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Abstract

Representation learning is a fundamental problem in natural
language processing. This paper studies how to learn a struc-
tured representation for text classification. Unlike most ex-
isting representation models that either use no structure or
rely on pre-specified structures, we propose a reinforcemen-
t learning (RL) method to learn sentence representation by
discovering optimized structures automatically. We demon-
strate two attempts to build structured representation: Infor-
mation Distilled LSTM (ID-LSTM) and Hierarchically Struc-
tured LSTM (HS-LSTM). ID-LSTM selects only important,
task-relevant words, and HS-LSTM discovers phrase struc-
tures in a sentence. Structure discovery in the two represen-
tation models is formulated as a sequential decision problem:
current decision of structure discovery affects following deci-
sions, which can be addressed by policy gradient RL. Results
show that our method can learn task-friendly representation-
s by identifying important words or task-relevant structures
without explicit structure annotations, and thus yields com-
petitive performance.

Introduction
Representation learning is a fundamental problem in AI,
and particularly important for natural language process-
ing (NLP) (Bengio, Courville, and Vincent 2013; Le and
Mikolov 2014). As one of the most common tasks of NLP,
text classification depends heavily on the learned represen-
tation, and is widely applied in sentiment analysis (Socher et
al. 2013), question classification (Kim 2014), and language
inference (Bowman et al. 2015).

Mainstream representation models for text classification
can be roughly classified into four types. Bag-of-words
representation models ignore the order of words, includ-
ing deep average network (Iyyer et al. 2015; Joulin et al.
2017) and autoencoders (Liu et al. 2015). Sequence rep-
resentation models such as convolutional neural network
(Kim 2014; Kalchbrenner, Grefenstette, and Blunsom 2014;
Lei, Barzilay, and Jaakkola 2015) and recurrent neural net-
work (Hochreiter and Schmidhuber 1997; Chung et al. 2014)
consider word order but do not use any structure. Structured
representation models such as tree-structured LSTM (Zhu,
Sobihani, and Guo 2015; Tai, Socher, and Manning 2015)
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and recursive autoencoders (Socher et al. 2013; 2011; Qian
et al. 2015) use pre-specified parsing trees to build structured
representations. Attention-based methods (Yang et al. 2016;
Zhou, Wan, and Xiao 2016; Lin et al. 2017) use attention
mechanisms to build representations by scoring input words
or sentences differentially.

However, in existing structured representation models, the
structures are either provided as input or predicted using
supervision from explicit treebank annotations. There has
been few studies on learning representations with automati-
cally optimized structures. Yogatama et al. (2017) proposed
to compose binary tree structure for sentence representa-
tion with only supervision from downstream tasks, but such
structure is very complex and overly deep, leading to un-
satisfactory classification performance. In (Chung, Ahn, and
Bengio 2017), a hierarchical representation model was pro-
posed to capture latent structure in the sequences with latent
variables. Structure is discovered in a latent, implicit man-
ner.

In this paper, we propose a reinforcement learning (RL)
method to build structured sentence representations by iden-
tifying task-relevant structures without explicit structure an-
notations. Structure discovery in this paper is formulated as
a sequential decision problem: current decision (or action)
of structure discovery affects following decisions, which can
be naturally addressed by policy gradient method (Sutton et
al. 2000). A delayed reward is used to guide the learning of
the policy for structure discovery. The reward is computed
from the text classifier’s prediction based on the structured
representation. The representation is available only when all
sequential decisions are completed.

In our RL method, we design two structured representa-
tion models: Information Distilled LSTM (ID-LSTM) which
selects important, task-relevant words to build sentence rep-
resentation, and Hierarchical Structured LSTM (HS-LSTM)
which discovers phrase structures and builds sentence repre-
sentation with a two-level LSTM. The representation mod-
els are integrated seamlessly with a policy network and a
classification network. The policy network defines a policy
for structure discovery, and the classification network makes
prediction on top of structured sentence representation and
facilitates reward computation for the policy network.

To summarize, our contributions are as follows:

• We propose a reinforcement learning method which dis-



Figure 1: Illustration of the overall process. The policy network (PNet) samples an action at each state. The structured repre-
sentation model offers state representation to PNet and outputs the final sentence representation to the classification network
(CNet) when all actions are sampled. CNet performs text classification and provides reward to PNet.

covers task-relevant structures to build structured sen-
tence representations for text classification problems. We
propose two structured representation models: informa-
tion distilled LSTM (ID-LSTM) and hierarchical struc-
tured LSTM (HS-LSTM).

• Even without explicit structure annotations, our method
can identify task-relevant structures effectively. More-
over, the performance is better or comparable to strong
baselines that use pre-specified parsing structures.

Methodology
Overview
The goal of this paper is to learn structured representation
for text classification by discovering important, task-relevant
structures. We argue that text classification can be improved
with an optimized, structured representation.

The overall process is shown in Figure 1. The mod-
el consists of three components: Policy Network (PNet),
structured representation models, and Classification Net-
work (CNet). PNet adopts a stochastic policy and samples
an action at each state. It keeps sampling until the end of
a sentence, and produces an action sequence for the sen-
tence. Then the structured representation models translate
the actions into a structured representation. We design t-
wo representation models, information distilled LSTM (ID-
LSTM) and hierarchically structured LSTM (HS-LSTM).
CNet makes classification based on the structured repre-
sentation and offers reward computation to PNet. Since the
reward can be computed once the final representation is
available (completely determined by the action sequence),
the process can be naturally addressed by policy gradient
method (Sutton et al. 2000).

Obviously the three components are interleaved together.
The state representation of PNet is derived from the repre-
sentation models, CNet relies on the final structured repre-
sentation obtained from the representation model to make
prediction, and PNet obtains rewards from CNet’s predic-
tion to guide the learning of a policy.

Policy Network (PNet)
The policy network adopts a stochastic policy π(at|st; Θ)
and uses a delayed reward to guide the policy learning. It
samples an action with the probability at each state whose

representation is obtained from the representation models.
In order to obtain the delayed reward which is based on C-
Net’s prediction, we perform action sampling for the entire
sentence. Once all the actions are decided, the representation
models will obtain a structured representation of the sen-
tence, and it will be used by CNet to compute P (y|X). The
reward computed with P (y|X) is used for policy learning.

We briefly introduce state, action and policy, reward, and
objective function as follows:

State State encodes the current input and previous con-
texts, and has different definitions in the two representation
models. The detailed definition of state st will be introduced
in the following sections.

Action and Policy We adopt binary actions in two set-
tings, but with different meanings. In ID-LSTM, the ac-
tion space is {Retain, Delete}, where a word can be deleted
from or retained in the final sentence representation. In HS-
LSTM, the action space is {Inside, End}, indicating that a
word is inside or at the end of a phrase1. Clearly, each ac-
tion is a direct indicator of structure selection in both
representation models.

We adopt a stochastic policy. Let at denote the action at
state t, the policy is defined as follows:

π(at|st; Θ) = σ(W ∗ st + b), (1)

where π(at|st; Θ) denotes the probability of choosing at, σ
denotes the sigmoid function and Θ = {W,b} denotes the
parameters of PNet.

During training, the action is sampled according to the
probability in Eq. 1. During test, the action with the maximal
probability (i.e., a∗t = argmaxaπ(a|st; Θ)) will be chosen
in order to obtain superior prediction.

Reward Once all the actions are sampled by the policy
network, the structured representation of a sentence is de-
termined by our representation models, and the representa-
tion will be passed to CNet to obtain P (y|X) where y is the
class label. The reward will be calculated from the predicted
distribution (P (y|X)), and also has a factor considering the
tendency of structure selection, which will be detailed later.
This is a typical delayed reward since we cannot obtain it
until the final representation is built.

1To be precise, phrase means a substructure or segment.



Objective Function We optimize the parameters of PNet
using REINFORCE algorithm (Williams 1992) and policy
gradient methods (Sutton et al. 2000), aiming to maximize
the expected reward as shown below.

J(Θ) = E(st,at)∼PΘ(st,at)r(s1a1 · · · sLaL)

=
∑

s1a1···sLaL

PΘ(s1a1 · · · sLaL)RL

=
∑

s1a1···sLaL

p(s1)
∏
t

πΘ(at|st)p(st+1|st, at)RL

=
∑

s1a1···sLaL

∏
t

πΘ(at|st)RL.

Note that this reward is computed over just one sample, say
X = x1x2 · · ·xL. Since our state at step t+ 1 is fully deter-
mined by the state and action at step t, the probability p(s1)
and p(st+1|st, at) are equal to 1.

By applying the likelihood ratio trick, we update the pol-
icy network with the following gradient:

∇ΘJ(Θ) =

L∑
t=1

RL∇Θ log πΘ(at|st). (2)

Structured Representation Models
Information Distilled LSTM (ID-LSTM) The main idea
of Information Distilled LSTM (ID-LSTM) is to build a sen-
tence representation by distilling the most important words
and removing irrelevant words in a sentence. In this way, it is
expected to learn more task-relevant representations for clas-
sification. For instance, in sentiment classification, words
like ‘to’, ‘the’ and ‘a’ may rarely contribute to the task. By
distilling the most important words in a sentence, the final
representation can be purified and condensed for classifica-
tion.

ID-LSTM translates the actions obtained from PNet to
a structured representation of a sentence. Formally, given
a sentence X = x1x2 · · ·xL, there is a corresponding ac-
tion sequence A = a1a2 · · · aL obtained from PNet. In this
setting, each action ai at word position xi is chosen from
{Retain, Delete} where Retain indicates that the word is re-
tained in a sentence, and Delete means that the word is delet-
ed and it has no contribution to the final sentence represen-
tation. Formally,

ct,ht =

{
ct−1,ht−1, at = Delete
Φ(ct−1,ht−1,xt), at = Retain

(3)

where Φ denotes the functions (including all gate function-
s and the update function) of a sequence LSTM, ct is the
memory cell, and ht is the hidden state at position t. Note
that if a word is deleted, the memory cell and hidden state of
the current position are copied from the preceding position.
State: The state for the policy network is defined as follows:

st = ct−1 ⊕ ht−1 ⊕ xt, (4)

where⊕ indicates vector concatenation and xt is the current
word input. To enrich the state representation, the memory
state (ct−1) is included.

To make classification, the last hidden state of ID-LSTM
is taken as input to the classification network (CNet):

P (y|X) = softmax(WshL + bs), (5)

where Ws ∈ Rd×K ,bs ∈ RK are parameters of CNet, d is
the dimension of hidden state, y ∈ {c1, c2, · · · , cK} is the
class label and K is the number of categories.
Reward: In order to compute the delayed reward RL, we
use the logarithm of the output probability of CNet, i.e.,
P (y = cg|X) where cg is the gold label of the input X .
In addition, to encourage the model to delete more use-
less words, we include an additional term by computing the
proportion of the number of deleted words to the sentence
length:

RL = logP (cg|X) + γL′/L, (6)

where L′ denotes the number of deleted words (where the
corresponding action at is Delete). γ is a hyper-parameter to
balance the two terms.

Hierarchically Structured LSTM (HS-LSTM) Hierar-
chical models have been widely used in document-level
classification (Tang, Qin, and Liu 2015; Ghosh et al. 2016)
and language modeling (Chung, Ahn, and Bengio 2017). In-
spired by these studies, we propose a Hierarchically Struc-
tured LSTM (HS-LSTM) that can build a structured rep-
resentation by discovering hierarchical structures in a sen-
tence. We argue that a better sentence representation can be
obtained by identifying sub-structures in a sentence. This
process is implemented by sampling an action in {Inside,
End} at each word position, where Inside indicates that a
word is inside of a phrase and End means the end of a
phrase. HS-LSTM translates the actions to a hierarchical
structured representation of the sentence. To be precise, the
word phrase in this paper, should be interpreted as sub-
structure or segment.

In HS-LSTM, there is a two-level structure: a word-level
LSTM which connects a sequence of words to form a phrase,
and a phrase-level LSTM which connects the phrases to for-
m the sentence representation. The transition of the word-
level LSTM depends upon action at−1. If action at−1 is End,
the word at position t is the start of a phrase and the word-
level LSTM starts with a zero-initialized state. Otherwise the
action is Inside and the word-level LSTM continues from its
previous state. The process is described formally as follows:

cwt ,h
w
t =

{
Φw(0,0,xt), at−1 = End
Φw(cwt−1,h

w
t−1,xt), at−1 = Inside

(7)
where Φw denotes the transition functions of the word-level
LSTM, ct is the memory cell, and ht is the hidden state at
position t.

The transition of the phrase-level LSTM depends on ac-
tion at at the current position, which indicates whether a
phrase is completely constructed or not (see Eq. 8). When
action at is End, a phrase ends at position t and the hidden
state of the word-level LSTM will be fed into the phrase-
level LSTM. Otherwise the action is Inside and the phrase-
level LSTM is fixed at this step, and the variables are copied



(a) Information Distilled LSTM (ID-LSTM)

(b) Hierarchically Structured LSTM (HS-LSTM)

Figure 2: Examples for ID-LSTM and HS-LSTM. In ID-LSTM, unimportant words are removed, and the corresponding hidden
states are copied. In HS-LSTM, phrases in a sentence can be discovered and a hierarchical representation is then built by
applying a word-level and phrase-level LSTM.

at−1 at Structure Selection
Inside Inside A phrase continues at xt.
Inside End A old phrase ends at xt.
End Inside A new phrase begins at xt.
End End xt is a single-word phrase.

Table 1: The behavior of HS-LSTM according to action at−1

and at.

from the preceding position. Formally,

cpt ,h
p
t =

{
Φp(cpt−1,h

p
t−1,h

w
t ), at = End

cpt−1,h
p
t−1, at = Inside

(8)

where Φp denotes the transitions function of the phrase-level
LSTM. Note that the input to the phrase-level LSTM is hw

t ,
the hidden state of the word-level LSTM.

The behavior of HS-LSTM relies on both action at−1 and
at, as summarized in Table 1. As can be seen clearly, the
combination of action at−1 and at indicates the position of
word xt in a phrase.
State: The state for the policy network is defined as follows:

st = cpt−1 ⊕ hp
t−1 ⊕ cwt ⊕ hw

t , (9)

where ⊕ indicates vector concatenation. The state represen-
tation consists of both word-level and phrase-level represen-
tations.

To make classification, the last hidden state of the phrase-
level LSTM (hp

L) is taken as input to the classification net-
work (CNet):

P (y|X) = softmax(Wsh
p
L + bs). (10)

Reward: Similar to ID-LSTM, the reward RL is based on
CNet’s prediction and a term indicating the tendency of
structure selection. Unlike ID-LSTM’s reward which en-
courages the model to remove as many words as possible,

this reward respects that a good phrase structure should con-
tain neither too many nor too few phrases. We thus em-
ploy a unimodal function of the number of phrases to re-
flect the tendency of structure selection. We use the function
f(x) = x+ 0.1/x, which is a unimodal function with mini-
mum at 1/

√
10 = 0.316. Formally, we have

RL = logP (cg|X)− γ(L′/L+ 0.1L/L′), (11)

where L′ denotes the number of phrases (the number of ac-
tion End). γ is a hyper-parameter. The second term encour-
ages the number of phrases to be 0.316L, where there are
about 3∼4 phrases for L = 10, which is in line with our
observations.

Classification Network (CNet)
The classification network produces a probability distribu-
tion over class labels based on the structured representation
obtained from ID-LSTM or HS-LSTM. CNet is parameter-
ized by Ws and bs as shown in Eq. 5 and Eq. 10 respective-
ly, and will not be repeated here.

In order to train CNet, we adopt cross entropy as loss
function:

L =
∑
X∈D

−
K∑

y=1

p̂(y,X) logP (y|X), (12)

where p̂(y,X) is the gold one-hot distribution of sample X ,
and P (y|X) is the predicted distribution as defined in Eq. 5
and Eq. 10 respectively.

Training Details
Since PNet, the representation model and CNet are inter-
leaved together, they should be trained jointly. As described
in Algorithm. 1, the entire training process consists of three
steps. We first pre-train the representation model and CNet,
and then pre-train PNet while keeping the parameters of the



Algorithm 1: The Training Process
1 Pre-train the representation model (ID-LSTM or

HS-LSTM) and CNet with predefined structures by
minimizing Eq. 12;

2 Fix the parameters of the strutured representation model
and CNet, and Pre-train PNet by Eq. 2;

3 Train all the three components jointly until
convergence;

other two models fixed. At last, we jointly train all the three
components.

Since training RL from scratch would be extremely diffi-
cult and has high variance, we pretrain the RL module with
some warm-start structures. For ID-LSTM, we use the orig-
inal sentence without any deletion to perform pre-training.
For HS-LSTM, we split a sentence into phrases shorter than
the square root of sentence length, and also use some very
simple heuristics. Note that the structures used for pretrain-
ing are quite different from the parsing structures used in
previous work because parsing structures heavily rely on
parsing tools and are error-prone, and thus more expensive.

Experiments
Experimental Setting and Training Details
The dimension of hidden state in the representation mod-
els is 300. The word vectors are initialized using 300-
dimensional Glove vectors (Pennington, Socher, and Man-
ning 2014) and are updated together with other parameters.
To smooth the update of policy gradient, a suppression fac-
tor is multiplied to Eq.2 and is set to 0.1. γ is set to 0.05×K
in the reward of ID-LSTM (Eq. 6) and 0.1×K in the reward
of HS-LSTM (Eq. 11), whereK is the number of categories.

During the training process, Adam algorithm (Kingma
and Ba 2015) is used to optimize the parameters and the
learning rate is 0.0005. We adopted Dropout before the clas-
sification layer in CNet, with a probability of 0.5. Mini-batch
size is 5.

Datasets and Baselines
Datasets We evaluated our models on various datasets
for sentiment classification, subjectivity analysis, and topic
classification.

• MR: This dataset contains positive/negative reviews
(Pang and Lee 2005).

• SST: Stanford Sentiment Treebank, a public sentiment
analysis dataset with five classes (Socher et al. 2013). 2

• Subj: Subjectivity dataset. The task is to classify a sen-
tence as subjective or objective (Pang and Lee 2004).

2SST provides both phrase-level and sentence-level annota-
tions. We randomly added 5 labeled phrases for each sentence to
the training data, different from (Tai, Socher, and Manning 2015)
which used all annotated phrases for each sentence.

• AG: AG’s news corpus3, a large topic classification
dataset constructed by (Zhang, Zhao, and LeCun 2015).
The topic includes World, Sports, Business and Sci/Tech.

Baselines We chose three types of baselines: basic neural
models using no particular structure, models relying on pre-
specified parsing structure, and models distilling important
information by attention mechanism.

• LSTM: A sequence LSTM. The version we used is pro-
posed in (Tai, Socher, and Manning 2015).

• biLSTM: A bi-directional LSTM, commonly used in text
classification.

• CNN: Convolutional Neural Network (Kim 2014).

• RAE: Recursive autoencoder which is defined on prede-
fined parsing structure (Socher et al. 2011).

• Tree-LSTM: Tree-structured Long Short-Term Memory
relying on predefined parsing structure (Tai, Socher, and
Manning 2015).

• Self-Attentive: Structured Self-Attentive model, a self-
attention mechanism and a special regularization term are
used to construct sentence embedding (Lin et al. 2017).

The dimension of hidden vectors and the word vectors used
in these baselines are the same to our models. Other param-
eter settings are consistent with the references.

Models MR SST Subj AG
LSTM 77.4* 46.4* 92.2 90.9
biLSTM 79.7* 49.1* 92.8 91.6
CNN 81.5* 48.0* 93.4* 91.6
RAE 76.2* 47.8 92.8 90.3
Tree-LSTM 80.7* 50.1 93.2 91.8
Self-Attentive 80.1 47.2 92.5 91.1
ID-LSTM 81.6 50.0 93.5 92.2
HS-LSTM 82.1 49.8 93.7 92.5

Table 2: Classification accuracy on different datasets. Re-
sults marked with * are re-printed from (Tai, Socher, and
Manning 2015), (Kim 2014), and (Huang, Qian, and Zhu
2017). The rest are obtained by our own implementation.

Classification Results
Classification results as listed in Table 2 show that our mod-
els perform competitively across different datasets and dif-
ferent tasks. Our models outperform basic models using no
structure (LSTM, biLSTM, and CNN) , models using pars-
ing structures (RAE and Tree-LSTM), and attention-based
models (Self-Attentive). Comparing to pre-specified parsing
structures, automatically discovered structures seem to be
more friendly for classification. These results demonstrate
the effectiveness of learning structured representations by
discovering task-relevant structures.

3http://www.di.unipi.it/˜gulli/AG_corpus_
of_news_articles.html



Origin text Cho continues her exploration of the outer limits of raunch with considerable brio .
ID-LSTM Cho continues her exploration of the outer limits of raunch with considerable brio .
HS-LSTM Cho

∣∣ continues her exploration
∣∣ of the outer limits of raunch

∣∣ with considerable
∣∣ brio .

Origin text Much smarter and more attentive than it first sets out to be .
ID-LSTM Much smarter and more attentive than it first sets out to be .
HS-LSTM Much smarter

∣∣ and more attentive
∣∣ than it first sets out to be .

Origin text Offers an interesting look at the rapidly changing face of Beijing .
ID-LSTM Offers an interesting look at the rapidly changing face of Beijing .
HS-LSTM Offers

∣∣ an interesting look
∣∣ at the rapidly changing

∣∣ face of Beijing
∣∣ .

Table 3: Examples of the structures distilled and discovered by ID-LSTM and HS-LSTM.

Structure Analysis
To investigate the discovered structures and how they in-
fluence classification performance, we presented structure
analysis from both qualitative and quantitative perspectives.

ID-LSTM
Qualitative analysis: ID-LSTM can effectively remove the
task-irrelevant words, and is still able to offer competitive
performance. As shown in Table 3, irrelevant words such as
‘and’ , ‘of’ and ‘the’ are removed by ID-LSTM. Our mod-
el can even delete consecutive subsequences in a sentence,
such as ‘than it first sets out to be’ or ‘the outer limits of’.
It is interesting that the classifier can classify the text cor-
rectly even without such irrelevant words. Taking sentiment
classification as an example, we observed that the retained
words by ID-LSTM are mostly sentiment words and nega-
tion words, indicating that the model can distill important,
task-relevant words. These examples demonstrate that a pu-
rified representation can benefit classification tasks. Thus,
we argue that not all words are necessary for a particular
classification task.

Dataset Length Distilled Length Removed
MR 21.25 11.57 9.68
SST 19.16 11.71 7.45
Subj 24.73 9.17 15.56
AG 35.12 13.05 22.07

Table 4: The original average length and distilled average
length by ID-LSTM in the test set of each dataset.

Quantitative analysis: We presented further analysis on
what irrelevant information is removed and what importan-
t information is distilled by ID-LSTM. We compared the
original sentence length and distilled length given by ID-
LSTM in the test set of each dataset, as shown in Table 4. For
sentiment classification, we removed about 9.68/7.45/15.56
words from the sentences on MR/SST/Subj respectively. For
topic classification, we removed about 22 words (from 35.12
to 13.05) from the sentences on AG. Interestingly, ID-LSTM
removes about or more than half of the words from the sen-
tence. This indicates that text classification can be done with
highly purified, condensed information. It infers that such
classification tasks can be done with only important key-
words, while our model has an effect of distilling these im-
portant, task-relevant keywords for the task.

Word Count Deleted Percentage
of 1,074 947 88.18%
by 161 140 86.96%
the 1,846 1558 84.40%
's 649 538 82.90%

but 320 25 7.81%
not 146 0 0.00%
no 73 0 0.00%

good 70 0 0.00%
interesting 25 0 0.00%

Table 5: The most/least deleted words in the test set of SST.

Furthermore, we analyzed what types of words are re-
moved and retained, taking sentiment classification as an
example. The most and least deleted words by ID-LSTM
in the SST dataset are listed in Table 5, ordered by deletion
percentage (Deleted/Count). On one hand, the most delet-
ed words are non-content words (prepositions, articles, etc.),
generally irrelevant to sentiment classification. This shows
that ID-LSTM is able to filter irrelevant words. On the oth-
er hand, ID-LSTM is able to retain important words for the
task. For instance, as we may know, sentiment and nega-
tion words are important for sentiment classification (Zhu
et al. 2014; Qian et al. 2017). As can be seen in Table 5,
sentiment words such as ‘good’ and ‘interesting’ are rarely
removed. ID-LSTM doesn’t remove ‘not’ or ‘no’. For tran-
sitional words, ‘but’ appears 320 times and only 7.81% of
them are removed.

To summarize, the qualitative and quantitative result-
s demonstrate that ID-LSTM is able to remove irrelevant
words and distill task-relevant ones in a sentence. ID-LSTM
is effective to extract task-specific keywords, and the puri-
fied, condensed representation is classification-friendly.

HS-LSTM
Qualitative analysis:

Table 3 shows some interesting structures discovered by
HS-LSTM. In the given examples, phrases such as ‘much s-
marter’, ‘and more attentive’ and ‘an interesting book’, are
important task-relevant phrases. We also observed that struc-
tures discovered by HS-LSTM are more flexible in length
and content than traditional phrases since HS-LSTM some-
times fails to find the correct boundary between phrases.
However, as we mentioned, this is extremely difficult for any



Structure Sentence
Predefined The film

∣∣ is
∣∣ one

∣∣ of
∣∣ the year

∣∣ ’s
∣∣ best

∣∣ .
Discovered by RL The film is

∣∣ one of the year
∣∣ ’s best

∣∣ .
Predefined A wonderfully warm human

∣∣ drama
∣∣ that

∣∣ remains vividly in memory
∣∣ long

∣∣ after viewing
∣∣ .

Discovered by RL A wonderfully
∣∣ warm

∣∣ human drama that remains vividly
∣∣ in memory long after viewing

∣∣ .
Predefined The actors are fantastic

∣∣ .
∣∣ They

∣∣ are
∣∣ what

∣∣ makes it
∣∣ worth

∣∣ the trip
∣∣ to the theater

∣∣ .
Discovered by RL The actors are fantastic

∣∣ . They are what makes it worth
∣∣ the trip to the theater .

Table 6: The comparison of the predefined structures and those discovered by HS-LSTM.

model without explicit structure annotations.
In Table 6, we listed some examples to show the differ-

ence between the predefined structures (used for pretraining)
and those discovered by HS-LSTM. These examples show
that our RL method learns to build quite different structures
from the predefined ones. The predefined structures are built
with some very simple heuristics, and consequently frag-
mented. In comparison, HS-LSTM tends to discover more
complete and longer phrases.

Type Examples

Noun Phrase
a spiffy animated feature
the creative community
the originally noble motive

Verb Phrase
coming back
quickly realize
lost opportunities

Prep. Phrase
from their new home
of a complex man
of a harmonic family life

Special Phrase
as predictable as the outcome
throwing caution to the wind
a dozen years later

Table 7: Phrase examples discovered by HS-LSTM.

Nevertheless, HS-LSTM indeed has the ability to identi-
fy common types of phrases with clear boundary. We listed
more examples of different types found by HS-LSTM in Ta-
ble 7. Noun and prepositional phrases found by HS-LSTM
are usually long, expressive, and task-relevant. In compar-
ison, verb phrases are shorter than noun phrases. Besides
grammatical phrases, our model also finds some interesting
special phrases, as shown in Table 7.
Quantitative analysis: First of all, we compared HS-LSTM
with other structured models to investigate whether classifi-
cation tasks can benefit from the discovered structure. The
baselines include the models that rely on parsing structure,
and Com-Tree-LSTM that learns to compose deep tree struc-
ture (Yogatama et al. 2017). We also compared with Par-
HLSTM which has the same structured representation mod-
el except that the phrase structure is given by Stanford pars-
er (Klein and Manning 2003) instead of RL. The results in
Table 8 show that HS-LSTM outperforms other structured
models, indicating that the discovered structure may be more
task-relevant and advantageous than that given by parser.

Then, we computed the statistics of the structures discov-

Models SST-binary AG’s News
RAE 85.7 90.3

Tree-LSTM 87.0 91.8
Com-Tree-LSTM 86.5* —

Par-HLSTM 86.5 91.7
HS-LSTM 87.8 92.5

Table 8: Classification accuracy from structured models. The
result marked with * is re-printed from (Yogatama et al.
2017).

ered by HS-LSTM in Table 9, including the average phrase
number and words per phrase. The average number of word-
s in a phrase is stable across different datasets: about 4 or 5
words per structure. However, this might be accordant with
the term for encouraging structure selection (see Eq. 11).

Dataset Length #Phrases #Words per phrase
MR 21.25 4.59 4.63
SST 19.16 4.76 4.03
Subj 24.73 4.42 5.60
AG 35.12 8.58 4.09

Table 9: Statistics of structures discovered by HS-LSTM in
the test set of each dataset.

To summarize, our HS-LSTM has the ability of discov-
ering task-relevant structures and then building better struc-
tured sentence representations. The qualitative and quantita-
tive results demonstrate that these discovered structures are
task-friendly and suitable for text classification.

Conclusion
This paper has presented a reinforcement learning method
which learns sentence representation by discovering task-
relevant structures. In the framework of RL, we adopted two
representation models: ID-LSTM that distills task-relevant
words to form purified sentence representation, and HS-
LSTM that discovers phrase structures to form hierarchical
sentence representation. Extensive experiments show that
our method has state-of-the-art performance and is able to
discover interesting task-relevant structures without explicit
structure annotations.

As future work, we will apply the method to other type-
s of sequences since the idea of structure discovery (or re-
structuring the input) can be generalized to other tasks and
domains.
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