
Modeling Dyadic Data with Binary Latent Factors

Edward Meeds
Department of Computer Science

University of Toronto
ewm@cs.toronto.edu

Zoubin Ghahramani
Department of Engineering

Cambridge University
zoubin@eng.cam.ac.uk

Radford Neal
Department of Computer Science

University of Toronto
radford@cs.toronto.edu

Sam Roweis
Department of Computer Science

University of Toronto
roweis@cs.toronto.edu

Abstract

We introduce binary matrix factorization, a novel model for unsupervised ma-
trix decomposition. The decomposition is learned by fitting a non-parametric
Bayesian probabilistic model with binary latent variables to a matrix of dyadic
data. Unlike bi-clustering models, which assign each row or column to a single
cluster based on a categorical hidden feature, our binary feature model reflects the
prior belief that items and attributes can be associated with more than one latent
cluster at a time. We provide simple learning and inference rules for this new
model and show how to extend it to an infinite model in which the number of
features is not a priori fixed but is allowed to grow with the size of the data.

1 Distributed representations for dyadic data

One of the major goals of probabilistic unsupervised learning is to discover underlying or hidden
structure in a dataset by using latent variables to describe a complex data generation process. In this
paper we focus on dyadic data: our domains have two finite sets of objects/entities and observa-
tions are made on dyads (pairs with one element from each set). Examples include sparse matrices
of movie-viewer ratings, word-document counts or product-customer purchases. A simple way to
capture structure in this kind of data is to do “bi-clustering” (possibly using mixture models) by
grouping the rows and (independently or simultaneously) the columns[6, 13, 9]. The modelling as-
sumption in such a case is that movies come in

�
types and viewers in � types and that knowing

the type of movie and type of viewer is sufficient to predict the response. Clustering or mixture
models are quite restrictive – their major disadvantage is that they do not admit a componential or
distributed representation because items cannot simultaneously belong to several classes. (A movie,
for example, might be explained as coming from a cluster of “dramas” or “comedies”; a viewer as
a “single male” or as a “young mother”.) We might instead prefer a model (e.g. [10, 5]) in which
objects can be assigned to multiple latent clusters: a movie might be a drama and have won an Os-
car and have subtitles; a viewer might be single and female and a university graduate. Inference in
such models falls under the broad area of factorial learning (e.g. [7, 1, 3, 12]), in which multiple
interacting latent causes explain each observed datum.

In this paper, we assume that both data items (rows) and attributes (columns) have this kind of
componential structure: each item (row) has associated with it an unobserved vector of

�
binary

features; similarly each attribute (column) has a hidden vector of � binary features. Knowing the
features of the item and the features of the attribute are sufficient to generate (before noise) the
response at that location in the matrix. In effect, we are factorizing a real-valued data (response)
matrix � into (a distribution defined by) the product �����	� , where � and � are binary feature
matrices, and � is a real-valued weight matrix. Below, we develop this binary matrix factorization

K L

JI

PSfrag replacements

���������� 	 ��

�
��
� � �

� ��
, ���

�

=PSfrag replacements � f �

� ��

(A) (B)

Figure 1: (A) The graphical model representation of the linear-Gaussian BMF model. The concen-
tration parameter and Beta weights for the columns of � are represented by the symbols � and �
 .
(B) BMF shown pictorally.

(BMF) model using Bayesian non-parametric priors over the number and values of the unobserved
binary features and the unknown weights.

2 BMF model description

Binary matrix factorization is a model of an ����� dyadic data matrix � with exchangeable rows
and columns. The entries of � can be real-valued, binary, or categorial; BMF models suitable
for each type are described below. Associated with each row is a latent binary feature vector � � ;
similarly each column has an unobserved binary vector � � . The primary parameters are represented
by a matrix � of interaction weights. � is generated by a fixed observation process � �"!$# applied
(elementwise) to the linear inner product of the features and weights, which is the “factorization” or
approximation of the data:

�&% �(' �)' � * � � ��� � � ',+-# (1)

where + are extra parameters specific to the model variant. Three possible parametric forms for
the noise (observation) distribution � are: Gaussian, with mean ��� �	� and covariance �".0/ � #21 ;
logistic, with mean .3/4�5.7698;:2<=��> � � � ��#�# ; and Poisson, with mean (and variance) � � �	� .
Other parametric forms are also possible. For illustrative purposes, we will use the linear-Gaussian
model throughout this paper; this can be thought of as a two-sided version of the linear-Gaussian
model found in [5].

To complete the description of the model, we need to specify prior distributions over the feature
matrices �(' � and the weights � . We adopt the same priors over binary matrices as previously
described in [5]. For finite sized matrices � with � rows and

�
columns, we generate a bias � �

independently for each column ? using a Beta prior (denoted @) and then conditioned on this bias
generate the entries in column ? independently from a Bernoulli with mean � � .

� � % � ' � * @(� � / � 'A.3# � %0B2CD'FEGCH*JIK�LB2C='ME;CN#
�O%3P *

QR
�TSVU

WR
�,SVU �YX[ZT\� �".A> � � # U,] X3Z^\`_

WR
�,SVU �Yab\� ��.A> � � # Q] ac\

where d � _fe � ���T� .1 The hyperprior on the concentration � is a Gamma distribution (denoted I),
whose shape and scale hyperparameters control the expected fraction of zeros/ones in the matrix.
The biases P are easily integrated out, which creates dependencies between the rows, although
they remain exchangeable. The resulting prior depends only on the number d � of active features
in each column. An identical prior is used on � , with � rows and � columns, but with different
concentration prior � .

1In the Beta prior, the second shape parameter is arbitrarily set to g ; there is no reason why this could not
be set to another value, or parameterized.

The appropriate prior distribution over weights depends on the observation distribution � �"!$# . For
the linear-Gaussian variant, a convenient prior on � is a matrix normal with prior mean � � and
covariance �".3/ � #21 . The scale

�
of the weights and output precision

�
(if needed) have Gamma

hyperpriors:

� % � � ' � * � � � � '
��.3/ � # 1G#� % B���'�E�� * I � B��N'ME��c#� %0B��b'FE�� * I � B��0'ME�� #
In certain cases, when the prior on the weights is conjugate to the output distribution model � , the
weights may be analytically integrated out, expressing the marginal distribution of the data �(% � ' �
only in terms of the binary features. This is true, for example, when we place a Gaussian prior on
the weights and use a linear-Gaussian output process.

Remarkably, the Beta-Bernoulli prior distribution over � (and similarly �) can easily be extended
to the case where

���
	
, creating a distribution over binary matrices with a fixed number � of

exchangeable rows and a potentially infinite number of columns (although the expected number of
columns which are not entirely zero remains finite). Such a distribution, the Indian Buffet Process
(IBP) was described by [5] and is analogous to the Dirichlet process and the associated Chinese
restaurant process (CRP) [11]. Fortunately, as we will see, inference with this infinite prior is not
only tractable, but is also nearly as efficient as the finite version.

3 Inference of features and parameters

As with many other complex hierarchical Bayesian models, exact inference of the latent variables �
and � in the BMF model is intractable (ie there is no efficient way to sample exactly from the pos-
terior nor to compute its exact marginals). However, as with many other non-parametric Bayesian
models, we can employ Markov Chain Monte Carlo (MCMC) methods to create an iterative proce-
dure which, if run for sufficiently long, will produce correct posterior samples.

3.1 Finite binary latent feature matrices

The posterior distribution of a single entry in � (or �) given all other model parameters is propor-
tional to the product of the conditional prior and the data likelihood. The conditional prior comes
from integrating out the biases � in the Beta-Bernoulli model and is proportional the the number of
active entries in other rows of the same column plus a term for new activations. Gibbs sampling for
single entries of � (or �) can be done using the following updates:� � � �T� _ . % �]��T� ' �(' � ' � # _ � � � / � 69d] ��
 � # � � �(% �]��T� ' � �T� _ .b' �)' �O# (2)� � ���T� _�� % �]��T� ' �(' � ' � # _ � � .76 � � > .3# >)d] ��
 � # � � �(% �] ��� ' ����� _�� ' �(' �O# (3)

where d] ��
 � _ e����SY� � � � , �] ��� excludes entry �"? , and � is a normalizing constant. (Conditioning
on � ' � and

�
is implicit.) When conditioning on � , we only need to calculate the ratio of likeli-

hoods corresponding to row � . (Note that this is not the case when the weights are integrated out.)
This ratio is a simple function of the model’s predictions �����$� _`e��
 � � � 	 ��
 � �
 (when � ��� _ .) and��]��� _ e��
 � � � 	 ��
 � �
 (when � �T� _��). In the linear-Gaussian case:

����� � � � ��� _ . % �] ��� ' �)' � ' �K#� � � ��� _�� % �] ��� ' �)' � ' �K# _
����� � � / � 69d] ��
 � #

�".76 �L� > .3# >)d]���
 � # > . "! � � ���"# � � �$� >$��%���� #'&
> � ����� >(��]��� #)&�*
In the linear-Gaussian case, we can easily derive analogous Gibbs sampling updates for the weights
� and hyperparameters. To simplify the presentation, we consider a “vectorized” representation
of our variables. Let + be an �N� column vector taken column-wise from � , , be a

� � column
vector taken column-wise from � and - be a �N� � � � binary matrix with entries B �$�.
 ��
 _ � �T� 	 ��
 .
(In “Matlab notation”, + _ �(�'/$#,'), _ � �'/$# and - _10�24365 � �)' ��# .) In this notation, the data
distribution is written as: +M% - '), ' � *7� �8-9, ' ��.3/ � #21G# . Given values for � and � , samples
can be drawn for , ,

�
, and

�
using the following posterior distributions (where conditioning on, � ' � ' � 'FB � '�E � ' B � '�E � is implicit):, %:+ ';- * �=< � � - � - 6 � 1G#

]DU
� � - � + 6 � , � #�'
� � - � - 6 � 1G#

]YU?>

� % , * I
�
B � 6 � � / ' �

E � 6 . ��, > , � # � ��, > , � #����
� % + '.- '), * I

�
B � 6��N�N/ ' �

E � 6 . ��+�> - , # � ��+�> -9, # ���
Note that we do not have to explicitly compute the matrix - . For computing the posterior of linear-
Gaussian weights, the matrix - � - can be computed as - � - _ 0�24365 � � � �(' � � ��# . Similarly,
the expression - � + is constructed by computing � � � � and taking the elements column-wise.

3.2 Infinite binary latent feature matrices

One of the most elegant aspects of non-parametric Bayesian modeling is the ability to use a prior
which allows a countably infinite number of latent features. The number of instantiated features is
automatically adjusted during inference and depends on the amount of data and how many features
it supports. Remarkably, we can do MCMC sampling using such infinite priors with essentially no
computational penalty over the finite case. To derive these updates (e.g. for row � of the matrix �),
it is useful to consider partitioning the columns of � into two sets as shown below.
Let set A have at least one non-zero entry
in rows other than � . Let set B be all other
columns, including the set of columns where
the only non-zero entries are found in row �
and the countably infinite number of all-zero
columns. Sampling values for elements in row� of set A given everything else is straightfor-
ward, and involves Gibbs updates almost iden-
tical to those in the finite case: as

� ��	
we

get the infinite case.

set A set B
0 1 0 0 1 0 0 0 0 0 �����
0 0 1 0 0 0 0 0 0 0 �����
1 1 0 0 1 0 0 0 0 0 �����
1 0 0 1 1 0 0 0 0 0 �����
1 1 0 0 1 0 1 0 1 0 row �
0 1 0 0 0 0 0 0 0 0 �����
0 0 0 1 0 0 0 0 0 0 �����
1 0 0 0 1 0 0 0 0 0 �����

� � ���T� _ . % �] ��� ' �(' �O#
	 d]���
 � � � �)% �] ��� ' � ��� _ .c' �)' �O# ?���
 8���� (4)� � � �T� _ � % �] ��� ' �(' �O#
	 � � >)d] ��
 � # � � �)% �] ��� ' � ��� _�� ' �)' �O# ?���
 8���� (5)

When sampling new values for set B, the columns are exchangeable, and so we are really only inter-
ested in the number of entries d��� in set B which will be turned on in row � . Sampling the number of
entries set to . can be done with Metropolis-Hastings updates. Let � �Ld��� % d � # _ Poisson � d����% � /0� #
be the proposal distribution for a move which replaces the current d � active entries with d��� active
entries in set B. A similar expression represents the reverse proposal, � �Ld � % d��� # . The acceptance
ratio of this proposal simplifies to the ratio of data likelihoods:� a���� a �� _ � �Ld��� % �K#D� �Ld � % d���7#� �Ld � % �K#D� �Ld � � % d � # _

� � �(% d���7# Poisson � d���-% � / � #,� �Ld � % d���7#� � �(% d � # Poisson � d � % � / � #,� �Ld � � % d � # _
� � �(% d���7#� � �(% d � # (6)

This assumes a conjugate situation in which the weights � are explicitly integrated out of the
model to compute the marginal likelihood

� � �(% d � �7# . In the non-conjugate case, a more compli-
cated proposal is required. Instead of proposing d!�� , we jointly propose d��� and associated feature
parameters ,"�� from their prior distributions. In the linear-Gaussian model, where ,��� is a set of
weights to be associated with the d � � new features, the proposal distribution is:

� �Ld � � ';, �� % d � ';, � # _ Poisson �Ld � � % � /0� # Normal ��, �� % d � � ' � # (7)

There is a similar distribution for the reverse proposal, � �Ld � ';, � % d��� '),#�� # . As in the conjugate
case, the acceptance ratio reduces to the ratio of data likelihoods:� a �
 $ �%� a �� $ �� _ � � �(% d���
';,#�� #� � �(% d � ';, � # (8)

3.3 Faster mixing transition proposals

The Gibbs updates described above for the entries of � , � and � are the simplest moves we could
make in a Markov Chain Monte Carlo inference procedure for the BMF model. However, these
limited local updates may result in extremely slow mixing. In practice, we often implement larger
moves in indicator space using, for example, Metropolis-Hastings proposals on multiple features

for row � simultaneously. For example, we can propose new values for several columns in row �
of matrix � by sampling feature values independently from their conditional priors. To compute
the reverse proposal, we imagine forgetting the current configuration of those features for row �
and compute the probability under the conditional prior of proposing the current configuration. The
acceptance probability of such a proposal is (the maximum of unity and) the ratio of likelihoods
between the new proposed configuration and the current configuration.

Split-merge moves may also be useful for efficiently sampling from the posterior distribution of
the binary feature matrices. Jain and Neal [8] describe split-merge algorithms for Dirichlet process
mixture models with non-conjugate component distributions. We have developed and implemented
similar split-merge proposals for binary matrices with IBP priors. Due to space limitations, we
present here only a sketch of the procedure. Two nonzero entries in � are selected uniformly at
random. If they are in the same column, we propose splitting that column; if they are in different
columns, we propose merging their columns. The key difference between this algorithm and the Jain
and Neal algorithm is that the binary features are not constrained to sum to unity in each row. Our
split-merge algorithm also performs restricted Gibbs scans on columns of � to increase acceptance
probability.

3.4 Predictions

A major reason for building generative models of data is to be able to impute missing data values
given some observations. In the linear-Gaussian model, the predictive distribution at each iteration
of the Markov chain is a Gaussian distribution. The interaction weights can be analytically integrated
out at each iteration, also resulting in a Gaussian posterior, removing sampling noise contributed by
having the weights explicitly represented. Computing the exact predictive distribution, however,
conditional only on the model hyperparameters, is analytically intractable: it requires integrating
over all binary matrices � and � , and all other nuisance parameters (e.g., the weights and preci-
sions). Instead we integrate over these parameters implicitly by averaging predictive distributions
from many MCMC iterations. This posterior, which is conditional only on the observed data and hy-
perparameters, is highly complex, potentially multimodal, and non-linear function of the observed
variables.

By averaging predictive distributions, our algorithm implicitly integrates over � and � . In our
experiments, we show samples from the posteriors of � and � to help explain what the model is
doing, but we stress that the posterior may have significant mass on many possible binary matrices.
The number of features and their degrees of overlap will vary over MCMC iterations. Such variation
will depend, for example, on the current value of � and � (higher values will result in more features)
and precision values (higher weight precision results in less variation in weights).

4 Experiments

4.1 Modified “bars” problem

A toy problem commonly used to illustrate additive feature or multiple cause models is the bars
problem ([2, 12, 1]). Vertical and horizontal bars are combined in some way to generate data sam-
ples. The goal of the illustration is to show recovery of the latent structure in the form of bars. We
have modified the typical usage of bars to accommodate the linear-Gaussian BMF with infinite fea-
tures. Data consists of � vectors of size � & where each vector can be reshaped into a square image.
The generation process is as follows: since � has the same number of rows as the dimension of the
images, � is fixed to be a set of vertical and horizontal bars (when reshaped into an image). � is
sampled from the IBP, and global precisions

�
and

�
are set to .0/ . The weights � are sampled

from zero mean Gaussians. Model estimates of � and � were initialized from an IBP prior.

In Figure 2 we demonstrate the performance of the linear-Gaussian BMF on the bars data. We train
the BMF with 200 training examples of the type shown in the top row in Figure 2. Some examples
have their bottom halves labeled missing and are shown in the Figure with constant grey values. To
handle this, we resample their values at each iteration of the Markov chain. The bottom row shows
the expected reconstruction using MCMC samples of � , � , and � . Despite the relatively high
noise levels in the data, the model is able to capture the complex relationships between bars and
weights. The reconstruction of vertical bars is very good. The reconstruction of horizontal bars is

good as well, considering that the model has no information regarding the existence of horizontal
bars on the bottom half.

(A) Data samples

(B) Noise-free data

(C) Initial reconstruction

(D) Mean reconstruction

(E) Nearest neighbour

Figure 2: Bars reconstruction. (A) Bars randomly sampled from the complete dataset. The bottom
half of these bars were removed and labeled missing during learning. (B) Noise-free versions of the
same data. (C) The initial reconstruction. The missing values have been set to their expected value,� , to highlight the missing region. (D) The average MCMC reconstruction of the entire image. (E)
Based solely on the information in the top-half of the original data, these are the noise-free nearest
neighbours in pixel space.

� ��� �

Figure 3: Bars features. The top row shows values of � and ��� � used to generate the data. The
second row shows a sample of � and � � � from the Markov chain. � � � can be thought of as a
set of basis images which can be added together with binary coefficients (�) to create images.

By examining the features captured by the model, we can understand the performance just described.
In Figure 3 we show the generating, or true, values of � and ��� � along with one sample of those
features from the Markov chain. Because the model is generated by adding multiple � � � basis
images shown on the right of Figure 3, multiple bars are used in each image. This is reflected in the
captured features. The learned � � � are fairly similar to the generating � � � , but the former are
composed of overlapping bar structure (learned �).

4.2 Digits

In Section 2 we briefly stated that BMF can be applied to data models other than the linear-Gaussian
model. We demonstrate this with a logistic BMF applied to binarized images of handwritten digits.
We train logistic BMF with 100 examples each of digits . , , and � from the USPS dataset. In
the first five rows of Figure 4 we again illustrate the ability of BMF to impute missing data values.
The top row shows all 16 samples from the dataset which had their bottom halves labeled missing.
Missing values are filled-in at each iteration of the Markov chain. In the third and fourth rows we
show the mean and mode (

� � � �$� _ .3#�� ���	�) of the BMF reconstruction. In the bottom row we
have shown the nearest neighbors, in pixel space, to the training examples based only on the top
halves of the original digits.

In the last three rows of Figure 4 we show the features captured by the model. In row F, we show
the average image of the data which have each feature in � on. It is clear that some row features
have distinct digit forms and others are overlapping. In row G, the basis images � � � are shown.
By adjusting the features that are non-zero in each row of � , images are composed by adding basis
images together. Finally, in row H we show � . These pixel features mask out different regions in
pixel space, which are weighted together to create the basis images. Note that there are

�
features

in rows F and G, and � features in row H.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

Figure 4: Digits reconstruction. (A) Digits randomly sampled from the complete dataset. The
bottom half of these digits were removed and labeled missing during learning. (B) The data shown
to the algorithm. The top half is the original data value. (C) The mean of the reconstruction for
the bottom halves. (D) The mode reconstruction of the bottom halves. (E) The nearest neighbours
of the original data are shown in the bottom half, and were found based solely on the information
from the top halves of the images. (F) The average of all digits for each � feature. (G) The feature
� � � reshaped in the form of digits. By adding these features together, which the � features do,
reconstructions of the digits is possible. (H) � reshaped into the form of digits. The first image
represents a bias feature.

4.3 Gene expression data
Gene expression data is able to exhibit multiple and overlapping clusters simultaneously; finding
models for such complex data is an interesting and active research area ([10], [13]). The plaid
model[10], originally introduced for analysis of gene expression data, can be thought of as a non-
Bayesian special case of our model in which the matrix � is diagonal and the number of bi-
nary features is fixed. Our goal in this experiment is merely to illustrate qualitatively the ability
of BMF to find multiple clusters in gene expression data, some of which are overlapping, others
non-overlapping. The data in this experiment consists of rows corresponding to genes and columns
corresponding to patients; the patients suffer from one of two types of acute Leukemia [4]. In Figure
5 we show the factorization produced by the final state in the Markov chain. The rows and columns
of the data and its expected reconstruction are ordered such that contiguous regions in � were ob-
servable. Some of the many feature pairings are highlighted. The BMF clusters consist of broad,
overlapping clusters, and small, non-overlapping clusters. One of the interesting possibilities of us-
ing BMF to model gene expression data would be to fix certain columns of � or � with knowledge
gained from experiments or literature, and to allow the model to add new features that help explain
the data in more detail.

5 Conclusion
We have introduced a new model, binary matrix factorization, for unsupervised decomposition of
dyadic data matrices. BMF makes use of non-parametric Bayesian methods to simultaneously dis-
cover binary distributed representations of both rows and columns of dyadic data. The model ex-
plains each row and column entity using a componential code composed of multiple binary latent
features along with a set of parameters describing how the features interact to create the observed
responses at each position in the matrix. BMF is based on a hierarchical Bayesian model and can be
naturally extended to make use of a prior distribution which permits an infinite number of features,
at very little extra computational cost. We have given MCMC algorithms for posterior inference
of both the binary factors and the interaction parameters conditioned on some observed data, and
demonstrated the model’s ability to capture overlapping structure and model complex joint distribu-
tions on a variety of data. BMF is fundamentally different from bi-clustering algorithms because of
its distributed latent representation and from factorial models with continuous latent variables which
interact linearly to produce the observations. This allows a much richer latent structure, which we
believe makes BMF useful for many applications beyond the ones we outlined in this paper.

(A) (B)

Figure 5: Gene expression results. (A) The top-left is � sorted according to contiguous features in
the final � and � in the Markov chain. The bottom-left is �	� and the top-right is � . The bottom-
right is � . (B) The same as (A), but the expected value of � , �� _ ����� � . We have highlighted
regions that have both � �T� and

	 ��
 on. For clarity, we have only shown the (at most) two largest
contiguous regions for each feature pair.

References

[1] P. Dayan and R. S. Zemel. Competition and multiple cause models. Neural Computation, 7(3), 1995.

[2] P. Foldiak. Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics, 64,
1990.

[3] Z. Ghahramani. Factorial learning and the EM algorithm. In NIPS sd sdg, volume 7. MIT Press, 1995.

[4] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh,
J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer:
Class discovery and class prediction by gene expression monitoring. Science, 286(5439), 1999.

[5] T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In NIPS,
volume 18. MIT Press, 2005.

[6] J. A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical Association, 67,
1972.

[7] G. Hinton and R. S. Zemel. Autoencoders, minimum description length, and Helmholtz free energy. In
NIPS, volume 6. Morgan Kaufmann, 1994.

[8] S. Jain and R. M. Neal. Splitting and merging for a nonconjugate Dirichlet process mixture model.
Technical Report 0507, Department of Statistics, University of Toronto, 2005.

[9] C. Kemp, J. B. Tenebaum, T. L. Griffiths, T. Yamada, and N. Ueda. Learning systems of concepts with an
infinite relational model. Proceedings of the Twenty-First National Conference on Artificial Intelligence,
2006.

[10] L. Lazzeroni and A. Owen. Plaid models for gene expression data. Statistica Sinica, 12, 2002.

[11] J. Pitman. Combinatorial stochastic processes. Lecture Notes for St. Flour Course, 2002.

[12] E. Saund. A multiple cause mixture model for unsupervised learning. Neural Computation, 7(1), 1994.

[13] R. Tibshirani, T. Hastie, M. Eisen, D. Ross, D. Botstein, and P. Brown. Clustering methods for the analysis
of DNA microarray data. Technical report, Stanford University, 1999. Department of Statistics.

