. 2015] would meet a similar fate due to the

absence of the relevant exactness results in their analyses.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:26 Wonyeol Lee, Rahul Sharma, and Alex Aiken

0.06

0.25

1.00

4.00

16.00

-4.00 -2.00 0.00 2.00 4.00

(a) exp on r´4,4s

0.06

0.25

1.00

4.00

16.00

-3.14 -1.57 0.00 1.57 3.14

(b) sin on r´π ,π szp´2
´252,2´252q

0.06

0.25

1.00

4.00

16.00

0.10 0.28 0.47 0.65 0.83

(c) tan on r 13

128
, 17π
64

q

6.3E-02

4.0E+03

2.6E+08

1.6E+13

1.0E+18

0.83 1.02 1.20 1.39 1.57

(d) tan on r 17π
64
, π
2

q

6.3E-02

1.0E+00

1.6E+01

2.6E+02

-1022 -511 1 513 1024

1.0E+14

≈ ≈

2.2E-308 2.1E-154 2.0E+000 1.9E+154 1.8E+308

(e) log on r2´1022,maxFs

Fig. 9. Each graph shows the ulp error (y-axis in log scale) of each implementation over an input interval
(x-axis). Solid blue lines represent our ulp error bounds (Table 1), dotted green lines represent the ulp error
bounds from [Lee et al. 2016], and dashed yellow lines represent 1 ulp. Red dots represent actual ulp errors
on concrete inputs. The x-axis in (a)-(d) is linear. Because of the large input interval, x-axis in (e) is log-scale.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:27

8 RELATEDWORK
An obvious approach to obtain a provably correct mathematical library involves using verified

routines for arbitrary precision arithmetic during computations and then rounding the results

(e.g., the libmcr library by Sun). However, the resulting implementations have vastly inferior

performance compared to the math libraries that exclusively use 64-bit arithmetic. Libraries such

as CRLibm aim to keep the maximum error below 0.5 ulps while maintaining performance. The

correctness is ensured by a mixture of “pen-and-paper" proofs [Daramy-Loirat et al. 2005] and

machine-checkable proofs in Gappa [Daumas and Melquiond 2010; de Dinechin et al. 2011] and

Coq [Melquiond 2012; Ramananandro et al. 2016]. The tightness of error bounds and the peculiar

structure of rounding errors coupled with optimization tricks make such high performance libraries

difficult to verify. Furthermore, industry standard libraries such as Intel’s math library lose precision

to have better performance. Harrison proved a tight error bound of an algorithm for computing sinx
for |x | ď 2

63
(which is slightly different from Intel’s sin implementation) in HOL Light [Harrison

2000b]. In general, the libimf documentation claims, without any formal proofs, that the maximum

error in the routines is always below one ulp
5
. In this work, we have validated this claim fully

automatically for log (for all valid inputs), sin (for inputs between ´π and π ), and tan (for inputs

between 13{128 and 17π{64). We are unaware of any prior technique that can prove such tight

bounds for math libraries automatically.

The existing work closest to ours is our own previous paper [Lee et al. 2016], and this work

builds on those techniques to achieve the results presented here. In [Lee et al. 2016], error bounds

are proven by first decomposing the math.h implementations into simple expressions and then

proving error bounds of those expressions using Mathematica. The primary research contribution

of the 2016 paper is the first step which performs the decomposition, and we used a standard error

analysis in the second step. The work in the present paper reuses the decomposition step and

adds a novel automatic error analysis that leverages results about exact floating-point arithmetic

systematically. No prior analysis, including the one of [Lee et al. 2016] and those mentioned below,

uses all the exactness results we discussed in §5 and all of these would fail to prove that the error

bounds are below one ulp for the benchmarks we consider.

Automatic tools that can provide formal guarantees on error bounds include Gappa [Daumas and

Melquiond 2010], Fluctuat [Delmas et al. 2009; Goubault et al. 2007], MathSAT [Haller et al. 2012],

Rosa [Darulova and Kuncak 2014], FPTaylor [Solovyev et al. 2015], and Astree [Blanchet et al.

2003; Miné 2012]. In contrast to [Lee et al. 2016], none of these provide support to bound the error

between expressions in our core language and exact transcendentals. For example, these techniques

do not handle bit-masking. Although some of these can handle some exactness results about floating-

point, they do not provide a general framework like ours. For example, Gappa automatically applies

some of the exactness results described in §5, but not all of them (e.g., Dekker’s theorem (§5.3)

and the refined p1 ` ϵq-property (§5.5) for ˚ P tˆ,{u). Moreover, Gappa uses interval arithmetic

to soundly bound the max/min of some expressions, when checking preconditions of exactness

results. Interval arithmetic can often cause imprecision (because it does not preserve dependencies

between variables) and fail to discharge the preconditions; our optimization-based technique is

more precise.

There are techniques that check whether two floating-point programs produce exactly equivalent

results [Collingbourne et al. 2011; Nötzli and Brown 2016]. These do not produce any bound on

the maximum deviation between the implementations. Debugging tools such as [Barr et al. 2013;

Benz et al. 2012; Chiang et al. 2014; Lakhotia et al. 2010] are complementary to our work and can

5
See maxerror=1.0 at https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-and-reference-fimf-precision-

qimf-precision

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.

https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-and-reference-fimf-precision-qimf-precision
https://software.intel.com/en-us/cpp-compiler-18.0-developer-guide-and-reference-fimf-precision-qimf-precision


47:28 Wonyeol Lee, Rahul Sharma, and Alex Aiken

help detect incorrect implementations. In particular, [Fu and Su 2017] use optimization to find

inputs that achieve high branch coverage. Other techniques that provide statistical (and not formal)

guarantees include [Misailovic et al. 2011; Necula and Gulwani 2005; Schkufza et al. 2014].

9 CONCLUSION
A major source of imprecision in generic verification techniques for floating-point stems from

modeling every floating-point operation as having a rounding error about which worst-case

assumptions must be made. However, floating-point operations do not always introduce rounding

errors. We identify floating-point computations that are exact and thus avoid introducing unneeded

potential rounding errors into the modeling of those computations. Our main technical contribution

is a reduction from the problem of checking whether an operation is exact to a set of mathematical

optimization problems that are solved soundly and automatically by off-the-shelf computer algebra

systems. We introduce transformations, also involving optimization problems, to control the size of

our abstractions while maintaining precision. Our analysis successfully proves the correctness of

x86 implementations from an industry standard math library. We are unaware of any prior formal

correctness proofs of these widely used implementations.

A APPENDIX
A.1 Definition of Operations on Abstractions
In this subsection, assume that Aδ⃗ pxq denotes apxq `

ř

i bi pxqδi and δi ranges over r´∆i ,∆i s.

Aδ⃗ pxq fA1

δ⃗ pxq (˚ P t`,´,ˆ,{u)

Aδ⃗ pxq ‘A1

δ⃗ pxq fi Aδ⃗ pxq `A1

δ⃗ pxq

Aδ⃗ pxq aA1

δ⃗ pxq fi Aδ⃗ pxq ´A1

δ⃗ pxq

Aδ⃗ pxq bA1

δ⃗ pxq fi linearizepAδ⃗ pxq ˆA1

δ⃗ pxqq

Aδ⃗ pxq mA1

δ⃗ pxq fi Aδ⃗ pxq b invpA1

δ⃗ pxqq

linearizep¨q and invp¨q are defined as:

linearize

¨

˝apxq `
ÿ

i
bi pxqδi `

ÿ

i,j
bi,j pxqδiδj

˛

‚fi apxq `
ÿ

i
bi pxqδi `

ÿ

i,j
bi,j pxqδ 1

i,j

invpAδ⃗ pxqq fi
1

apxq
`

1

apxq
δ2 passumes ∆1 ă 1q

where δ 1
i,j “ freshp∆i∆jq and δ

2 “ freshp ∆1

1´∆1 q, and ∆1 P Rě0 is computed as:

∆1 “
ÿ

i
max

xPX

ˇ

ˇ

ˇ

ˇ

bi pxq

apxq

ˇ

ˇ

ˇ

ˇ

¨ ∆i

Aδ⃗ pxq f δ 1
(˚ P t`,ˆu)

Aδ⃗ pxq ‘ δ 1 fi Aδ⃗ pxq ‘A1

δ⃗ pxq, where A1

δ⃗ pxq “ 0 ` 1 ¨ δ 1

Aδ⃗ pxq b δ 1 fi Aδ⃗ pxq bA1

δ⃗ pxq, where A1

δ⃗ pxq “ 0 ` 1 ¨ δ 1

Aδ⃗ pxq b p1 ` δ 1q

Aδ⃗ pxq b p1 ` δ 1q fi apxq ` apxqδ 1 `
ÿ

iPR
bi pxqδ 1

i `
ÿ

iRR
pbi pxqδi ` bi pxqδ2

i q

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:29

where δ 1
ranges over r´∆1,∆1s, R “ ti : preservepδi q “ falseu, δ 1

i “ freshp∆i p1 ` ∆1qq (i P R),
and δ2

i “ freshp∆i∆
1q (i R R).

compresspAδ⃗ pxqq

compresspAδ⃗ pxqq fi apxq ` apxqδ 1 `
ÿ

iRRXS
bi pxqδi , where δ 1 “ fresh

˜

ÿ

iPRXS
γi

¸

Here R “ ti : preservepδi q “ falseu, and γi P Rě0 Y t8u and the set S are computed as:

γi “ max

xPX

ˇ

ˇ

ˇ

ˇ

bi pxq

apxq

ˇ

ˇ

ˇ

ˇ

¨ ∆i and S “

!

i :
γi
ϵ

ď τ
)

where τ P Rě0 is a constant.

A.2 Rules for Constructing Abstractions
Basic rules:

e P dompK q K peq “ pAδ⃗ , , , q

pK ,eq ▷ pK ,Aδ⃗ q
Load

1

pK ,cq ▷ pK rc ÞÑ pc,false,σpcq,µpcqqs,cq
R1

1

pK ,xq ▷ pK rx ÞÑ px ,false,53,µpxqqs,xq
R2

1

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

K2pe2q “ p , ,σ2,µ2q

σ “ bound-σp˚,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q

µ “ bound-µp˚,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q ˚ P t`,´u

pK ,e1 f e2q ▷ pK 1,A1

δ⃗ q, where

$

’

’

&

’

’

%

δ 1 “ freshpϵq

A1

δ⃗ “ compressppA1, δ⃗ fA2, δ⃗ q b p1 ` δ 1qq

σ 1 “ mintσ ,53u, µ1 “ maxtfl´pµq,2´1074u

K 1 “ K2re1 f e2 ÞÑ pA1

δ⃗ ,false,σ
1,µ1qs

R14

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

K2pe2q “ p , ,σ2,µ2q

σ “ bound-σp˚,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q

µ “ bound-µp˚,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q

˚ P tˆ,{u

µ ě 2
´1022

pK ,e1 f e2q ▷ pK 1,A1

δ⃗ q, where

$

’

’

&

’

’

%

δ 1 “ freshpϵq

A1

δ⃗ “ compressppA1, δ⃗ fA2, δ⃗ q b p1 ` δ 1qq

σ 1 “ mintσ ,53u, µ1 “ maxtfl´pµq,2´1074u

K 1 “ K2re1 f e2 ÞÑ pA1

δ⃗ ,false,σ
1,µ1qs

R15

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

K2pe2q “ p , ,σ2,µ2q

σ “ bound-σp˚,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q

µ “ bound-µp˚,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q

˚ P tˆ,{u

µ ă 2
´1022

pK ,e1 f e2q ▷ pK 1,A1

δ⃗ q, where

$

’

’

&

’

’

%

δ 1 “ freshpϵq, δ2 “ freshpϵ 1q

A1

δ⃗ “ compressppA1, δ⃗ fA2, δ⃗ q b p1 ` δ 1q ‘ δ2q

σ 1 “ mintσ ,53u, µ1 “ maxtfl´pµq,2´1074u

K 1 “ K2re1 f e2 ÞÑ pA1

δ⃗ ,false,σ
1,µ1qs

R3
1

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:30 Wonyeol Lee, Rahul Sharma, and Alex Aiken

pK ,bit-maskpe1,Bqq ▷ pK1,A1, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

µ “ Epbit-maskpx ,Bqqpfl´pµ1qq µ ě 2
´1022

pK ,bit-maskpe1,Bqq ▷ pK 1,A1

δ⃗ q, where

$

’

’

&

’

’

%

δ 1 “ freshp2´52`Bq

A1

δ⃗ “ compresspA1, δ⃗ b p1 ` δ 1qq

σ 1 “ mintσ1,53 ´ Bu, µ1 “ maxtµ,2´1074u

K 1 “ K1rbit-maskpe1,Bq ÞÑ pA1

δ⃗ ,false,σ
1,µ1qs

R4
1
-1

pK ,bit-maskpe1,Bqq ▷ pK1,A1, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

µ “ Epbit-maskpx ,Bqqpfl´pµ1qq µ ă 2
´1022

pK ,bit-maskpe1,Bqq ▷ pK 1,A1

δ⃗ q, where

$

’

’

&

’

’

%

δ 1 “ freshp2´52`Bq, δ2 “ freshp2´1074`Bq

A1

δ⃗ “ compresspA1, δ⃗ b p1 ` δ 1q ‘ δ2q

σ 1 “ mintσ1,53 ´ Bu, µ1 “ maxtµ,2´1074u

K 1 “ K1rbit-maskpe1,Bq ÞÑ pA1

δ⃗ ,false,σ
1,µ1qs

R4
1
-2

Rules for simple exact operations:

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,0q K1pe1q “ p , ,σ1,µ1q ˚ P t`,´u

pK ,e1 f e2q ▷ pK 1,A1, δ⃗ q, where K 1 “ K2re1 f e2 ÞÑ pA1, δ⃗ ,true,σ1,µ1qs
R5

1

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

K2pe2q “ p , ,σ2,µ2q

σ “ bound-σpˆ,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q

µ “ bound-µpˆ,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q

Dn P Z.@x P X . A2, δ⃗ pxq “ 2
n

n ě ´1075 ´ expntpµ1q ` σ1

pK ,e1 b e2q ▷ pK 1,A1

δ⃗ q, where

$

&

%

A1

δ⃗ “ A1, δ⃗ ˆ 2
n

σ 1 “ mintσ ,53u, µ1 “ maxtµ,2´1074u

K 1 “ K2re1 b e2 ÞÑ pA1

δ⃗ ,true,σ
1,µ1qs

R6
1

pK ,e1q ▷ pK1,c1q

pK1,e2q ▷ pK2,c2q c1 “ c1 f c2 ˚ P t`,´,ˆ,{u

pK ,e1 f e2q ▷ pK 1,c1q, where K 1 “ K2re1 f e2 ÞÑ pc1,c1 == c1 ˚ c2,σpc1q,µpc1qqs
R7

1

Rules for applying Sterbenz’s theorem:

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

K2pe2q “ p , ,σ2,µ2q

σ “ bound-σp´,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q

µ “ bound-µp´,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q

minx,δ⃗ pA2, δ⃗ ´ 1

2
A1, δ⃗ q ě 0

maxx,δ⃗ pA2, δ⃗ ´ 2A1, δ⃗ q ď 0

pK ,e1 a e2q ▷ pK 1,A1

δ⃗ q, where

$

&

%

A1

δ⃗ “ compresspA1, δ⃗ aA2, δ⃗ q

σ 1 “ mintσ ,53u, µ1 “ maxtµ,2´1074u

K 1 “ K2re1 a e2 ÞÑ pA1

δ⃗ ,true,σ
1,µ1qs

R8
1

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



On Automatically Proving the Correctness of math.h Implementations 47:31

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

K2pe2q “ p , ,σ2,µ2q

σ “ bound-σp´,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q

µ “ bound-µp´,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q

minx,δ⃗ pA2, δ⃗ ´ 2A1, δ⃗ q ě 0

maxx,δ⃗ pA2, δ⃗ ´ 1

2
A1, δ⃗ q ď 0

pK ,e1 a e2q ▷ pK 1,A1

δ⃗ q, where

$

&

%

A1

δ⃗ “ compresspA1, δ⃗ aA2, δ⃗ q

σ 1 “ mintσ ,53u, µ1 “ maxtµ,2´1074u

K 1 “ K2re1 a e2 ÞÑ pA1

δ⃗ ,true,σ
1,µ1qs

R9
1

Rules for applying Dekker’s theorem:

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

K2pe2q “ p , ,σ2,µ2q

σ “ bound-σp`,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q

µ “ bound-µp`,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q hasDekkerpe1 ‘ e2q

pK ,e1 ‘ e2q ▷ pK 1,A1

δ⃗ q, where

$

’

’

&

’

’

%

δ 1 “ freshpϵ ,trueq

A1

δ⃗ “ compressppA1, δ⃗ ‘A2, δ⃗ q b p1 ` δ 1qq

σ 1 “ mintσ ,53u, µ1 “ maxtfl´pµq,2´1074u

K 1 “ K2re1 ‘ e2 ÞÑ pA1

δ⃗ ,falsexδ 1y,σ 1,µ1qs

R10
1

pK ,e1 ‘ e2q ▷ pK1, q

K1pe1q “ pA1, δ⃗ , , , q

K1pe2q “ pA2, δ⃗ , , , q

K1pe1 ‘ e2q “ p ,falsexδ 1y, , q

minx,δ⃗ |A1, δ⃗ | ě maxx,δ⃗ |A2, δ⃗ |

pK ,e1 ‘ e2 a e1 a e2q ▷ pK 1,A1

δ⃗ q, where

#

A1

δ⃗ “ compressppA1, δ⃗ ‘A2, δ⃗ q b δ 1q

K 1 “ K1re1 ‘ e2 a e1 a e2 ÞÑ pA1

δ⃗ ,false,53,2
´1074qs

R11
1

pK ,e1 ‘ e2q ▷ pK1, q K1pe1 ‘ e2q “ p ,true, , q

pK ,e1 ‘ e2 a e1 a e2q ▷ pK 1,0q, where K 1 “ K1re1 ‘ e2 a e1 a e2 ÞÑ p0,true,0,8qs
R12

1

Rule for using σp¨q:

pK ,e1q ▷ pK1,A1, δ⃗ q

pK1,e2q ▷ pK2,A2, δ⃗ q

K1pe1q “ p , ,σ1,µ1q

K2pe2q “ p , ,σ2,µ2q

σ “ bound-σp˚,A1, δ⃗ ,A2, δ⃗ ,σ1,σ2q

µ “ bound-µp˚,A1, δ⃗ ,A2, δ⃗ ,µ1,µ2q

˚ P t`,´,ˆ,{u

σ ď 53

pK ,e1 f e2q ▷ pK 1,A1

δ⃗ q, where

$

&

%

A1

δ⃗ “ compresspA1, δ⃗ fA2, δ⃗ q

µ1 “ maxtµ,2´1074u

K 1 “ K2re1 f e2 ÞÑ pA1

δ⃗ ,true,σ ,µ
1qs

R13
1

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments. Wonyeol Lee was supported by

Samsung Scholarship. This work was also supported by NSF grants CCF-1160904 and CCF-1409813.

REFERENCES
Earl T. Barr, Thanh Vo, Vu Le, and Zhendong Su. 2013. Automatic detection of floating-point exceptions. In POPL. 549–560.
Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A dynamic program analysis to find floating-point accuracy

problems. In PLDI. 453–462.
Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, and

Xavier Rival. 2003. A static analyzer for large safety-critical software. In PLDI. 196–207.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.



47:32 Wonyeol Lee, Rahul Sharma, and Alex Aiken

J H Chen, A Choudhary, B de Supinski, M DeVries, E R Hawkes, S Klasky, W K Liao, K L Ma, J Mellor-Crummey, N

Podhorszki, R Sankaran, S Shende, and C S Yoo. 2009. Terascale direct numerical simulations of turbulent combustion

using S3D. Computational Science and Discovery (2009), 015001.

Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamaric, and Alexey Solovyev. 2014. Efficient search for inputs

causing high floating-point errors. In PPoPP. 43–52.
Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly. 2011. Symbolic crosschecking of floating-point and SIMD code. In

EuroSys. 315–328.
Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu Gallet, Nicolas Gast, and Jean-Michel Muller. 2005.

CR-Libm, a library of correctly rounded elementary functions in double-precision. Available at http://lipforge.ens-

lyon.fr/www/crlibm.

Eva Darulova and Viktor Kuncak. 2014. Sound Compilation of Reals. In POPL. 235–248.
Marc Daumas and Guillaume Melquiond. 2010. Certification of bounds on expressions involving rounded operators. ACM

Trans. Math. Software 37, 1 (2010), 2:1–2:20.
Florent de Dinechin, Christoph Quirin Lauter, and GuillaumeMelquiond. 2011. Certifying the Floating-Point Implementation

of an Elementary Function Using Gappa. IEEE Trans. Computers 60, 2 (2011), 242–253.
T. J. Dekker. 1971. A Floating-point Technique for Extending the Available Precision. Numer. Math. 18, 3 (1971), 224–242.
David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, and Franck Védrine. 2009. Towards an Industrial

Use of FLUCTUAT on Safety-Critical Avionics Software. In FMICS. 53–69.
Zhoulai Fu and Zhendong Su. 2017. Achieving high coverage for floating-point code via unconstrained programming. In

PLDI. 306–319.
David Goldberg. 1991. What Every Computer Scientist Should Know About Floating Point Arithmetic. Comput. Surveys 23,

1 (1991), 5–48.

Eric Goubault and Sylvie Putot. 2005. Weakly relational domains for floating-point computation analysis. In NSAD.
Eric Goubault, Sylvie Putot, Philippe Baufreton, and Jean Gassino. 2007. Static Analysis of the Accuracy in Control Systems:

Principles and Experiments. In FMICS. 3–20.
Leopold Haller, Alberto Griggio, Martin Brain, and Daniel Kroening. 2012. Deciding floating-point logic with systematic

abstraction. In FMCAD. 131–140.
John Harrison. 1999. A machine-checked theory of floating-point arithmetic. In TPHOLs. 113–130.
John Harrison. 2000a. Floating-point verification in HOL Light: the exponential function. Formal Methods in System Design

16, 3 (2000), 271–305.

John Harrison. 2000b. Formal verification of floating point trigonometric functions. In FMCAD. 217–233.
William Kahan. 2004. A logarithm too clever by half. Available at http://http.cs.berkeley.edu/~wkahan/LOG10HAF.TXT.

Kiran Lakhotia, Nikolai Tillmann, Mark Harman, and Jonathan de Halleux. 2010. FloPSy - Search-Based Floating Point

Constraint Solving for Symbolic Execution. In ICTSS. 142–157.
Wonyeol Lee, Rahul Sharma, and Alex Aiken. 2016. Verifying Bit Manipulations of Floating-Point. In PLDI. 70–84.
Guillaume Melquiond. 2012. Floating-point arithmetic in the Coq system. Inf. Comput. 216 (2012), 14–23.
Antoine Miné. 2012. Abstract Domains for Bit-Level Machine Integer and Floating-point Operations. In ATx/WInG. 55–70.
Sasa Misailovic, Daniel M. Roy, and Martin C. Rinard. 2011. Probabilistically Accurate Program Transformations. In SAS.

316–333.

Jean-Michel Muller. 2005. On the definition of ulp(x). Available at http://ljk.imag.fr/membres/Carine.Lucas/TPScilab/

JMMuller/ulp-toms.pdf.

George C. Necula and Sumit Gulwani. 2005. Randomized Algorithms for Program Analysis and Verification. In CAV. 1.
Andres Nötzli and Fraser Brown. 2016. LifeJacket: verifying precise floating-point optimizations in LLVM. In SOAP@PLDI.

24–29.

Tahina Ramananandro, Paul Mountcastle, Benoît Meister, and Richard Lethin. 2016. A unified Coq framework for verifying

C programs with floating-point computations. In CPP. 15–26.
Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic Optimization of Floating-Point Programs using Tunable

Precision. In PLDI. 53–64.
Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamaric, and Ganesh Gopalakrishnan. 2015. Rigorous Estimation of

Floating-Point Round-off Errors with Symbolic Taylor Expansions. In FM. 532–550.

Pat H. Sterbenz. 1973. Floating-point computation. Prentice Hall, Englewood Cliffs, NJ.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 47. Publication date: January 2018.

http://lipforge.ens-lyon.fr/www/crlibm
http://lipforge.ens-lyon.fr/www/crlibm
http://http.cs.berkeley.edu/~wkahan/LOG10HAF.TXT
http://ljk.imag.fr/membres/Carine.Lucas/TPScilab/JMMuller/ulp-toms.pdf
http://ljk.imag.fr/membres/Carine.Lucas/TPScilab/JMMuller/ulp-toms.pdf

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	4 Abstraction
	5 Exploiting Exactness Properties
	5.1 Simple Exact Operations
	5.2 Sterbenz's Theorem
	5.3 Dekker's Theorem
	5.4 Nonzero Significand Bits
	5.5 Refined (1+)-property
	5.6 Bounding Ulp Error

	6 Implementation
	7 Case Studies
	8 Related Work
	9 Conclusion
	A Appendix
	A.1 Definition of Operations on Abstractions
	A.2 Rules for Constructing Abstractions

	Acknowledgments
	References

