
Learning stick-figure models using nonparametric Bayesian priors over trees

Edward W. Meeds, David A. Ross, Richard S. Zemel, and Sam T. Roweis
Department of Computer Science

University of Toronto
{ewm, dross, zemel, roweis}@cs.toronto.edu

Abstract

We present a probabilistic stick-figure model that uses a
nonparametric Bayesian distribution over trees for its struc-
ture prior. Sticks are represented by nodes in a tree in such
a way that their parameter distributions are probabilisti-
cally centered around their parent node. This prior enables
the inference procedures to learn multiple explanations for
motion-capture data, each of which could be trees of dif-
ferent depth and path lengths. Thus, the algorithm can
automatically determine a reasonable distribution over the
number of sticks in a given dataset and their hierarchical
relationships. We provide experimental results on several
motion-capture datasets, demonstrating the model’s abil-
ity to recover plausible stick-figure structure, and also the
model’s robust behavior when faced with occlusion.

1. Introduction

1.1. Learning stick-figure models

A fundamental challenge that arises when analyzing vi-
sual sequences is the problem of describing the motion of
non-rigid objects. One approach, common when dealing
with human motion, is to fit the data with an articulated
kinematic model, or “stick-figure”, composed of a number
of rigid parts connected by flexible joints. The structure of
a stick-figure—the shape of each body part or “stick” and
the connectivity between them—remains fixed across time,
while motion is encoded as a sequence of pose parameters–
the joint angles between connected sticks–permitted to vary
at each timestep.

The joint angles derived from a stick-figure provide a
more-parsimonious representation of the data, suitable for
higher level modeling of human and animal activities (in
part due to its invariance to global transformations of the
data). For example, stick-figure models are used to convert
feature positions obtained from optical motion-capture to
joint angles, which can be used to animate computer gener-
ated characters.

Figure 1. Two frames of a stick-figure model learned automati-
cally on a giraffe motion-capture dataset. Marker data with the
same color and symbol belong to the same stick. We use a proba-
bilistic stick-figure model that can automatically learn the number
of sticks and their relationships in a tree.

Figure 2. Stick-figure models inferred for a 4-joint articulated arm.
Sticks are differentiated by colored circles at their distal endpoints
representing child node translation uncertainty; marker associa-
tion is indicated by color and symbol. The first two rows show
two stable modes: one using 3 joints, and the more frequent (and
correct) mode using 4 joints. The bottom left figure is a frame re-
produced from the second row. Uncertainty over node parameters
permits multiple hypotheses for explaining the marker data. Aver-
aging over these hypotheses produces the predictive log-likelihood
shown at bottom right.

In some carefully controlled settings, such as human
motion-capture, the structure of a stick-figure may already
be known, however, in general, this structure must be iden-
tified from the data. A reasonable approach is to limit the
search to trees, where each node represents a stick, and each

1

edge a joint between them. Trees allow for a fully connected
figure, while still permitting efficient (non-loopy) inference
of joint angles. Typical approaches [16, 5, 12] involve seg-
menting the visual features into parts, and then solving for
connectivity using a minimum spanning tree. Although ef-
ficient, this approach has a number of drawbacks. First,
greedily solving for segmentation before connectivity will
not in general produce a globally optimal structure. More-
over, since real bodies exhibit a larger range of flexibility
than stick-figures, it is likely that no single structure can ac-
curately model the data.

Both of these concerns may be addressed by adopting a
Bayesian approach. By specifying a prior over stick-figures,
samples can be drawn from the joint posterior distribution
over structures and parameters, allowing us to explore (and
base inferences upon) the full range of suitable stick-figure
models for a given data sequence. Examples of learned
stick-figures are shown in figures 1 and 2.

1.2. Nonparametric Bayesian models and priors
over trees

Bayesian methods facilitate a principled manner of han-
dling uncertainty, as well as side stepping the problem
of overfitting and incorporating domain knowledge. Most
parametric models are too limited to model complex, real
world problems, thus interest has shifted to nonparametric
models which can capture richer, more complex probability
distributions. One of the primary tools for robust nonpara-
metric density estimation is the infinite mixture model [11]
based on the Dirichlet process [3]. These models are popu-
lar because they are only slightly more complicated to im-
plement that finite-sized mixture models with Dirichlet dis-
tribution priors, but are able to effectively treat K, the num-
ber of components in the mixture, as a nuisance parame-
ter. Thus, these nonparametric Bayesian models can handle
both uncertainty over component parameters, but also the
number of components. Dirichlet process mixture models
(DPMs) have been successfully applied to document mod-
eling [13] and bioinformatics [15].

Given these properties, DPMs seem ideally suited for
grouping visual features into sticks. However, DPMs are
fundamentally limited in flexibility because they are essen-
tially “flat” mixtures—cluster parameters are independent
from each other. This limitation prevents adjoining stick
nodes from being related, and is ruinous for learning stick-
figure structures. Because markers at a stick node are close
to markers from the stick node’s “parent” and “children”
nodes, it would be useful to capture these relationships with
a tree structure. To do this we use a novel nonparametric
Bayesian prior over trees to learn the underlying stick-figure
structure. A tree sampled from this prior is not restricted by
depth and can have variable path lengths—it is a natural
data generating process for stick-figure applications.

The remainder of the paper is organized as follows. In
section 2.1 we describe the generative model for stick-
figures and in section 2.2 the generative model for the non-
parametric Bayesian prior over trees. This is followed in
section 3.1 by inference procedures for node indicators and
tree structures, and in section 3.2 for the stick-figure param-
eters. Experimental results and discussion follow in sec-
tions 4 and 5.

2. The generative model
2.1. A probabilistic stick-node model

2.1.1 Data model

Each data vector xi is a trajectory of F 2-dimensional
marker positions. In other words, a data-vector is the se-
quence of locations of a single marker over F time frames.
Each vector has a time-invariant location yi on the stick-
node (hereafter, stick will refer to a stick node) to which it
is associated (indicated by a variable ci) (figure 3A). The
prior over node indicators is the nonparametric Bayesian
tree prior proposed in section 2.2. The portion of the data
vector at time f is generated by first sampling from a spher-
ical Gaussian distribution centered at its time-invariant lo-
cation yi, and then rotating and translating this vector into
world coordinates (figure 3B):

yi ∼ Gaussian (Lk/2, Σky) (1)

xif ∼ Gaussian (Rkfyi + Tkf , I/skx) (2)

where Σky is a diagonal matrix with entries 1/skyh
and

1/skyv , and Lk is a horizontal length vector (we have im-
plicitly conditioned on the setting ci = k).

2.1.2 Stick parameters

A stick is represented by a set of parameters at a node
in the tree. The main set of parameters are rotations and
translations over time. The model generates data in a time-
invariant representation and then translates and rotates them
into world coordinates. Figure 3 shows a schematic repre-
sentation of the stick model for the time invariant parame-
ters (3A) and parameters in world coordinates (3B). The set
of time invariant parameters for node k includes the length
vector Lk, the horizontal precision for time invariant data
locations skyh

, the vertical precision for time invariant data
locations skyv , and the precision for data locations at each
time frame skx. The other node parameters are the precision
of the node joint skT , where child node translation points
are sampled, and a set of translation points {Tk1, . . . , TkF }
and rotation angles {θk1, . . . , θkF }. Therefore φk =
{Lk, skyh

, skyv , skx, skT , Tk1, . . . , TkF , θk1, . . . , θkF }.
Precisions skyh

, skyv , skx, skT are given Gamma priors
with fixed shape and inverse-scale parameters. The remain-
ing node base distribution is the product of the following
distributions (conditioned on the parent node ρk and other

(A) Time-invariant stick in local coordinates.

(B) A two-stick tree at time frame f in world coordinates.

Figure 3. Schematic description of the stick-figure model. (A)
Time-invariant stick node in local coordinates. A stick labeled k
is represented by a horizontal vector Lk. Time invariant data loca-
tions y1 and y2 are sampled from a Gaussian distribution centered
at Lk/2 and with vertical precision skyh and horizontal precision
skyv . At each time frame, data are generated from a spherical
Gaussian with precision skx. Stick length is set deterministically
by the horizontal precision Lk = [6/

√
skyh , 0]. (B) A chain of

two sticks at time frame f in world coordinates. Stick 1 is attached
to the root and stick 2 is attached to stick 1. The data associated
with stick 1, x1 and x2, are put into world coordinates by rotating
samples from the local coordinate model by angle θ1f . The trans-
lation point for stick 2 at time f , T2f , is a sample from a spherical
Gaussian centered at the distal endpoint of stick 1.

parameters and hyperparameters, omitted due to space re-
strictions):

G (Tkf) = Gaussian (RρkfLρk + Tρkf , I/skT) (3)

G (θk1) = vonMises (θρk1, κρ) (4)

G (θkf) = vonMises (θkf−1, κnd) vonMises (θρkf , κρ) (5)

where Rρkf =

»
cos θρkf − sin θρkf

sin θρkf cos θρkf

–
. Thus, Θ =

{asx
, bsx

, asyh
, bsyh

, asyv
, bsyv

, asT
, bsT

, κρ, κnd}. The
variables a and b are shape and inverse scale parameters for
Gamma distributions. The von Mises, or circular normal
distribution, is used to model angles:

vonMises (θ|θ0, κ) =
exp (κ cos (θ − θ0))

2πI0 (κ)
(6)

where κ > 0 is the precision, θ0 ∈ [0, 2π] is the mean or
center of the distribution, and I0 (κ) is the modified Bessel
function of the first kind of order 0, with parameter κ. For
large κ, the von Mises distribution becomes approximately
Gaussian, with mean θ0 and precision κ, and for small val-
ues of κ it becomes approximately uniform on [0, 2π].

2.2. A nonparametric Bayesian prior over trees

This section describes a nonparametric Bayesian prior
over trees of non-fixed depth and path lengths. The gen-
erative process for a tree is very similar to mixture models
using a Chinese restaurant process (CRP) prior [10]. This
prior is very flexible because it can generate trees with a
variable number of nodes and paths of different lengths.

2.2.1 Generation of node and data locations

Data and node locations are generated using a simple se-
quential procedure much like the Polya urn scheme [1] or
the CRP [10]. A single parameter λ, called the growth pa-
rameter, controls the number of nodes in the tree, and plays
exactly the same role as the concentration parameter α in
Dirichlet process mixture models.

Before detailing the generative process, we briefly intro-
duce the notation. Each data vector xi, in a data set indexed
from 1 to I , has associated with it an indicator variable ci

taking on values between 1 and K, representing the node to
which it belongs in the tree. This is the equivalent of a clus-
ter indicator variable in a Dirichlet process mixture model.
Each node has a set of parameters φk, and data are gen-
erated from the data model of its node, F (φci

,Θ). Node
parameters φk are generated from its base distribution G
which is centered around its parent node ρk . Both distri-
butions may depend on a set of global hyperparameters Θ.
The set of indices in the set {1, . . . , I} that have ci = k is
called a node set and is denoted as Ck. The set of indices
h ∈ {1, . . . ,K} that have ρh = k (the child nodes of node
k) is called the child set Hk. We use | · | to indicate the size
of a set.

Initially, a tree consists of a root node, which should be
thought of as the base distribution and no data are ever as-
sociated with it. Just as with Dirichlet process mixtures,
the first data vector is associated with a new node, drawn
iid from the root node’s model distribution, with probabil-
ity 1. Subsequent data vectors are generated by first sam-
pling values for ci, then generating the data vector from the
data model distribution at that node, F (φci , Θ). Occupied
nodes are chosen with probability proportional to the num-
ber of data associated with them. A new node is chosen
as a child node of either the root or one of the occupied
nodes, with each of these K + 1 possible parent nodes hav-
ing probability proportional to λ/(K + 1) of being chosen.
In other words, P (ρK+1 = k) = 1

K+1 , where here k can
also be 0 for the root. A new node is therefore chosen with
probability proportional to λ and its parent node is chosen
uniformly from the union of the set of occupied nodes and
the root node. Note how this generative process is similar

to the Polya urn scheme:

P (ci = k|λ, c1, . . . , ci−1) =
nk

λ + i− 1
(7)

P (ci = K + 1|λ, c1, . . . , ci−1) =
λ

λ + i− 1
(8)

P (xi|φci , Θ) = F (xi|φci , Θ) (9)

P
`
φK+1|φρK+1 , Θ

´
= G

`
φK+1|φρK+1 , Θ

´
(10)

where nk = |Ck|. We have conditioned on possible hyper-
parameters Θ for both the data model and the node param-
eter model. This process implies that the nodes are labeled
in order of their inclusion in the tree. Figure 4 shows an
example of a tree with 7 data points, and the predictive dis-
tribution for the 8th data point. Finally, the order of the
data-vectors is randomly permuted.

2.2.2 Another view of the generation process

To better understand this prior we describe an alternative
generative process which produces the same tree structures
as described in the previous section. Start by partition-
ing integers 1, . . . , I into node sets {C1, . . . ,CK} using
the Polya urn scheme with parameters λ and I , thus de-
termining {c1, . . . , cI}. Nodes are added to the tree by
choosing the first cluster indicator variable from the or-
dered set {c1, . . . , cI}. The node is added as a child node
of one of the nodes already in the tree, picked uniformly
at random. Once a node has been added, the cluster in-
dicators from the added node are removed from the or-
dered set and the cluster indicator at the first position is
used to select the next node to be added. For example, if
C1 = {1},C2 = {2, 5},C3 = {3, 7}, C4 = {4}, and
C5 = {6}, then after c1 is added to the tree, the remaining
set of cluster indices is {c2, c3, c4, c5, c6, c7}. Next the clus-
ter set containing index 2, C2, is added, leaving the indices
{c3, c4, c6, c7}. The remaining cluster sets are then added
in order: C3, C4, and C5. Finally, the order of the data
vectors is randomly permuted.

2.2.3 Finite exchangeability

Because the prior generates data then randomly permutes
their order, the marginal distribution of any data vector in a
fixed sized dataset will be the same, but datasets of different
sizes will have different marginal distributions. Therefore
the prior definitely does not generate infinitely exchange-
able datasets. We argue, however, that the prior generates
exchangeable data for a fixed, finite dataset of size I . Since
the generative process randomly permutes the order of the
data vectors after it generates them, we know that there is an
order to the data but we must search over all possible order-
ings in our inference procedure. Instead of showing that we
are searching over all permutations, we can show that we are
searching in the space of equivalence classes (i.e. the order

Figure 4. Generation of a tree structure using a nonparametric
Bayesian prior over trees (root not shown). The tree is shown af-
ter 7 data vectors have been sampled and partitions into C1 =
{1},C2 = {2, 5},C3 = {3, 7}, C4 = {4}, and C5 = {6}. We
indicate at each occupied node the probability c8 = k. The pos-
sible locations of new nodes are shown as leaf nodes attached to
each of the occupied nodes and the root. Each node including the
root has equal probability of being the parent node of a new node.
Data are shown as small dark circles along with their index. See
text for more details of the generative process.

of indicators at a node is irrelevant). Suppose, though, that
we are interested in keeping track of the order of the indica-
tors, along with the actual indicator values. In such a case,
one could implement a proposal mechanism that randomly
shuffles the order of node indicators before removal from,
and insertion to, a node. This shuffling procedure is equiv-
alent to ignoring the order of the indicators at each node,
thus searching in the space of equivalence classes. If the
current node is an internal singleton then its current node is
the only location which is consistent with the tree structure.
Therefore special consideration must be given to internal
singletons during inference.

3. Inference procedures

Using the aforementioned generative stick-figure model
and tree prior, we adopt the Bayesian approach to fitting
a stick-figure to data: inferring the posterior distribution
over structures (segmentations & connectivity) and param-
eters (rotations, precisions, etc.). Due to the complexity
of the model, the posterior cannot be obtained analytically
via Bayes’s rule. Instead, samples from the posterior are
obtained via Markov chain Monte Carlo, integrating over
model parameters wherever possible.

This approach has a number of advantages over fitting
a single maximum likelihood model to the data. First,
by capturing uncertainty in the structure and parameters,
we avoid the problems of overfitting. Also, model selec-
tion is achieved naturally via inference, as a result of the
non-parametric prior. Finally, unlike greedy approaches
which first solve for structure before fitting parameters [16],
MCMC inference takes a holistic approach: current esti-
mates of model parameters can be leveraged when reesti-
mating structure and vice versa.

3.1. Learning tree structures

The tree structure is implicitly defined by the node in-
dicators. For this reason the most important tree structure
updates occur via Gibbs sampling of node indicators. How-
ever, Gibbs updates can only produce small, local changes
to the tree structure. We therefore supplement Gibbs with
Metropolis-Hastings proposals for splitting, merging, and
moving sub-trees, allowing the Markov chain to escape lo-
cal minima and speed up the search over plausible model
structures.

3.1.1 Gibbs sampling node indicators

The Gibbs sampling procedure for node indicators is
very similar to Gibbs sampling cluster indicators in non-
conjugate Dirichlet process mixture models [7]. The most
important difference is the treatment of internal, singleton
nodes. Gibbs sampling iterates over node indicators and
treats each as the Ith data point. For singletons this means
that current component parameters are discarded. For the
tree prior, however, removing internal singletons violates
the order of nodes in the tree, so the state of those node
indicators must remain the same. For the other node indi-
cators, including leaf singletons, the procedure is the same
as for Dirichlet process mixtures. In general, if the current
node for ci has nci

> 1, then ci can legally be removed and
treated as the Ith point.

For k ∈ {1, . . . ,K} the probability of choosing a node
is

P (ci = k|c−i, λ, xi, φ) ∝ n−i,k

λ + I − 1
F (xi|φk, Θ) (11)

To handle new nodes (k > K), all nodes in the tree tem-
porarily instantiate a child node, and have prior weight
λ/(K + 1):

P (ci = k|λ, xi, φ) ∝ 1
K + 1

λ

λ + I − 1
F (xi|φk, Θ)

(12)
where φk ∼ G (φρk

,Θ). After sampling ci, unused nodes
are discarded. If a new node is added, its label is set to K+1
and K is incremented.

3.1.2 Split-merge updates

Although Gibbs updates on node indicators can make struc-
tural changes to the tree by adding and removing nodes
when they become newly occupied or unoccupied, it can
only make small changes over many iterations. To comple-
ment Gibbs sampling we use split-merge proposals to make
large moves in parameter space. Our algorithm adapts the
Metropolis-Hastings non-conjugate split-merge algorithm
from [4]. A node can be split into two nodes with the same
parent, or into two nodes, with one node being the par-
ent of one, and the original parent being the parent of the

other. Likewise, merges can be made between two nodes
having the same parent, or between two nodes in a chain.
This algorithm uses an elaborate procedure to compute the
Metropolis-Hastings acceptance ratio, but it is powerful be-
cause it asks: if we only focus on these nodes and data,
does the data prefer a single node, or a split into two nodes?
The acceptance ratio simplifies significantly because all the
node parameters, and data, not involved in the proposal,
cancel. Further details of how to compute the acceptance
ratio can be found in [4]. If the proposal is rejected, the
old parameters replace the parameters computed during the
restricted Gibbs iterations, otherwise the tree is updated ap-
propriately.

3.1.3 Sub-tree moves

We also perform Metropolis-Hastings updates on sub-tree
positions. The procedure is similar to the split-merge pro-
posals. A root of a sub-tree is chosen with probability pro-
portional to the number of data associated with it. We pro-
pose moving it from its current parent node and attaching
it as the child of some other node in the tree, excluding all
nodes in the sub-tree. Computing the probability of these
moves is efficient because it only requires updates to, and
density evaluations for, the node parameters (the marker
data do not change node locations).

3.2. Inferring stick-figure parameters

Node parameters can be updated using Gibbs sampling
that conditions on the data, the parent node parameters, the
child node parameters, and the hyperparameters. The data
likelihood for occupied nodes is computed by integrating
out the time-invariant position yi:

P (xi|φk) =

Z
Gaussian (Lk/2, Σky)

×
Y
f

Gaussian (Rkfyi + Tkf , I/skx) dyi

= Gaussian
`
RkLk/2 + Tk, RkΣkyR>

k + Σkx

´
(13)

where xi =
ˆ
x>i1 · · ·x>iF

˜>, Rk =
ˆ
R>k1 · · ·R>kF

˜>, Tk =ˆ
T>k1 · · ·T>kF

˜>, and Σkx = 1
skx

I2F×2F .
The likelihood under the Gaussian distribution in equa-

tion 13 can be computed efficiently using matrix inversion
and determinant lemmas because its covariance matrix is
low rank. The likelihood of data vectors at new nodes
should ideally be the marginal distribution of the data vec-
tor (given a position in the tree). For non-conjugate models,
the marginal distribution is usually estimated by sampling a
single set of parameters from the prior. This will underesti-
mate the marginal for high dimensional parameter vectors,
so we instead average over several samples from the prior,
which improves the acceptance probability for new nodes.

3.2.1 Inference: translations

Translation positions can be updated efficiently because the
posterior distributions are Gaussians. The translations of
stick k depends on its parent’s translation, rotation, and
length. Its data and child node translations depends on
its translations. The posterior of Tk, conditioned on yi, is
therefore proportional toY

i∈Ck

Gaussian (xi |Rkyi + Tk, Σkx)

×
Y

c∈Hk

Gaussian (Tc |RkLk + Tk, I/skT)

× Gaussian (Tk |RρkLρk + Tρk , I/sρkT) (14)

After some algebra, the following posterior distribution re-
sults:

Tk ∼ Gaussian (m,Σ) (15)
where

Σ−1 = (nkskx + |Hk|skT + sρkT) I (16)

m = Σ

0@skx

X
i∈Ck

∆xi +skT

X
c∈Hk

∆Tc + sρkT ∆Tρk

1A (17)

and ∆xi = xi − RkLk/2, ∆Tc = Tc − RkLk, and ∆Tρk
=

Tρk + RρkLρk .

3.2.2 Inference: rotations

Using the von Mises distribution over angles in the rota-
tions allows us to make conjugate updates during inference.
The posterior distribution of the angle at time f for stick k,
conditioned on yi, is proportional to

vonMises (θkf−1, κnd) vonMises (θρkf , κρ) vonMises (θkf+1, κnd)

×
Y

i∈Ck

Gaussian (xif | RkfLk/2 + Tkf , I/skx)

×
Y

c∈Hk

Gaussian (Tcf | RkfLk + Tkf , I/skT) (18)

Gathering the terms that involve cos θkf and sin θkf , the
posterior of θkf is sampled using

θkf ∼ vonMises
“
arctan (b, a) ,

p
a2 + b2

”
(19)

which use the following statistics for parameters:

a = κρ(cos θρkf +
X

c∈Hk

cos θcf) + κnd(cos θkf−1 + cos θkf+1)

+
X

i∈Ck

skx(y
(1)
i (x

(1)
if − T

(1)
kf) + y

(2)
i (x

(2)
if − T

(2)
kf))

+
X

c∈Hk

skT (Lk(T
(1)
cf − T

(1)
kf)) (20)

b = κρ(sin θρkf +
X

c∈Hk

sin θcf) + κnd(sin θkf−1 + sin θkf+1)

+
X

i∈Ck

skx(y
(1)
i (x

(2)
if − T

(2)
kf)− y

(2)
i (x

(1)
if − T

(1)
kf))

+
X

c∈Hk

skT (Lk(T
(2)
cf − T

(2)
kf)) (21)

Figure 5. Selected time frames from the datasets used in our ex-
periments (I: the number of data-vectors, F : the number of time
frames in each trajectory). From top to bottom: 4-joint articulated
arm (I=32, F=33), giraffe (I=58, F=30), walking figure (I=40,
F=35). Occlusion experiments are simulated by passing a bar
from left to right (red rectangle). Values for occluded markers
(green) are imputed during MCMC simulation and are initialized
to their closest marker in time.

where we have used superscripts (1) and (2) to index into
the first and second elements of 2d vectors. These updates
can be derived using trigonometric identities.

3.2.3 Inference: remaining variables

All but the horizontal time-invariant precisions skyh
are

conjugate to their Gamma priors. Time-invariant precisions
can be updated using slice sampling [8]. These updates are
no longer conjugate because the length of a stick is func-
tion of its horizontal precision. The growth parameter can
also be updated using a procedure for updating concentra-
tions in Dirichlet process mixture models [14] or by another
technique (e.g. slice sampling).

3.2.4 Inference: summary of learning procedure

Before inference can be started, the user must specify the
node hyper-parameters Θ and the tree growth λ (which
could be given a prior and inferred). Once these are set,
all stick parameters are inferred by MCMC simulation. At
each iteration, node indicators are updated by Gibbs sam-
pling, sub-trees are rearranged by split-merge and sub-tree
moves, and finally node parameters–translations, rotations,
and precisions–are updated. The MCMC simulation gath-
ers samples from posterior distribution of tree structures and
node parameters.

4. Results
We present results on several motion-capture datasets

(shown in figure 5 with the number of data vectors and
frames used for training). The first dataset is an artifi-
cially generated articulated arm that has four sticks and four
joints. It rotates counter-clockwise from a fixed pivot com-
pletely onto itself until it opens up again into an arm. The
second dataset depicts a giraffe, walking from left to right.
It was obtained by applying a Kanade-Lucas-Tomasi fea-
ture tracker to a video clip, followed by manually cleaning

Figure 6. Results on the giraffe. The top row shows three different
segmentations and stick-figures gathered using an MCMC simula-
tion at the same time frame. The bottom row shows the average
predictive distribution for three different time-frames.

Figure 7. Results on the walking man dataset. The top row shows
three different segmentations and stick-figures gathered using an
MCMC simulation at the same time frame. The bottom row shows
the average predictive distribution for three different time frames.

the results. The third dataset, a walking man, was created
by orthographically projecting a sequence from the CMU
Motion Capture database. Both the giraffe and human data
were centered by subtracting the mean from each frame.
For each dataset we gather a set of models using a Markov
chain Monte Carlo (MCMC) simulation. The experiments
also test the robustness of the models when markers are oc-
cluded by a vertical bar passing through the frames. Oc-
cluded markers are not integrated over explicitly, but are
instead imputed at each iteration of the MCMC simula-
tion. For most of the experiments, we use the following
hyper-parameter values Θ = {asx = 10, bsx = 1, asyh

=

100, bsyh
= 1, asyv

= 400, bsyv
= 1, asT = 100, bsT =

1, κρ = 1, κnd = 1} and λ = 1.

4.1. Results on completely observed markers

Figures 2, 6, and 7 show the results on the completely
observed datasets. The colored contours in each plot indi-
cate the predictive log-density of data, averaging over all
models obtained during MCMC sampling. The contours in-
dicate that, although any one structure may seem to be sub-
optimal, in aggregate the samples produce a good model.
For each dataset, sensible tree structures are inferred. For
the giraffe (figure 6), our method finds alternative expla-

Figure 8. Poor local minima without split-merge and subtree
moves. In these two models from different MCMC iterations, an
interior singleton node (large green circle near root) has a marker
(green triangle near toe of front foot) at a very unlikely location.
Because this node has child nodes, the marker will remain at this
node until simulation moves into a state where it is a leaf node, or
it is moved to a more probable location in the tree. Sub-tree and
split-merge moves can rearrange the state of the nodes in the tree
so that this local minima occurs rarely during the simulation.

Figure 9. Results on occluded articulated arm. The true locations
of the occluded data are shown as black markers with white edges.
The imputed values are green squares with black edges. The top
row is an early model in the MCMC simulation. The bottom row
is a stable model which has learned the true structure.

nations for the back and neck. This is due to the limited
motion of these markers in the data, thus a single stick can
sometimes explain all the back and head markers. For the
walking man (figure 7), most models have a stick for both
arms and legs, and sometimes a model will explain the feet
with an extra stick, but there are not enough feet markers for
this to be a stable explanation. In figure 8 a local minima on
the walking man is shown. This result can be avoided using
split-merge and sub-tree moves.

4.2. Results on occluded markers

Figures 9 to 11 show the results on occluded datasets.
Despite the noise added by imputing missing values rather
than integrating them out of the model, the models are able
to converge on structures that are of nearly the same quality
as those with completely observed markers. The Bayesian
prior over trees provides a mechanism for handling the un-
certainty over structures even in the presence of occluded
markers. Convergence from unlikely structures to plausible
trees is therefore possible (see figures 9 and 10).

5. Discussion and conclusion
The tree prior described in this paper is a natural genera-

tive model for stick-figure data. The nested Chinese restau-
rant process (nested CRP) [2] and the Dirichlet diffusion

Figure 10. Results on occluded giraffe. The top row is an model
early on in the MCMC simulation. At this point, the model as-
sumes incorrectly that the front leg is bent backwards, instead of
extended forward. The bottom row is a stable model, however,
the end of the back leg is not very accurate (last column). This is
due to the uncertainty in the stick-figure at the end of the legs (see
figure 6).

Figure 11. Results on occluded walking man dataset.

tree (DDT) [9] are other possible nonparametric Bayesian
choices for tree structures. Nested CRPs have the advantage
that generated data are infinitely exchangeable, but have the
disadvantage that the tree depth is fixed. Nested CRPs also
permit internal tree nodes to be “empty”, with no data as-
signed to it, which can be advantageous. However, the tree
depth needs to be set carefully: too many, and the model
will overfit; too few, and it will underfit. A DDT is a tree
with non-discrete branching points that could be adapted to
this problem by discretizing branch times and by allowing
data to be generated by internal nodes. This version of the
DDT would very closely match the nested CRP, and would
therefore have similar model selection issues.

Improving the rotation prior is one of several areas
of future research. The current prior over rotations is
very “uninformative”—it does not correspond to naturally
smooth movements. On the other hand, its posterior dis-
tribution is very accurate because it conditions on the data.
Other areas of future research include adapting the model
to 3d motion-capture data, learning multiple stick-figures in
a scene, and learning the model without marker correspon-
dence through time.

We have presented a probabilistic stick-figure model
which uses a novel nonparametric Bayesian prior over tree
structures. The prior generates structures that naturally han-
dle the uncertainty over hierarchical relationships among
sticks and allows variable path lengths. Models recover
plausible stick-figure structures and are robust to occlusion
events. There are very few parameters to set by hand. The
vast majority of variables, including the marker segmen-

tation into sticks, are learned automatically. We believe
that nonparametric Bayesian priors, including the one we
presented, are potential sources of new research in com-
puter vision. For example, Dirichlet processes have recently
been applied to the problem of scene decomposition [6].
Our work takes a further step in this direction, proposing a
more powerful prior which can model complicated depen-
dent motions.

References
[1] D. Blackwell and J. B. MacQueen. Ferguson distributions

via Polya urn schemes. The Annals of Statistics, 1(2):353–
355, 1973.

[2] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenebaum.
Hierarchical topic models and the nested Chinese restaurant
process. In NIPS, volume 15. MIT Press, 2003.

[3] T. S. Ferguson. A Bayesian analysis of some nonparametric
problems. The Annals of Statistics, 1(2):209–230, 1973.

[4] S. Jain and R. M. Neal. Splitting and merging for a noncon-
jugate Dirichlet process mixture model. Technical Report
0507, Dept. of Statistics, University of Toronto, 2005.

[5] A. G. Kirk, J. F. O’Brien, and D. A. Forsyth. Skeletal param-
eter estimation from optical motion capture data. In CVPR,
2005.

[6] J. Kivinen, E. Sudderth, and M. Jordan. Learning multi-
scale representations of natural scenes using Dirichlet pro-
cesses. In IEEE International Conference on Computer Vi-
sion, 2007.

[7] R. Neal. Markov chain sampling methods for Dirichlet pro-
cess mixture models. Journal of Computational and Graph-
ical Statistics, 9:249–265, 2000.

[8] R. Neal. Slice sampling. Technical Report 2005, Department
of Statistics, University of Toronto, 2000.

[9] R. Neal. Density modeling and clustering using Dirichlet
diffusion trees. Bayesian Statistics, 7:619–629, 2003.

[10] J. Pitman. Combinatorial stochastic processes. Lecture
Notes for St. Flour Course, 2002.

[11] C. E. Rasmussen. The infinite Gaussian mixture model.
In S. Solla, T. Leen, and K.-R. Muller, editors, NIPS, vol-
ume 12, pages 554–560. MIT Press, 2000.

[12] Y. Song, L. Goncalves, and P. Perona. Learning probabilistic
structure for human motion detection. In CVPR, 2001.

[13] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirich-
let processes. JASA, 101(476):1566–1581, 2006.

[14] M. West. Hyperparameter estimation in Dirichlet process
mixture models. Technical report, Duke University, 1992.

[15] E. P. Xing, M. Jordan, and R. Roded. Bayesian haplotype in-
ference via the Dirichlet process. Journal of Computational
Biology, 14(3):267–284, 2007.

[16] J. Yan and M. Pollefeys. Automatic kinematic chain building
from feature trajectories of articulated objects. In CVPR,
2006.

