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ABSTRACT
Query performance prediction estimates the effectiveness of a query
in advance of human judgements. Accurate prediction could be used,
for example, to trigger special processing, select query variants, or
choose whether to search at all.

Prediction evaluations have not distinguished effects due to
query wording from effects due to the underlying information need,
nor from effects due to performance of the retrieval system itself.
Here we use five rankers, 100 tasks, and 28,869 queries to distin-
guish these three effects over six pre-retrieval predictors. We see
that task effects dominate those due to query or ranker; that many
“query performance predictors” are in fact predicting task difficulty;
and that this makes it difficult to use these algorithms.

1 QUERY PERFORMANCE PREDICTION
Query performance prediction seeks to ascertain whether the results
of a query would be useful, without presenting those results to
a user [7, 9, 14]. For example, given the text of a query we may
predict the quality of the resulting SERP, were that query to be run;
or, given a set of results, we may predict an effectiveness score such
as AP without ever showing the results to users or judges.

An accurate predictor would help in at least three settings. First,
it could inform triggering of special actions—for example, if a query
seems to be ineffective then we may choose to spend more effort
processing that query, by considering variant terms or looking
deeper in the index. An ineffective query might also trigger a differ-
ent use of screen space, or a different type of response, for example
by adding hints. Triggering requires accurate prediction of absolute
performance: that is, we need to know how well (or poorly) a single
query is performing on whatever metric we choose.

Second, it could inform selection of queries. Given many possi-
ble query variants—constructed for example by dropping, adding, or
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rewriting terms, or adding or removing location or time constraints—
it may not be possible to run them all. Selection needs a predictor
of relative query effectiveness.

Third, it could inform optional search or search as fallback. For
example, software such as Siri or Cortana might choose to hand off
to a search engine; or, having received results back, might choose
whether to present them. An accurate predictor could decide when
to forward a query, or having run a query, whether to use the results.
Again, absolute performance estimates are needed here.

Past work has focussed on evaluating predictors with simple
measures of correlation, or has examined the effect of query phras-
ing. In this work we use the UQV100 collection and its multiple
queries per task [2], finding that these effects are secondary to
task: that is, predictors are responding more to changes in task
than to changes in query, and as a consequence their performance
estimates are not especially useful.

2 RELATEDWORK
A range of performance predictors have been proposed, in two
broad categories: those that can produce estimates before running
the query (“pre-retrieval”) and those that rely on the results of a
retrieval and/or ranking pass (“post-retrieval”). Carmel and Yom-
Tov [7] and Hauff [14] provide comprehensive surveys.

Pre-retrieval predictors. Pre-retrieval predictors use the text of the
query, as well as term statistics or other static resources, to estimate
effectiveness. Importantly, they do not rely on any retrieval results
and therefore can be run before ranking and retrieval, or can be
run before committing to ranking at all.

Predictors make use of collection-independent features such
as length [15]; morphology and syntax [18]; or the similarity of
query terms, for example with relation to an external thesaurus [14,
18]. They may also draw on term occurrence data, for example by
estimating the specificity of query terms [15, 20, 24], their similarity
to the collection [15], or their co-occurrence in documents [14].

Post-retrieval predictors. Much work has used clarity, the difference
between a language model of the top-ranked documents and that of
the whole collection. A high-performing query will give top-ranked
documents which are both coherent and different to the collection
overall [10]. By drawing on the documents actually retrieved, we
might expect more reliable predictions; but this requires a full
retrieval run, so is relatively expensive.

Several further methods rely on perturbation, assuming that
results which are robust are likely to be high quality. For example,
we may perturb queries by adding or removing terms and running
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the modified versions [11, 25]; perturb documents by making small
changes to the text, then re-ranking [21, 25]; or perturb rankers,
by running different systems and comparing the resulting lists [1].
These perturbation-based methods are of course even more expen-
sive, as they need a source of queries; or to re-run the ranker; or
need two or more state-of-the-art rankers, to run in parallel.

Other models have made use of further post-retrieval features,
including past interactions with retrieved documents [4].

Evaluations. An experiment attached to the TREC-6 conference
asked nine NIST staff to predict whether topics would be “hard”,
“middling”, or “easy”, and these predictions were compared to actual
AP scores [23]. Predictions from the most accurate individual only
managed a Pearson correlation of 0.26 with the actual results; the
best agreement between assessors was only 0.39. Even for human
experts, and even at a coarse grain, prediction is clearly hard.

Participants in the TREC Robust track, 2004–5, were asked to au-
tomatically rank topics by predicted difficulty. There was a “strong
positive correlation” between a custom measure of prediction suc-
cess and overall system performance; rank correlation between
predicted and actual performance ranged up to τ = 0.62 [22].

The evaluation by Hauff [14] is the most thorough to date. It cal-
culated the linear correlation between predictor and effectiveness
measures, an approach that we also employ here. Using 400 TREC
queries from three corpora, and three retrieval methods, Hauff re-
ports the best pre-retrieval performance fromMaxSCQ andMaxIDF,
and the best post-retrieval outcomes from modified clarity-based
predictors, with performance varying with ranker and collection.

Scholer and Garcia [19] have also considered the performance
of predictors, measuring correlations as different rankers are used.
Using 234 runs from two TREC tracks, they see substantial variation
in τ , and significant noise in evaluations. If two predictors were
compared on τ , a change in ranker would lead to a change in
conclusions 14–41% of the time. This is consistent with Hauff’s
observations on ranker dependence.

Task and query variation. With only one query per topic, these
evaluations conflate query and task (as well as corpus) effects. Since
query variation leads to effectiveness variation [6, 17], it is possi-
ble for a hard topic to mask an effective query, and vice versa. A
result list may be poor because the task is hard; because there isn’t
coverage in the corpus; or because the query itself is ineffective.

Carmel et al. [8] describe models which predict effectiveness
based on query phrasing as well on as the distribution of relevant
documents and the underlying corpus. The best predictions use
the difference between relevant documents and the background
corpus—that is, a task and corpus effect—although in most cases
the relevant documents are not known ahead of time. These ex-
periments again use TREC data, with one query per topic, so still
cannot clearly distinguish between query and task effects.

3 EXPERIMENTS
Triggering could make use of pre- or post-retrieval methods; but if
the follow-on process is expensive, then the cheaper pre-retrieval
methods are preferable. Query selection, which runs before any
queries are processed, clearly needs an accurate pre-retrieval pre-
diction; and search as fallback or optional search could make use of

either pre- or post-retrieval techniques. We therefore focus on the
relatively cheap and generally applicable pre-retrieval methods.

Predictors. We have tested six pre-retrieval predictors which have
performed well in past evaluations, or are otherwise interesting,
and which are inexpensive to compute: query terms, AvgQL, AvgP,
MaxIDF, MaxSCQ, and MaxVAR.

The number of terms in the query is a simple baseline [15]. TREC
topics have consistently short titles, which has made this hard to
test; but the queries in UQV100 are both relatively long (mean
5.4 terms) and variable (range 1–26, s.d. 2.5 terms). Mothe and
Tanguy [18] suggest another baseline, the mean number of charac-
ters per query term (Hauff’s “AvgQL”). Longer terms may suggest
more technical or specific vocabulary, which in turn should suggest
better discrimination and better retrieval. Mothe and Tanguy also
use polysemy as a measure of term specificity; AvgP is the mean
number of senses for each query term, as measured by the number
of WordNet synsets in which it appears. Following Mothe and Tan-
guy [18], we consider only single terms; Hauff’s variation matches
multi-term phrases but performed poorly [14].

Other approaches use corpus statistics to predict performance.
Scholer et al.’s MaxIDF measure again estimates specificity, using a
conventional IR measure [20]: MaxIDF = maxt ∈Q (1/dft ), whereQ
is the set of terms in the query and dft is the document frequency
of t (the number of documents in which it occurs).

Zhao et al. [24] extend this idea to use both tf and idf, and again
use the contribution of the highest-weighted term:

MaxSCQ = max
t ∈Q

(
(1 + ln(cft )) × ln

(
1 +

N

dft

))
,

where N is the number of documents in the collection and cft is the
collection frequency of term t (occurrences across all documents).

Finally, the MaxVAR predictor considers the variance of term
weights in responsive documents [24]. The intuition is again that
widely-varying weights—high variance—should help the ranker
differentiate between relevant and non-relevant documents:

MaxVAR = max
t ∈Q

©­«
√

1
dft

∑
d ∈Dt

(
wd,t −wt

)2ª®¬ , (1)

where Dt denotes the set of documents containing term t , and
wherewd,t is the weight of term t in document d in a tf · idf model,

wd,t =

{
1 + ln(tfd,t ) ln(N /dft ) if t in vocabulary
0 otherwise,

in which tfd,t is the term frequency of t in d . Finally in Equation 1,
wt is the mean weight of term t in all documents in which it occurs,
wt =

∑
d ∈Dt wd,t /|Dt |.

Corpus, rankers, and implementation. The UQV100 collection has
100 tasks, with on average 58 query variations for each [2]. We
obtained runs from five rankers, covering a range of algorithmic
choices: Indri using a BM25 and a language model method; Atire,
using a quantised-impact method; and Terrier [16], using a PL2
and a DFRFree method.1 In total, there are 28,869 distinct sys-
tem:task:query combinations, making it possible to investigate each
of the three factors separately. The UQV100 resource also includes

1http://www.lemurproject.org/indri/; http://atire.org; http://terrier.org
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AP Median AP
per query per task

Predictor r τ r τ

Query terms −0.04* 0.00 −0.05* −0.04*
AvgQL 0.04* 0.04* 0.01 0.02
AvgP −0.17* −0.14* −0.20* −0.18*

MaxIDF 0.04* 0.31* 0.07* 0.33*
MaxSCQ 0.42* 0.32* 0.46* 0.35*
MaxVAR 0.27* 0.32* 0.31* 0.35*

Table 1: Performance of selected performance predictors on the UQV100
data. Each is run separately, predicting AP. All r values ±0.01. * marks
correlations significantly different to zero (p < 0.05).

Figure 1: Relationship between MaxSCQ and AP scores, for the 28,869
query:task:ranker triples in UQV100 (r = 0.42).

partial relevance judgements, initially built from pools of depth 10,
and then extended to reduce residuals (uncertainty) in the INST
metric. There are 55,587 judgements on a five-point scale, with
three-way overlap. We use the median label and compute average
precision (AP) as our effectiveness metric, in line with past work.

Term statistics were based on processing with the Krovetz stem-
mer, and no stopwords;2 with AvgP computed by the R wordnet
interface [12]. Terms not in WordNet were treated as monosymous.

4 RESULTS AND DISCUSSION
Predicting absolute effectiveness. The left-hand side of Table 1 gives
correlations (Pearson’s r and Kendall’s τ ) between each of the
predictors above and per-query AP scores, using the UQV100 data.
These results are broadly in line with Hauff [14], although Hauff
reported better correlations with MaxIDF (r between 0.21 and 0.65,
vs 0.04 here). We also note that the data in Table 1 is over 28,869
pairs of predictor and metric—one for each combination of query,
task, and ranker—whereas past work has tended to use TREC data
with only a single query for each topic. Note that some pairs will
correlate, since we have 100 tasks and five rankers underlying the
28,869 pairs. We consider tasks and rankers separately shortly.

A correlation of 0.42, for MaxSCQ, might be considered moder-
ately useful. In practice however there is a good deal of noise and
it would be brave to rely on this in a live system (Figure 1).

2Hauff [14] saw little difference when varying stemmers or stoppers.

Factor Partial η2 Coefficient F p

Query terms 0 −0.000 04 0 n.s.
AvgQL 0.001 0.003 29 < .05
AvgP 0 −0.000 01 0 n.s.

MaxIDF 0.001 −9.97 34 < .05
MaxSCQ 0.02 0.002 515 < .05
MaxVAR 0.0008 0.15 22 < .05

Task 0.61 −0.12–0.43 455 < .05

Ranker 0.01 0–0.03 99 < .05

Table 2:Modelling query performance on the UQV100 data. Topic effects
dominate (partial η2 = 0.61). F values on 1 d.f., except task (99 d.f.) and
ranker (4 d.f.).

Controlling for task and ranker. The query and ranker variation in
UQV100 let us control for task and ranker by modelling them as
separate variables. Table 2 describes a linear model predicting the
AP score for each query:task:ranker combination. We report the
coefficient (effect) for each predictor: for example, each point of
change in MaxSCQ increases the modelled AP score by 0.002. We
also report the effect of changing the ranker (gains up to 0.03 points
of AP) and task (ranges from losing 0.12 to gaining 0.43 points).

All effects save those of query terms and AvgP are significant
at p < 0.05, but the effect size (partial η2, proportion of the vari-
ance explained) varies considerably. Most of the variance in AP
is explained by changes in task (η2 = 0.61) and after allowing for
this—which is to say, after allowing for task difficulty—there is very
little explained by any of the putative predictors. The choice of
ranker explains more of the AP score than any predictor besides
MaxSCQ. This suggests that “query performance” predictors may
not be predicting query effectiveness so much as task difficulty. This
conclusion is supported by correlations between each predictor and
task difficulty (for which we use median AP as a proxy; right-hand
side of Table 1). All but one of the predictors correlate better with
task difficulty than they do with per-query effectiveness.

We can also consider the correlations within a single task:ranker
pair, that is, correlations between a predictor and AP when we hold
the task and ranker constant and the only variation is due to query
phrasing. When we control for task effects this way, the Pearson’s
r values are much lower: MaxSCQ, the best of the predictors, has a
mean r = 0.17 (median 0.15). Again this is an effect of not being
able to effectively predict per-query difficulty. If we consider all
28,869 runs, then we can achieve high r just by getting the tasks
more or less in order; but within any single task, it is much harder
to predict the effectiveness of a single query.

That is, our results make it clear that task difficulty is a major
confound in query performance prediction, an observation that
has been somewhat hidden to date due to the single-query TREC
topics used in past evaluation. Whether this confound is an issue in
practice depends on the application. If we are using prediction to
trigger more processing, the confound is a problem: a poor query
might benefit, but the extra effort would be wasted if the task is
inherently difficult. If we are using prediction to trigger advice or
hints for the searcher, we want to provide different advice for poor
queries or hard tasks, so the confound is also important. For selec-
tion, the task is fixed and performance is relative, so the confound
is not a problem, and we will consider this case next.
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Accuracy on
Predictor all pairs big diffs

Query terms 0.52 0.58
AvgQL 0.52 0.53
AvgP 0.51 0.48

MaxIDF 0.53 0.58
MaxSCQ 0.54 0.61
MaxVAR 0.54 0.63

Table 3: Performance for each predictor, on the selection task.

Selecting queries. Recall that the selection problem is to predict
which of a pair of query formulations is more effective, given a fixed
task and ranker. To examine this we considered all pairs of query
variants for each task:ranker combination; this gave 916,371 variant
pairs. We then counted the number of times each predictor correctly
identified the query that gave the higher AP score.3

Table 3 makes it clear that none of the predictors do at all well
on this task. Even the best performers can only identify the higher-
performing of two queries, given a task and ranker, 54% of the time.
It may be immaterial which way the prediction goes if there is no
practical difference in query performance, so we also considered
only those query pairs where AP scores differed by at least 0.2. On
this “big difference” subset, most predictors improved, but the best
performer (MaxVAR) was still correct only 63% of the time. Clearly,
these pre-retrieval techniques are of only limited practical use.

Other effectiveness metrics. The results reported above are based
on AP as the target metric. While not shown, similar patterns also
arise with alternative metrics, both shallow (INST and RBP0.85)
and deep (NDCG). In general, the overall correlations (Table 1) are
higher with deeper metrics, but the task confounds continue to
dominate and selection is barely better than random in any case.

5 CONCLUSIONS
Accurate pre-retrieval predictions of query effectiveness would be
useful for triggering, selecting, and choosing when to search at all.
Past evaluations have used multiple tasks and rankers, but a single
query per task. This has conflated tasks with queries.

Scholer and Garcia [19] have used changes in rankers to argue
that evaluations of query performance prediction are missing a
significant source of variability. In a similar vein, our results show
that properly accounting for another source of variability—task
difficulty—substantially changes the picture.

Using the query variations, runs, and relevance judgements from
the UQV100 collection we examined the effect of task difficulty.
We conclude that—as seen in other contexts [5, 13]—task is a seri-
ous confound; further, “query performance” predictors in fact do
marginally better at predicting task difficulty than anything query-
related. Moreover, the moderate overall correlations sometimes
seen are deceptive, and if we look inside a single task:ranker com-
bination then correlations are poor. That is, current techniques for
pre-retrieval prediction are not likely useful for triggering special
processing, or extra help to searchers. Performance on the selection

3This is similar to the setup used by Balasubramanian and Allan [3]; however while
they choose a ranker given a single query, we assume the ranker is fixed and try to
choose a query to run. This is the problem we face in the “selection” and “search as
fallback” scenarios.

task—choosing a query variant, given a fixed task and ranker—is
even worse, with performance barely above random.

It is possible that post-retrieval methods might perform better
in this regard. However these predictors rely on running the full
ranking stack, and in many cases also process the text of each
retrieved document, which makes them irrelevant for the selection
problem and expensive for triggering, or for optional search. It
may also be possible to develop alternative pre-retrieval methods,
drawing on different evidence (for example, past behaviour) or on
different analyses of the query text. While such approaches might
yet be developed, our primary observation here is that present
methods appear inadequate for practical applications.
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