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Abstract

Background: In many domains, scientists build complex simulators of natural phenomena that encode their
hypotheses about the underlying processes. These simulators can be deterministic or stochastic, fast or slow,
constrained or unconstrained, and so on. Optimizing the simulators with respect to a set of parameter values is
common practice, resulting in a single parameter setting that minimizes an objective subject to constraints.

Results: We propose algorithms for post optimization posterior evaluation (POPE) of simulators. The algorithms
compute and visualize all simulations that can generate results of the same or better quality than the optimum,
subject to constraints. These optimization posteriors are desirable for a number of reasons among which are easy
interpretability, automatic parameter sensitivity and correlation analysis, and posterior predictive analysis. Our
algorithms are simple extensions to an existing simulation-based inference framework called approximate Bayesian
computation. POPE is applied two biological simulators: a fast and stochastic simulator of stem-cell cycling and a slow
and deterministic simulator of tumor growth patterns.

Conclusions: POPE allows the scientist to explore and understand the role that constraints, both on the input and
the output, have on the optimization posterior. As a Bayesian inference procedure, POPE provides a rigorous
framework for the analysis of the uncertainty of an optimal simulation parameter setting.

Keywords: Approximate Bayesian computation, Simulation-based science, Bayesian inference

Background
In science and industry alike, modelers express their
expert knowledge by building a simulator of the phe-
nomenon of interest. There is an enormous variety of such
simulators, deterministic or stochastic, fast or slow, with
or without constraints. For most simulators, e.g. driven
by stochastic partial differential equations, it is impossible
to write down an expression for the likelihood, which can
make it highly challenging to optimize the simulator over
its free parameters. This “blind optimization problem”
is receiving increasing attention in the machine learning
community [1–3].
However, even if the optimal parameter value θ� is

found, this still leaves the scientist in the dark with respect
to important questions such as: “Which parameters are
correlated?”; “Which parameters are robust and which are
sensitive?”; “Is my model overfitting, underfitting or just
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right”? We believe that methods capable of handling these
type of questions post optimization are essential to the
field of simulation-based modeling. In this paper we pro-
pose a new Bayesian framework that allows the scientist
to answer these questions by defining a posterior distri-
bution over all parameters that can be interpreted as “the
probability that the outcome of a simulation conducted at
that parameter value will result in a value of the objec-
tive that is equally good or better than a certain value y�

1,
subject to certain constraints on both parameters as well
as simulation outcomes”. This “Post Optimization Poste-
rior Evaluation” (POPE) is different from standard ABC
[4–6] in that standard ABC compares simulator outcomes
with observations while POPE reasons about an optimiza-
tion problem (subject to constraints). For instance, POPE
can be meaningfully applied to an optimization problem
without a single observation by asking which parame-
ter values are expected to perform better than a certain
threshold value on the objective. While different philo-
sophically, POPE can be implemented by using one-sided
kernels within an ABC framework.
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POPE is not intended to be an optimization tool for
likelihood-free models. While one can use the POPE
framework to iteratively and adaptively optimize an objec-
tive, its core use is in quantifying and visualizing the
full distribution over parameters, including their posterior
interactions, that result in equally good or better objec-
tive values than some given y�

1. One could for instance
imagine using Bayesian optimization [3] or some other
global optimization technique [7] to find a value for y�

1
and then visualize the posterior distribution of parameters
given that value. The posterior distribution we approx-
imate using ABC sampling techniques is related to the
concept of “probability of improvement” often used in
Bayesian optimization [8] to measure how promising a
parameter value is in terms of improving on the current
best solution. However, in that context the probability
of improvement includes, besides uncertainty due to the
stochastic nature of simulation, also the uncertainty of
a surrogate model’s ability to predict the value of y1. In
contrast, with POPE the probability of improving the cur-
rent best solution is only determined by the noise in the
simulation.
POPE addresses the requirements of simulation-based

science by providing tools that have a number of
properties that are beneficial to a scientist: 1) the posterior
distribution over parameters has a clear and interpretable
meaning and can be used to suggest alternative parame-
ters to explore, 2) POPE can handle multiple objectives
and constraints, 3) unlike most standard optimization
methods, POPE can handle simulators with stochastic
outputs and complicated input or output constraints,
4) POPE can handle multimodal posterior distribu-
tions, 5) as part of its computation POPE will gener-
ate posterior predictive samples that can be used to
evaluate the model fit, and 6) by incorporating Gaus-
sian process surrogate models it can handle expensive
simulators.
In this paper we will develop POPE and apply it to

two real-world cases: one fast stochastic simulator in the
domain of stem cell biology and one slow deterministic
simulator developed for cancer research.

Approximate Bayesian computation
One of the primary goals of Bayesian inference is to draw
samples from the following (usually intractable) posterior
distribution:

π(θ |y�
1, . . . , y�

N ) ∝ π(θ)π(y�
1, . . . , y�

N |θ) (1)

where π(θ) is a prior distribution over parameters θ ∈ IRD

and π(y�
1, . . . , y�

N |θ) is the likelihood of N data observa-
tions, where y�

n ∈ IRJ . The vector of J values can either
be “raw” observations or, more typically, informative

statistics of observations. In this paper we consider the
case where N = 1 (though all our methods apply equally
to N > 1) and will henceforth drop the subscripts. The
unconventional superscript on y� is used to distinguish
the observations from the simulator outputs y.
In ABC the likelihood function π(y�|θ) is usually not

available as a function but rather as a complex simula-
tion, hence the alternative name for ABC, likelihood-free
inference. ABC sampling algorithms treat the simula-
tor as an auxiliary variable generator and discrepancies
between the simulator outputs and the observations as
proxies for the likelihood value. If we let y sim∼ π(y|θ)

be a “draw” from the simulator, the likelihood can be
written as:

π
(
y�|θ) =

∫ [
y = y�

]
π(y|θ)dy (2)

where [·] = 1 if the arguments are true, and 0 otherwise.
Equation 2 implies that we can compute the exact like-
lihood by integrating over all possible simulation output
values. In reality, since this integral requires simulations
to match observations exactly, it is only achievable for dis-
crete data. For continuous y�, J slack variables ε are intro-
duced around y�. More specifically, an ε-kernel function
πε is used to measure the discrepancy between simula-
tion results and observations. In practice the likelihood is
approximated by a Monte Carlo estimate computed from
S draws of the simulator y(s)sim∼ π(y|θ):

πε(y�|θ) =
∫

πε(y�|y)π(y|θ)dy ≈ 1
S

S∑
s=1

πε

(
y�|y(s)

)
(3)

Although Eq. 3 is an unbiased estimator of πε(y�|θ), this
ABC likelihood is an approximation to the true likelihood,
since πε(y�|θ) ≈ π(y�|θ). In other words, ε puts the
“approximate” in ABC; samples are drawn from the true
posterior only as ε → 0. Common πε kernels are the ε-
tube πε(y�|y) ∝ ∏

j

[
‖y�

j − yj‖1 ≤ εj
]
and the Gaussian

kernel πε(y�|y) = ∏
jN

(
y�
j |yj, ε2j

)
.

Among the many possible ABC sampling algorithms,
Markov chain Monte Carlo (MCMC) ABC is of particular
relevance to this work [4–6]. In the Metropolis-Hastings
(MH) step the proposal distribution is composed of the
product of the proposal for the parameters θ and the
proposal for the simulator outputs:

q
(
θ ′, y′|θ) = q

(
θ ′|θ)

π
(
y′|θ ′) (4)

i.e. parameters θ ′ are first proposed, then outputs y′ are
generated from the simulator with input parameters θ ′.



Meeds et al. BMC Bioinformatics  (2015) 16:264 Page 3 of 20

Using this form of the proposal distribution, and using
the Monte Carlo approximation Eq. 3, we arrive at the
following Metropolis-Hastings accept-reject probability,

α = min
(
1,

π
(
θ ′) ∑S

s=1 πε(y�|y′(s))q(θ |θ ′)
π (θ)

∑S
s=1 πε(y�|y(s))q(θ ′|θ)

)
(5)

When only the numerator is re-estimated at every iter-
ation (and the denominator is carried over from the
previous iteration), then this algorithm corresponds to
pseudo-marginal (PM) sampling [9, 10]. PM sampling is
asymptotically correct (taking for granted the approxima-
tion introduced by the kernel πε) but can display very poor
mixing properties. By resampling the denominator as well,
we improve mixing at the cost of introducing a further
approximation. This sampler is known as the marginal
sampler [4, 6]. There is evidence that using a single sim-
ulation is adequate [11]; indeed, we set S = 1 in our
experiments and found no benefit to tuning S.
For expensive simulators, even a single simulation per

MH step can make ABC-MCMC infeasible.
Surrogate modeling—where the history of all simula-

tions are stored in memory and used to build a surrogate
of the simulator—may be the only option tomake progress
in that case.

Methods
In regular ABC the simulator generates output statistics y
that are compared directly with observations y�. For opti-
mization problems, however, the scientist may interpret y1
as a cost and y�

1 as an estimate of the minimum cost. Other
simulation statistics {yj}, j = 2..J may be constrained, e.g.
{yj ≤ y�

j }. For instance, the cost could be some measure
of misfit between simulator outcomes and desirable out-
comes while constraints could represent domains within
which certain simulation results should lie (constraints
can of course also be incorporated into the cost func-
tion, but as we will see, it is sometimes beneficial to treat
them separately). Our first guess to elucidate some pos-
terior distribution over parameters could be to define a
Gibbs distribution p(y1) ∝ exp(−βy1) which we would
treat as a likelihood similar to πε and apply ABC, rejecting
everything that does not satisfy the constraints. Unfor-
tunately, we do not consider this a satisfactory solution
because the posterior does not have a clear interpretation.
For instance, simply scaling the arbitrary constant β would
change the posterior.
A better solution is to define a new type of (one-sided)

Heavyside kernel in ABC:
[
y1 ≤ y�

1
]
which is 1 when the

argument is satisfied and 0 otherwise. Note that this ker-
nel is applied to both the objective y1 and the constraints
{yj} alike. The quantity y�

1 is given by the lowest value of
the objective found by some optimization procedure (e.g.
grid-search, black-box [7] or Bayesian optimization [3],

etc). The posterior samples produced by an ABC algo-
rithm that uses this one-sided kernel have a very clean
interpretation, namely they represent the probability that
a simulation run at that parameter value will generate
an equally good or better value for the objective while sat-
isfying all the constraints. This distribution can be used
to suggest new regions to explore (e.g. other modes, or
regions that are farther away from constraint surfaces),
and to visualize dependencies between parameters and
their sensitivities.
The posterior described above thus corresponds to

π(θ |y�) ∝ π(θ)

∫ [
y ≤ y�

]
π(y|θ)dy ∝ π(θ)

×
∫ y�

−∞
π(y|θ)dy ∝ π(θ)Fy|θ (y�)

(6)

where Fy|θ is the cumulative distribution function (CDF)
of the conditional probability density function π(y|θ) (or
the probability of satisfying the constraint or improving
the objective1). Since in ABC we cannot compute the like-
lihood analytically, it is approximated by a Monte Carlo
estimate:

Fy|θ (y�) ≈ 1
S

S∑
s=1

[
y(s) ≤ y�

]
y(s)sim∼ π(y|θ)

(7)

Using the one-sided kernel
[
y ≤ y�

]
will cause the ABC

sampler to get stuck when initialized in a region where
y > y� because every proposed sample will get rejected.
Even when initialized in a region where y ≤ y�, this ker-
nel will make it very difficult to move between different
“islands” (modes) in parameter space where these condi-
tions hold. This problem is aggravated in high dimensions
where

[
y ≤ y�

] = ∏
j

[
yj ≤ y�

j

]
and every condition needs

to be satisfied for the likelihood to be non-zero. A one-
sided ε-tube

[
y ≤ y� + ε

]
adds some relief but suffers the

same problem for most useful values of ε.
The solution to this problem is to soften the kernel

analogously to the softening of the condition
[
y = y�

]
into πε(y�|y) in generalized ABC [5]. By using a soft
kernel, the goodness of two sets of statistics can be com-
puted and compared. If we define dj = yj − y�

j , then
these soft kernels treat all simulation outputs less than y�

j
with likelihood proportional to 1 and provide quadratic
or linear penalties otherwise. For example, a one-sided
Gaussian kernel for the j statistic (or output constraint) is
defined as

Kεj

(
yj; y�

j

)
= [

dj ≥ 0
] + [

dj < 0
]
exp

(
−1
2

(dj
εj

)2
)

(8)
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and a one-sided exponential kernel (i.e. linear penalty) is
defined as

Kεj

(
yj; y�

j

)
= [

dj ≥ 0
] + [

dj < 0
]
exp

(
−dj

εj

)
(9)

By modifying ε we can control the relative importance
or severity of the penalty, allowing us to use annealing
schedules that adapt ε during the MCMC run in order to
focus the sampling at modes when ε is small.
Up to this point we have only discussed one-sided like-

lihoods, but there is nothing preventing the likelihoods to
incorporate both upper and lower constraints:

π
(
y�|θ) =

∫ y�
b

y�
a

π(y|θ)dy = Fy|θ (y�
b) − Fy|θ (y�

a) (10)

The one-sided kernels are easily modified for this, setting
the likelihood to 1 in between the regions, with quadratic
or linear penalties outside of the regions.

Modeling the simulator response
We may want to consider modeling the simulator
response π(y|θ) if the outcome of the simulator is stochas-
tic or the simulator is expensive to run. In the first case, we
can reduce the variance of the Markov chain by learning
a local response model2 for every state θ . For the sec-
ond case, a global response model (a.k.a. a surrogate) over
the entire θ-space is more appropriate because it stores
and makes use of the entire simulation history to predict
responses at new θ locations.

Local responsemodels
When the simulator is fast and stochastic, it can be ben-
eficial to the inference procedure to build a local, con-
ditional model of the distribution π(y|θ) using S simula-
tor responses in y(1), . . . , y(S)sim∼ π(y|θ). The simplest local
response model is the conditional Gaussian, an approach
called synthetic likelihood in ABC [12]. It computes esti-
mators of the first and second moments of the responses
and uses the Gaussian distribution to analytically com-
pute the likelihood (thus providing an alternative to kernel
ABC). For our algorithms, this allows the direct computa-
tion of the CDF:

μ̂θ = 1
S

S∑
s=1

ys �̂θ = 1
S − 1

S∑
s=1

(
y(s) − μ̂θ

) (
y(s) − μ̂θ

)T
(11)

Fy|θ
(
y�; μ̂θ , �̂θ

)
=

∫ y�

−∞
N

(
y|μ̂θ , �̂θ

)
dy (12)

where μ̂θ and �̂θ are computed from the S simula-
tions. In experiments we can limit the number of param-
eters by using a factorized model: N

(
y|μ̂θ , �̂θ

)
≈∏J

j=1N
(
yj|μ̂j, σ̂ 2

j

)
, resulting in a factorized product over

CDFs as well. Modeling the response by only the first two
momentsmay be inadequate due tomulti-modality, asym-
metric noise, etc. For such cases a conditional KDE (kernel
density estimate) response model can by used. In [13] this
approach is shown to be superior to conditional Gaussians
for certain computational psychology models. Note that
for Gaussian kernels the conditional KDE is very similar
to kernel ABC, but has additional flexibility of adaptively
choosing bandwidths (rather than the fixed ε in kernel
ABC).

Global responsemodels
For very expensive simulators it is impractical to run sim-
ulations at each parameter location in the MCMC run.
In these cases it is worth the extra storage and the com-
putational overhead of learning a model of the simulator
response surface or surrogate. For global response mod-
els the Metropolis-Hastings diverges from ABC-MCMC
in that simulations are only performed if the surrogate
is very uncertain. When the surrogate is confident, no
simulations are performed.
The natural global extension of the Gaussian conditional

model is the Gaussian process (GP). TheGP has been used
extensively for surrogate modeling [1, 2, 8, 14, 15], includ-
ing more recent applications in accelerating ABC [16, 17].
In [16] GPs directly model the log-likelihood in successive
waves of inference, each one eliminating regions of low
posterior probability. This approach is capable of handling
high-dimensional simulator outputs. In [17] each dimen-
sion of the simulator response is modeled by a GP and
explicitly uses the surrogate uncertainty to determine sim-
ulation locations (design points). The advantage of this
approach is that CDFs can be computed directly from
the GPs predictive distributions. A global extension of
the conditional KDE is more complicated, but estimators
such as the Nadayara-Watson could provide the neces-
sary modeling machinery. These extensions are beyond
the scope of this paper.

MCMC for POPE
Algorithm 1 provides the pseudo-code for running a ker-
nel ABC-MCMC version of POPE (easily modified to
accommodate response models by plugging in the appro-
priate likelihood function for πε(y�|y(s))). This is simply
ABC-MCMC with one-sided kernel likelihoods. There
are two possible modes for running POPE: marginal
and pseudo-marginal. When running marginal MCMC,
the state of the Markov chain only includes θ , and, as
discussed earlier, has the property of improved mixing
with the cost of doubling the number of simulations per
Metropolis-Hastings step and a less accurate posterior.
On the other hand, pseudo-marginal can mix poorly, but
uses fewer simulations and is more accurate. Choosing
between the two modes is problem specific.
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Algorithm 1 POPE
1: function ABC-MCMC( θ0, T, S, marginal, y�)
2: θ ← θ0

3: y(1), . . . , y(S)sim∼ π(y|θ)

4: for t = 1 : T do
5: θ ′ ∼ q

(
θ ′|θ)

6: y′(1), . . . , y′(S)sim∼ π(y|θ ′)
7: ifmarginal then
8: y(1), . . . , y(S)sim∼ π(y|θ) 
 Marginal samplers do not keep simulations.
9: α ←

(
1, π(θ ′)q(θ |θ ′)

∑
s πε(y�|y′(s))

π(θ)q(θ ′|θ)
∑

s πε(y�|y(s))

)
10: if U(0, 1) < α then
11: θ ← θ ′
12: y(1), . . . , y(S) ← y′(1), . . . , y′(S)

13: Collect θ 
 For posterior analysis.
14: return Collection θ

Adaptive POPE
In ABC, the choice of ε is crucial to both the MCMCmix-
ing and the precision of the posterior distribution. There
is an obvious trade-off between the two as large ε provides
better mixing but poorer approximations to the target dis-
tribution. It is common in ABC to adapt ε using quantiles
of the discrepancies (e.g. in Sequential Monte Carlo ABC
[18]) or using a more complicated approach, for exam-
ple based on the threshold acceptance curve [19], or to
include ε as part of the state of the Markov chain [20].
We propose an online version of the quantile method

(see function UpdateEpsilons in Algorithm 2), setting ε to
a quantile of the exponential moving average (EMA) of
the discrepancies or some minimum values εMIN, which
ever is greater. Minimum values εMIN are set not only for
computational reasons, but also to reflect the scientist’s
intuition regarding the relative importance of the con-
straints. Because ε can fluctuate during the MCMC run,
it can explore regions where some constraints are easily
satisfied, but others are not, and vice-versa. A quantile
parameter β puts pressure on the chain to keep ε small.
For some problems we may not know certain objec-

tive values in y� before running POPE. For these cases
simple adaptive MCMC procedures can estimate y� dur-
ing the MCMC run. For deterministic simulators, y� can
be updated after each simulation. For stochastic simu-
lators we propose a local averaging procedure based on
the EMA of y, similar to the adaptation of ε. The intu-
ition behind this is that the best objective value y� at
θ� is the expected value of the simulator response at θ�.
An EMA of the simulation response approximates this
expectation and we have found in our experiments with
stochastic simulators that it performs well and conve-
niently fits into the POPE MCMC procedure (i.e. there
is no need to set up an entirely different optimization

procedure with complicated constraints on the input and
outputs since these are already part of POPE). This is
function UpdateObjectives in Algorithm 2.
These are adaptive MCMC algorithms that do not nec-

essarily target the correct posterior distribution. The sim-
plest way to correct this is to simply use a fewMCMC runs
to set ε or y� (if needed) or stop the adaptation altogether
after a burnin period, from that point using non-adaptive
ABC-MCMC. This is the approach we took in our experi-
ments. Alternatively, the adaptation decay rate parameters
δ and γ in Algorithm 2, could slowly increase to 1, at
which point the adaptation ceases.

Posterior analysis of MCMC results
Along with the posterior parameter distribution p(θ | y�),
which is usually the main distribution of interest in a
Bayesian analysis, we will also examine the posterior pre-
dictive distribution, denoted as p(y|y�), though perhaps
unintuitive, is the distribution of statistics (the predic-
tions) generated by the simulation at the parameters from
p(θ | y�). Posterior predictive distributions are used in
statistics formodel checking andmodel improvement [21],
for example, and use the generative model with parame-
ters from the posterior to generate pseudo or replicated
data. Statistics of this data, defined by the statistician and
considered important for the problem at hand, are com-
pared to the statistics from the observations (the real
data). One can then examine the bias and variance of
the posterior predictive distributions with respect to the
observations y�, or perform Bayesian t-tests (how prob-
able are the observations y� under p(y|y�)) (see [21],
Chapter 6).
For ABC, the posterior analysis comes naturally, and,

usually, for free. Using ABC-MCMC algorithms, statistics
(judged important a priori by the scientist) are generated
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Algorithm 2 Adaptive POPE
1: function ADAPTIVE-ABC-MCMC( θ0, T, S, marginal, y�, yEMA, γ , ε, εEMA, εMIN, δ, β)
2: θ ← θ0
3: for t = 1 : T do
4: θ ′ ∼ q(θ ′|θ)

5: y′(1), . . . , y′(S)sim∼ π(y|θ ′)
6: ifmarginal then
7: y(1), . . . , y(S)sim∼ π(y|θ) 
 Marginal samplers do not keep simulations.
8: α ←

(
1, π(θ ′)q(θ |θ ′)

∑
s πε(y�|y′(s))

π(θ)q(θ ′|θ)
∑

s πε(y�|y(s))

)
9: if U(0, 1) < α then

10: θ ← θ ′
11: y(1), . . . , y(S) ← y′(1), . . . , y′(S)
12: μ̂θ ← E

[
y(1), . . . , y(S)] 
 Compute mean of statistics.

13: y�, yEMA←UPDATEOBJECTIVES
(
y�, μ̂θ , yEMA, γ

)
14: ε, εEMA ← UPDATEEPSILONS

(
y�, μ̂θ , εEMA, εMIN, δ,β

)
15: Collect θ , μ̂θ , ε, y� 
 For posterior analysis.
16: return Collections θ , μ̂θ , ε, y�

17: function UPDATEOBJECTIVES( y�, y, yEMA, γ ) 
 For S > 1, y is the average.
18: for j = 1 : J do
19: yEMA

j ← (1 − γ )yEMA
j + γ yj 
 Set γ ← 1 for no update.

20: y�
j ← min

(
y�
j , yEMA

j

)

 Assume minimization.

21: return y�, yEMA

22: function UPDATEEPSILONS( ε, y�, y, εEMA, εMIN, δ,β)
23: for j = 1 : J do
24: 	j ← (y�

j − yj)HEAVYSIDE
(
y�
j − yj

)

 Assume minimization.

25: εEMA
j ← (1 − δ)yEMA

j + δ	j 
 Set δ ← 1 for no update.

26: εj ← max
(
εMINj,βεEMA

j

)

 Quantile 0 < β < 1 puts pressure on constraints.

27: return ε, εMIN

at eachMetropolis-Hastings step. Simply storing the pairs
{y, θ} from the MH step is sufficient to produce both
p(y | y�) and p(θ | y�). In addition to the posterior pre-
dictive, visualizing the input-output posteriors, i.e. a joint
p(yj, θd | y�) from the combined posterior predictive and
posterior distribution, can lead to additional insight.

Results and discussion
Case 1: stem-cell niche geometry in C. elegans
Minimizing the time it takes to develop an organ or to
return to a desired steady state after perturbation is an
important performance objective for biological systems
[22, 23]. Control of the cycling speed of stem cells and of

Table 1 Stem-cell niche geometry experimental set-up and posterior predictive results

Experiment M y� τg1 τgd τθ Mean y Median y Mode y P(y < 27.05)

A
1 27.05 399 399 400 27.042 27.037 27.029 0.53

1 27.05 399 10 400 27.059 27.054 27.076 0.49

B
1 ∞ 399 399 400 27.078 27.081 27.076 0.43

1 ∞ 399 10 400 27.298 27.150 27.114 0.32

C
1 ∞ 399 399 1500 30.159 30.184 30.224 0.00

1 27.05 399 399 1500 27.322 27.227 27.150 0.24

D
10 27.05 399 399 400 27.053 27.049 27.043 0.51

10 27.05 399 10 400 27.056 27.053 27.050 0.47

M is the number of replicates used to compute a statistics (see Experiment D). See text for definitions of other columns
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Fig. 1 Stem-cell niche geometries, Experiment A. Comparison of niche geometry posteriors with τgd = 400 (top row) and τgd = 10 (bottom row).
The left column illustrates the posterior geometries θ by plotting circles of radius proportional to their posterior fraction of that size for that row
(rounded to integers). The right column is the posterior predictive distribution p(y|y�), with shading indicating the probability mass P(y < 27.05 | y�)

the timing of their differentiation is critical to optimize the
dynamics of development and regeneration. This control
is often exerted in part by stem cell niches. While stem
cell niches are known to employ a number of molecular
signals to communicate with stem cells [24], the impact

of their geometry on stem cell behavior has received less
attention. To begin to address this question, we ask here
how niches should be shaped to minimize the amount
of time to produce a given number of differentiated
cells.

Fig. 2 Stem-cell niche geometries, Experiment B. Comparison of niche geometry posteriors with τgd = 400 (top row) and τgd = 10 (bottom row), but
with the likelihood term removed
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Fig. 3 Stem-cell niche geometries, Experiment C. In these experiments, τθ = 1500. Top: y� = ∞. Bottom: y� = 27.05. When y� = 27.05, posteriors
are similar to experiment A (Fig. 1, top)

We consider a model organ inspired from the C. elegans
germ line, which is similar to a number of other systems
[25]. Cells reside within a tube-like structure; one end
defined by the niche is closed, while the other is open and
allows cells to exit. The set of possible positions that can
be assumed by stem cells is constrained by the geometry
of the niche; a dividing cell that is surrounded by neigh-
bors pushes away one of its neighbors, which in turnmight
need to push away one of its own neighbors; cells pushed
outside of the niche by one of these chain displacement

reactions are forced to leave the cell cycle and differen-
tiate. A simulator we developed tracks cell division and
movement, and outputs the time it takes to produce N
cells for a given geometry. This geometry is such that rows
are defined along the main axis of the organ; each cell row
has its own size, comprised between 1 and 400 cells. There
are several constraints that are put on the niche geometry
to help the model remain realistic: the niche should hold
fewer than 400 cells total, row size should monotonically
increase along the niche axis, and the geometry should

Fig. 4 Stem-cell niche geometries, Experiment D. Effect ofM, the number of replicates used to compute the output statistic y:M = 1 (top) versus
M = 10 (bottom). The left 2 columns correspond to τgd = 399 and the right 2 columns τgd = 10. Each plot is a joint posterior p(y, θd | y�), for d ∈ {1, 8}
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Fig. 5 Stem-cell niche geometries, Experiment D. Effect ofM, the number of replicates used to compute the output statistic y:M = 1 (top) versus
M = 10 (bottom). The left column correspond to τgd = 399 and the right column τgd = 10

be “well-behaved” (i.e., there should not be large jumps in
row size along the axis).

Experimental set-up
We performed several sets of experiments aimed at dis-
covering the effects that realistic niche geometry con-
straints have on the time to 300 cells. We therefore define
a single statistic y to be the time to N = 300 cells for
a niche of D rows; a niche geometry vector θ defines
the simulator input parameters. In this study we set the
number of rows in the niche to D = 8. To enforce the
monotonicity constraints, we define θ1 = 1 + g1 and
θd = θd−1 + gd, ∀d > 1, i.e. we define niche geome-
tries in terms of niche increment parameters gd ≥ 0.

With this set-up, we can change the prior constraints and
observe the effects on the posterior predictive distribution
p(y|y�).
There are three sets of constraints on θ (and/or g), each

with their own kernel epsilon parameter; the constraint
gd ≥ 0 is strictly enforced. For all experiments, the first
cell row was given a flexible range θ1 ∈ {1, 400}, thus
the first constraint is Kεg1

(
g1; τg1

)
, where εg1 = 0.1 and

τg1 = 399. The second set of constraints is on the niche
geometry increments Kεgd

(
gd; τgd

)
, where εgd = 0.1 and

τgd is set to 10 (to capture well-behaved niche increments)
or 399 (essentially removing the constraint on niche incre-
ments); further experimental details are given below. The
final constraint on θ is on the total niche geometry size

Fig. 6 Stem-cell niche geometries, Experiment E. Comparison of niche geometry posteriors with τgd = 400 (left) and τgd = 10 (right) for εy = 0.5.
Compare with Fig. 1 where εy = 0.01. See text for discussion
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Fig. 7 2D simulation patterns of glycolic cells at the final time step. See text for details

Kεθ

(∑D
d=1 θd ; τθ

)
, where εθ = 1 and τθ is set to 400

or 1500. For all experiments, a one-sided Gaussian kernel
was used. The prior over g is therefore:

π (g) ∝ Kεθ

( D∑
d=1

θd; τθ

)
Kεg1

(
g1; τg1

) D∏
d=2

Kεgd

(
gd; τgd

)

The likelihood is a one-sided kernel π (y� | y) ∝
Kεy (y; y�), where εy = 0.01 (except for experiment D and
E, below) and y� = 27.05. For this problem we did not
know y� a priori, so we ran 5 runs of marginal kernel ABC
with S = 1 and adapted y� (Algorithm 2). We set y� =
27.05, the median value from 5 runs (which produced val-
ues 26.99, 27.03, 27.05, 27.07, 27.28). The EMA approach
to estimating y� was fairly robust for this problem: since
the EMA produces a local average of y, any improve-
ment upon y� must be consistently better. The parameter
εy could be interpreted as an error in the estimation
of y�.
Table 1 summarizes the parameters and results from

these experiments. For all experiments, 5 runs of marginal
ABC-MCMC of length 10000 were conducted and the
first 2000 samples were discarded as burnin.

Experiment A: realistic constraints on gd
The first set of experiments compared posterior infer-
ence using τgd = 399 and τgd = 10. Figure 1 shows the

posterior geometries with τgd = 399 (top row) and with a
realistic constraint τgd = 10 (bottom). Without the real-
istic constraint, the sizes start smaller (averaging around
5), increase slowly until row 6, then jump to a larger size
(over 100) at row 8. With the realistic constraint, the sizes
start larger (averaging around 20), and increase steadily
until row 8, with no jumps, to an average of about 50. The
posterior predictive distributions (Fig. 1, right) are very
similar for both results, with the probability of y < 27.05
without the constraint being 0.53 compared to 0.49 with
the constraint, indicating that the constraints do remove
some regions of the parameter space with shorter time to
300 cells. The medians andmodes of y|y� also support this
(without: 27.037/27.029, with: 27.054/27.076).

Experiment B: removing constraint on time to 300 cells
We next removed the effect of the likelihood term on
the posterior by setting y� = ∞ (which is equivalent
to sampling from the prior, with soft boundaries, using
MCMC). Results for this experiment are shown in Fig. 2.
Surprisingly, the posteriors of θ have the same form as
in experiment A, though with some decreases in P(y <

27.05 | y�): from 0.53 to 0.43 (for τgd = 399) and from
0.49 to 0.32 (for τgd = 10). This result clearly shows that
there is significant prior mass having y < 27.05. How-
ever, it is unclear from this experiment what influence
the other input constraints have on y, the time to 300
cells.

Table 2 Simulation parameters θ for spotted patterns in colon cancer tumors

Parameter θ Description Mock A B C D E

κW > 0 Rate of nonlinear Wnt production 4 0.442 0.951 2.44 0.399 0.315

κWI > 0 Rate of Wnt inhibitor production 1 27.4 0.484 0.161 0.486 0.188

μW ≥ 0 Decay rate of Wnt 2 0.642 0.179 0.791 0.545 0.936

μWI ≥ 0 Decay rate of Wnt inhibitor 4 2.36 1.30 1.10 0.569 1.064

a ≥ 0 Constant of inhibition 10−8 0.4006 0.416 0.0384 0.00491 0.0284

b ≥ 0 Constant of inhibition byWI 1 0.0125 7.94 20.05 0.616 0.640

SW ≥ 0 Rate of constitutive Wnt production 1 0.00167 0.00351 17.75 0.00005 0.00009

1 ≥ DW > 0 Diffusion coefficient of Wnt 0.01 0.0180 0.00322 0.0955 0.0336 0.0810

1 ≥ N > 0 Nutrient level 1 0.818 0.897 0.984 0.959 0.970
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Table 3 Simulation statistics y for spotted patterns in colon cancer tumors

Statistic y Feasible region Mock (y�) A B C D E

Avg. Spot Width y1 > 0.604 0.604 1 0.65 0.65 1 1.75

Number of Spots y2 ∈ [2, 3, 4] 5 3 4 2 3 2

Avg. Background y3 < 0.807 0.807 0.77 0.75 0.70 0.6 0.70

Avg. Wnt y4 < 5.67 5.67 3.25 1.50 0.75 1 2

Fig. 8 Posterior predictive distributions (PPDs) shown marginally for pairs of statistics. Row 1: The full PPD. Rows 2 to 4: spot-conditional PPDs for
spot numbers 4 to 2, respectively. Columns differ on pairs of statistics. Mock constraints indicate invalid regions in shaded pink. Interesting posterior
modes are labeled A-E



Meeds et al. BMC Bioinformatics  (2015) 16:264 Page 12 of 20

Experiment C: increasing threshold on total niche cells
In this experiment we increase τθ = 1500 in an attempt
to determine the most important factor for minimizing
the time to 300 cells: the likelihood constraint y� or the
constraint on the total size. Results are shown in Fig. 3. By
increasing the total niche geometry permitted and remov-
ing the constraint on y (Fig. 3, top row), the posterior
predictive distribution degrades severely, with no samples
satisfying y < 27.05. However, when the constraint on y
is reintroduced (Fig. 3, bottom row), a significant value of
P(y < 27.05 | y�) = 0.24 results; its posteriors of θ are also
very similar to that of experiment A with τgd = 399.

Experiment D: replacing statistics with average of replicates
The aim of this experiment is to explore the effect
that reducing the simulator noise has on the posterior
distributions. To do this, we repeat each simula-
tion M times, using the same parameter setting; i.e.
y = 1

M
∑M

m=1 y(m), where y(m)sim∼ π(y|θ). The variance
of the statistic therefore decreases with M. Although,
as expected, the posterior predictive distribution
contracts around y (Fig. 4), we found no signifi-
cant changes to the posterior p(θ |y�) when M = 1
(see Fig. 5). This experiment gives evidence that the
scientist should instead change εy to control the posterior

Fig. 9Marginal posterior predictive distributions (PPDs); one column for statistics y1, y3, and y4. Row 1: The full PPDs as histograms, but using colors
blue (y2 = 4), green (y2 = 3), and red (y2 = 2) to differentiate spot numbers. Rows 2 to 4: spot-conditional PPDs for spot numbers 4 to 2, respectively
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predictive distribution rather than M, which has an
M-fold increase in computation.

Experiment E: sensitivity to εy

In this experiment we repeated experiment A but changed
εy from 0.01 to 0.5. This is a significant change if one
considers the range of y in the posterior predictive distri-
butions of the previous experiments. Results are shown in
Fig. 6. For τgd = 399, the effect seems to be larger niche
sizes for earlier rows when εy = 0.5, resulting in final
sizes smaller than when εy = 0.01. For τgd = 10, there
is a small effect on the niche geometry sizes; the distribu-
tions by row tend to be more uniform for εy = 0.5 than
for εy = 0.01. The posterior predictive distributions for
τgd = 399 worsened: mean y from 27.042 to 27.08 and
P(y < y�) from 0.53 to 0.43. A similar change occurred
for τgd = 399: mean y from 27.059 to 27.12 and P(y < y�)

from 0.49 to 0.38. For small changes to εy, we found very
little change in the posterior (not shown). This confirms
our results that the constraints y� are the main influence
on the posterior. It is only bymaking εy relatively large that

the results become significantly different. In fact, this dif-
ference is similar to that observed between Experiments
A and B, where the entire constraint y�

1 is removed.

Discussion
The results of experiments A-C demonstrate the relative
importance of the input and output constraints on the
posterior probability of y | y�. The most important con-
straints are

∑
θd and y < y�. Both have similar effects

on the posterior predictive distribution. The constraint τgd
has little effect on P(y < 27.05 | y�), but does produce
significantly different posterior geometries, mainly due to
the prior constraints.
Experiments A-D illustrate the usefulness of POPE for

exploring the roles constraints play on the optimization
posterior. We found that the constraints on the prior over
valid regions of θ had significant influence on the poste-
rior, and played a role similar to the likelihood term. Using
realistic constraints on changes in row sizes had very lit-
tle detrimental effect on the time to 300 cells, compared
to having no realistic constraint. More important was the

Fig. 10 Simulator outputs for the Mock setting of θ . Upper plots: 1D simulation results. Images show the concentration of oxidative, glycolytic cells
(left) and concentration of Wnt and Wnt inhibitor (right), spatially and temporally. Lower plots: 2D simulator results. Temporal slices of 2D spatial
concentrations of oxidative (Po), glycolytic (Pg) cells (left) and Wnt and Wnt inhibitor (right)
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constraint on total geometry size. We found very little dif-
ference in the posteriors when the statistics were averages
of simulation replicates versus a single simulation. This
makes sense if the simulation noise is taken into account
when setting ε: when increasing the number of replicates
in the average, ε should be decreased (from its setting
at M = 1) to take into account the population mean
variance, but this seems unnecessary since the posteriors
change little, but the number of simulations increases.
Experiment E explored the role εy plays in POPE. We

found that only large changes had significant effects on
the posterior, though we emphasize that this is entirely
problem specific. In the niche experiments, there is a
large region of parameter space which satisfies all the con-
straints. For this problem, ε plays a less important role
than in other problems where it is difficult to find any
parameter values for which all constraints are satisfied. In
those situations, ε plays a critical role in POPE since it
enables mixing of the Markov chain. It is therefore useful
to measure acceptance probabilities in a few preliminary
runs to guide the scientist in setting ε. Once a satisfac-
tory acceptance rate is achieved (e.g. 20% to 40%), one
could fix ε and run experiments. Afterwards, samples that
violate constraints can always be ignored in the analysis.

From a biological perspective, further simulation exper-
iments with this stem-cell model could address whether
giving cells some flexibility in the position at which they
differentiate allows for more flexibility in the optimal
geometry, perhaps allowing that geometry to also satisfy
competing performance objectives. POPE offers a robust
and consistent Bayesian framework for new experiments.

Case 2: spotted patters in colon cancer tumors
A remarkable pattern of spots is visible in the tissue of
colon cancer tumors when stained for markers indicating
glycolytic activity. It is hypothesized that the spotted
regions indicate localized areas of glycolytic cells, whereas
surrounding areas are considered oxidative cells. Further-
more it is thought that Wnt signaling (an important cell
signaling pathway in development and healing) plays a
critical role in reducing glycolytic activity [26], thereby
resulting in significant changes in spot formation. Exper-
iments blocking Wnt by overexpression of a dominant
negative form of lymphoid enhance factor (dnLEF-1) have
shown that interfering with the Wnt pathway leads to
fewer but larger spots and lighter background staining
color than Mock tissue (tumors that have not received
dnLEF-1 intervention).

Fig. 11 Simulator outputs for θ setting A
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Based on these findings, a simulator of a mathemati-
cal model of reaction-diffusion equations was built that
produces spatial and temporal dynamics of a population
fraction of oxidative cells and glycolytic cells, as well as
the activity ofWnt and aWnt inhibitor. TheWnt andWnt
inhibitor equations are based on the Gierer-Meinhardt
activator-inhibitor model, where Wnt is the activator
which produces a factor that inhibits Wnt activity.
The goal of these experiments is to provide feedback to

the mathematical biologists regarding the characteristics
of simulation parameters that produce simulated patterns
different fromMock patterns. For this reason, this problem
does not have a predefined cost function, but instead uses
the observed Mock values as constraints. The simulation
produces 1D spatial and temporal patterns (see Fig. 7 for
2D examples) from which J = 4 statistics are computed:
y1 the average spot width (based on wave patterns in 1D
images); y2 the number of spots (waves, in 1D); y3 the aver-
age background level; and y4 the average Wnt level. There
are D = 9 simulator parameters including rates of pro-
duction and decay for Wnt and Wnt inhibitor, and their
diffusion coefficients. These are described in Table 2. The
θ settings in column Mock in Table 2 generate patterns

that were judged similar to the Mock spotting patterns in
tissue photographs. Their corresponding statistics y� =
{0.604, 5, 0.807, 5.67} are shown in Table 3, along with
statistics from other θ settings A to E, described below.
The Mock values y� define the constraints on simulator

statistics y. More precisely, they constrain the poste-
rior to regions where

[
y1 > y�

1
]
,
[
y2 < y�

2
]
,
[
y3 < y�

3
]
, and[

y4 < y�
4
]
, which correspond to the goal of producing

different patterns from Mock. For example, the first con-
straint states that we want the spot widths from simulation
to be greater than y�

1 = 0.604, the average width of spots
for the Mock setting θ . Similarly, we want fewer than 5
spots, a background lighter than 0.807, and a Wnt level
less than 5.67. Further constraints are added to avoid
degenerate simulation results; as an example, we set its
likelihood to zero when there are no spots detected.
This simulator is deterministic but expensive to evalu-

ate, requiring roughly 30 seconds to complete for the 1D
simulator used in our experiments, and 90 seconds for
the 2D simulator, used for generating 2D images only. We
ran 6 chains of length 4000 pseudo-marginal kernel ABC-
MCMCwith S=1. To initialize the chains, a short rejection
sampling procedure was used to select θ0 for each random

Fig. 12 Simulator outputs for θ setting B
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Fig. 13 Simulator outputs for θ setting C

seed. This is necessary as many random configurations of
θ result in degenerate simulation results (i.e. zero likeli-
hood). Diffuse log-normal prior distributions were placed
over θ1 to θ7 and weak Beta priors put on DW and N.
At least 100 initial samples were discarded from each
chain; sometimes more if the chain had not yet reached a
location where all the constraints were satisfied. In total
there were 22257 samples in the posterior.
Analysis of the posterior predictive distribution

revealed distinct distributions when conditioned on
y2, the number of spots. The posterior distribution can
therefore be viewed as a mixture of 3 spotting patterns,
with p(y2 | y�) =[ 0.505, 0.185, 0.310], where y2 ∈ {2, 3, 4}.
The marginal posterior predictive distributions are shown
in Fig. 8 for pairs of statistics, and in Fig. 9 for marginal
distributions. To illustrate the role of the spotting pat-
terns, by visual inspection of the posterior predictive
distributions displayed in Fig. 8, we selected statistics
labeled A through E. Parameters θ corresponding to the
modes A-E were ran in both the 1D and 2D simulator
producing images in Fig. 7, showing the desired shift away
from Mock patterns. Figures 10, 11, 12, 13, 14 and 15
provide full illustrations of the 1D and 2D simulations of
Mock and patterns A-E.

Spot distributions were also found for p(θ | y�), most
distinctly for the Wnt and Wnt inhibitor decay rates (μW
andμWI , respectively), which showed decreasing value for
fewer spots, validating the original experimental hypoth-
esis that blocking Wnt production by dnLEF-1 overex-
pression leads to qualitatively different spotting patterns.
The marginal posteriors are shown in Fig. 16, along with
the prior, for reference. The strong relationship between
μW and μWI is shown in Fig. 17. Subsamples from the
posterior are overlaid with markers indicating the number
of spots.
Similar to Experiment E for Case 1, we examined the

effect increasing ε has on the posterior (predictive) dis-
tributions. The main difference for this case is that since
y� defines a set of constraints on the simulator outputs,
the effect of increasing ε is to tolerate larger constraint
violations as measured by the one-sided kernel likelihood
evaluations. For this experiment we increased ε by an
order of magnitude from ε = {0.01, 0.05, 0.01, 0.05} to ε =
{0.1, 0.5, 0.1, 0.5}. Figure 18 shows one posterior predictive
distribution for the two sets of ε, clearly demonstrating
the increased number of constraint violations in the pos-
terior for larger ε. For ε set too high, there is an increased
amount of wasted computational effort. Although we



Meeds et al. BMC Bioinformatics  (2015) 16:264 Page 17 of 20

Fig. 14 Simulator outputs for θ setting D

want some slack in violating constraints, too much allows
the Markov chains to wander far from the region of inter-
est. As mentioned for the stem-cell niche case, setting
the values of ε are problem specific. Because it is the
constraints y� that contribute most significantly to the
likelihood, small changes in ε have minor effects on the
posterior and it is only when large changes are made that
the differences become important.

Discussion
This case study illustrates the usefulness of POPE for
exploratory simulation analysis. As a first attempt at
studying this simulator from an ABC perspective, POPE
revealed several regions of parameter settings that pro-
duce qualitatively different images from Mock. Now
experts can examine these various solutions to further
develop the simulator or to increase the number of statis-
tics. For example, some of the parameter settings in
the posterior seem to be similar to the prior, indicating
they have little influence on the posterior. If this does
not match the intuition of the experts, the role these
parameters have in the simulator can be re-evaluated. The
J = 4 statistics may also not be the most informative for

the experts; based on our results, learning the statistics
(using computer vision techniques applied to the images)
or modifying the current statistics may improve the abil-
ity of the experts to learn more about the spot formation
process.
This type of interaction between simulation model and

cancer researchers is important; ongoing research with
a modified version of this tumor metabolism simula-
tor will include non-constant nutrient levels and various
therapeutic regimes, which will improve our understand-
ing of cancer metabolism, and in turn aid the development
of new treatments or therapies.

Conclusions
In simulation-based science, simulators encode complex
models of natural phenomena. Often scientists wish to
find an optimal parameter setting—one that minimizes
some cost function—for their simulator, subject to con-
straints on both the parameters and the other outputs
of the simulator. However, a single optimal parameter
setting, while useful, conveys limited information to sci-
entists about parameter dependencies and sensitivities or
allow them to compare different models in terms of their
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Fig. 15 Simulator outputs for θ setting E

goodness of fit. We have proposed simple extensions to
likelihood-free inference that incorporate one-sided like-
lihood kernels into standard ABC algorithms, allowing
scientists to run ABC, post-optimization.
With POPE, scientists can answer these important

questions regarding their optimized simulation model
using a fully Bayesian approach. As a result, scientists
can examine posterior predictive distributions, parame-
ter correlations and perform sensitivity analyses. These
analyses could in turn discover “overfit” optimum, where
minor changes to the parameters lead to dramatic
changes in the cost function, or quickly violate (bio-
logical) constraints. As Bayesian inference procedure,
POPE naturally incorporates parameter and simulator
uncertainty, therefore allowing it to be used to discover
regions of parameter space that improve upon optimal
settings.
We applied POPE to two case studies: one in an opti-

mization setting (stem-cell niche geometry) and a non-
optimization setting (spotting patterns in cancer tissue),
showing its usefulness to general constraint-based likeli-
hoods. These studies demonstrated that POPE naturally
handles constraints on both the input parameters and
the simulator output statistics, as well as in situations

where the simulator is either very noisy or is deterministic.
The preliminary results on these case studies offer many
avenues for future work.
It is natural to extend POPE with surrogate models so

that it can be applied to expensive simulators. Although
there is considerable excitement in the machine learn-
ing community about optimizing objectives that are hard
to evaluate, such as those defined by simulators, there
is almost no work on analyzing such problems “post
optimization”. POPE is easily combined with black-box
optimization using surrogates with Bayesian posterior
inference.

Endnotes
1Note that this is reminiscent of the “probability of

improvement” used in Bayesian optimization [8].
However, that quantity is different due to the fact that it
includes the uncertainty of the surrogate function to
predict the value of y. In POPE the posterior probability
density is solely determined by the uncertainty due to
noise in the simulation process.

2We wish to clearly distinguish between response
models described here and a simulator as a model of
natural phenomena. A response model is a conditional



Meeds et al. BMC Bioinformatics  (2015) 16:264 Page 19 of 20

Fig. 16Marginal posterior parameter distributions.Each figure shows the histogram for the marginal posterior distribution using colors blue
(y2 = 4), green (y2 = 3), and red (y2 = 2) to differentiate spot numbers (associated with the simulator statistics run at their parameter setting). The
prior p(θ) is also shown as a dashed line. Parameters μw and μWI have the most distinct spot-conditional distributions

Fig. 17 The posterior distribution of logμW versus logμWI . Overlaid are subsamples from the posterior with colored symbols indicating the number
of spots its setting produced, showing the strong relationship between these parameters and the number of spots



Meeds et al. BMC Bioinformatics  (2015) 16:264 Page 20 of 20

Fig. 18 Effect of increasing ε on posterior predictive distribution p(y3|y�). Left: ε = {0.01, 0.05, 0.01, 0.05} (repeated from Fig. 9). Right:
ε = {0.1, 0.5, 0.1, 0.5}. See text for details

distribution of statistics y at parameter location θ and has
its own sets of parameters, such as mean and variance, or
Gaussian process covariance parameters, that are of
secondary interest and are useful computationally for
inference. These should be distinguished from simulator
parameters θ that are scientifically interesting, in of
themselves.
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