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Abstract

We present a probabilistic block-constant biclusteringdeidhat simultaneously clusters
rows and columns of a data matrix. All entries with the sanvecluster and column cluster
form a bicluster. Each cluster is part of a mixture having agazametric Bayesian prior. The
number of biclusters is therefore treated as a nuisancengdea and is implicitly integrated
over during simulation. Missing entries are completelygrated out of the model, allow-
ing us to completely bipass the common requirement for bieling algorithms that missing
values be filled before analysis, but also makes it robusigb tates of missing values. By
using a Gaussian model for the density of entries in blielsstan efficient sampling algo-
rithm is produced because bicluster parameters are atallytintegrated out. We present
several inference procedures for sampling cluster indisaincluding Gibbs and split-merge
moves. We show that our method is competitive, if not supgigcexisting imputation meth-
ods, especially for high missing rates, despite imputingstant values for entire blocks of
data. We present imputation experiments and explorateiydiering results.
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1 Biclustering

Biclustering (also known as co-clustering or 2-way clusigr refers to the the simultaneous grouping of rows
and columns of a data matrix. Each bicluster is a submattitkeofull (possibly reordered) data matrix and entries
in a bicluster should have some coherent structure (thélslefavhich depend on the method employed). This
coherence could be, for example, constant values for aiflesrih the submatrix, or similar row/column patterns
within a bicluster. Biclustering algorithms are also cluteazed by how the rows and columns are assigned to
clusters. Rows/columns can either belong to multiple ekssfas shown in Figure 2A & 2B) or to only a single
cluster (as shown in 2C); clusters can overlap (2A) or not £BC). Some matrix entries may also belong to
a “background” noise model which is not part of any biclug@h & 2B). Most representations assume that
there exists a single permutation of the matrix rows/colsiaiter which all the biclusters are contiguous blocks.
(Matrix tile analysis [4] is an exception.) Our approachguoes biclusters like those in Figure 2C: each row and
column belongs to a single, non-overlapping cluster.

Figure 1:Left: Original data.Right: Data after biclustering.

Assessing the significance of partitions discovered byubteking is problematic for several reasons. First,
there are few available data sets which are annotated watlnglrtruth partitions. Second, those that are anno-
tated may have partitions that do not correspond to any Iplesstsult of the clustering algorithm. Third, most
algorithms have parameters which modify the scale/sizadftpns which are discovered. Deciding which scale
is best in a purely unsupervised manner is difficult and podefined. For example, a common goal when clus-
tering microarray data is to group genes and/or experimargsich a way that the partitions are biologically
“significant” or “plausible”; often this is assessed by exaimg the clusters by hand [2, 8].

Several modeling issues must be addressed by any bichgteethod. The most important is a method for
assessing when a partition represents a significant bécluhis is closely related to the choice of the number of
clusters to use. Most biclustering use greedy procedurditting biclusters one at a time until either a global
fitting objective or a pre-specified number of clusters hanbreached [2, 8]. Of course, if the only objective is to
reduce some measure of fitting residual, overfitting willlwamless the model is highly regularized, especially in
very flexible non-probabilistic models. By restricting feermissible types of clusters we can control capacity; we
can also use a probabilistic model of the data and use mafiielthood as a guide. The biclustering algorithm
that we present here is a fully probabilistic model whichauBayesian honparametric priors over row and column
clusters. This allows us to treat the number of biclustera agisance parameter and implicitly integrate it out



Figure 2: A: Multiple, overlapping biclusters. B: Multiple, non-overlapping biclusters.C: Single, non-
overlapping biclusters.

during inference. In fact, the algorithm we present in tlzipgr does not return a single partition, but a distribution
over partitions, including groupsings at different scales

A final important issue is missing values in the data matrixanylbiclustering procedures require complete
data matrices, and therefore data with missing values nagsan imputation algorithm as a preprocessing step.
Our model completely integrates over missing vattiaspiding ad hoc preprocessing which undoubtably affect
clustering results for other methods.

The remainder of the paper is organized as follows. In Se&@iwe give a general description of our model,
including a high-level description and an introduction tayBsian nonparametric priors for clustering models.
General inference algorithms for both small moves in ssai@ee (Gibbs) and large moves (split-merge) are pre-
sented in Section 4. We follow with a concrete example of segative model of data using a Gaussian-Gamma
prior for bicluster parameters. In Section 6 we present fpes of experiments. First, imputation experiments to
compare our method with other methods designed for impurtatiot biclustering. This is a common way of as-
sessing unsupervised algorithms. Second, cluster apaygeriments on gene expression, text, and collaberative
filtering data. Finally, we discuss and conclude in Section 7

2 A Bayesian biclustering model

Our new model can be thought of as an infinite mixture of vemypdé biclusterings in which each row belongs
to exactly one of” row clusters and each column to exactly ond.afolumn clusters. The novel contribution is
that we incorporate a flexible, fully Bayesian, non-param@tior over row and column partitions and implicitly
average over partitions according to their posterior pbdhies given the observed data. This is achieved using
Markov Chain Monte Carlo (MCMC) sampling , which causes thember of row and column clusters to change
during inference (such dynamics will be explained in mor&aitién Section 2.1). For any particular setting of
the row and column cluster assignments, the density ofemnitnia bicluster (i.e. the subset of rows and columns
having a particular joint setting of cluster assignmerggjaverned by a set of parameters indexed by both the
row and column cluster.

To perform imputation (filling in) or cluster analysis witlubmodel, we first run many iterations of MCMC
inference, gathering samples of partitions at each imgtfter discarding burn-in samples). We can then com-
pute quantities of interest by averaging over these sanfaesnputation, this means averaging over predictions
for missing values; for cluster analysis we average pangtiby forming a symmetric neighbourhood graph in
which the weight of the edge betwegandyj is fraction of partitions in whict were found in the same cluster or
bicluster. (The objects j may be rows, columns or individual entries.)

2.1 Nonparametric prior over partitions

In Bayesian (or MAP) mixture modeling with finite mixturestfigh can be used for either soft or hard parti-
tionings of N objects intoK clusters), Dirichlet distributions are often used as rifmr the mixture weights,
which has the effect of smoothing the maximum likelihood tmig distributions. If the number of clustekSis
unknown, one common procedure for selecting its value ifitse thel which maximizes the likelihod of held-
out data. A more Bayesian approach would put a prior prolakistribution overK” and weight with different
K by their posterior probabilities given the observed data.

1We assume entries are missing completely at random (MCAR).
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Figure 3:(A) Graphical representation of the general BIC model, withgisi stick-breaking representation and
with cluster parametexs;,; explicitly representedB) The same model but using a Polya urn representation and
the cluster parameters explicitly integrated out of the etotlve have use a dashed line to represent exchange-
ability.

Bayesian nonparametric priors are elegant and compuddijoefficient ways of incorporating prior belief
about the distribution oveK into our probabilistic mixture models. The Dirichlet presgDP) prior [3] is the
most common, and has the appealing property that any samguied DP is Dirichlet distributed, making it a
natural prior for component weights in a mixture model. Comgnt indicators can be sampled directly by first
sampling the weights or the weights can be integrated away,iradicators can be sampled marginally using
the Polya urn scheme. The Polya urn distribution is exchalplgeand has prior masgsallocated to an infinite
number of uninstantiated components that do not yet exigtarmixture.This means that new components can
be added to the mixture with positive probability. The Pitidor process is a generalization of the DP with an
additional parametet (0 <= d < 1) which discounts occupied clusters and has the effect of producing more
uniform cluster sizes in general. (Fér= 0, the prior reduced to a DP.) In our experiments we employ tfie P
prior? because it is more flexible than the DP.

3 General probability model for Bayesian biclustering

We now describe the full probability model for a general paetric model for bicluster densities. In Section 5
we will describe a model with a Gaussian bicluster density.

Let u; be an indicaor variable such that = k if the ith object belongs to componeht The distribution
hierarchy is as follows:

‘TZ] |ui7 /Uj7 (buivj ~ F (xl] |¢u1vj)
Ui|aaduau7i ~ PY (ui|avduvuii)
vj[\dy, v~ PY (v dy,v)

d)ui'Uj |q) ~ Go ((buiﬂj |q))

where )\ is the concentration parameter for andd,, andd,, are discount parameters farandv, respectively.
Hyperparameter® do not depend on cluster parameters. Each entryof a data matrixX is distributed ac-
cording to a parametric density model with a set of pararsetgy,;, whereu; is an indicator variable which
indexes into a set of row clusters andis the equivalent indicator for column clusters. Clusteli¢gators have
independent PY priors with their own concetration and dist@arameters. Bicluster parameters have their own
base distributiortsy. One could modeb,,,., asé., + ¢.,, for example, but we have a single set of parameters
for each bicluster. Wheg, is conjugate td, this enables us to integrate the parameters out of thecit#te
Markov chain. The graphical model of the hierarchy is shawRigure 3. On the left the weights sampled from
a PY process are shown explicitly. On the right we show theehwaith the weights integrated out.

It is useful to rewrite the data likelihood from a product afivaraite entries as a product of blocks of multi-
variate data:

P(X|u,v,¢) ~ HHF(‘ri,j|¢kl)6k(Ui)él(vj)

kl ij

2By putting Gamma and Beta priors overandd, respectively, we can sample the PY during simulation (seti@h 4.3).
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wherexy, is the vector of all entries iXX which haveu; = k andv; = [. In this paper we will be mostly interested
in the case where F is conjugated, which allows us to intergate out afl;:

P (X[u,v,®) ~ H/d¢le(Xkl|¢k1)GO (Ort|®)
i
= HH(Xkl|q))
Kl

Notice how the data likelihood only depends on the entriesaich bicluster and the hyperparameters. We will
give concrete examples &f, Gy, andH in Section 5.

4 Inference

In this section we describe inference procedures for indisavariables at a fine scale using Gibbs updates and
at a coarse scale using split-merge updates. We also briefly bow to sample for PY parameters from their
posteriors.

4.1 Gibbs sampling indicators

The procedure for infering row (or column) indicators diff@nly slightly from typical DP mixture inference (see
[9] for examples). When performing Gibbs updateswoandv, we cycle through the row and column indices,
using the exchangeable properties of the PY process todeeht index as the last sample in an exchangeable
distribution.

WhenGj is non-conjugate td’, we setu; = k with probability proportional to the following unnormaid
density:

PY (u; = kla, du,u™") [ F (il ém)
l

where, ifk is a new row clusterpy; is sampled from its base distribution (see algorithin [9]), x;; is the
vector of observations from rowthat havev; = I, andx;," is the vector observations in biclustet, excluding
x;. Once the indicators have been sampled for both rows andncauwe then resample bicluster parameters
from their posterior:

O X, @ ~ C - Go (or|P) - F(xij|¢kl)6k(m)6l(w)

WhenGj is conjugate td¥’, we cancollapse the Gibbs sampler and sef = & with probability proportional
to the following unnormalized density:

PY (u; = kla, du,u™") [T H (i), ®)
l

Similar, symmetric updates are performed¥onVe can understand why the collapsed Gibbs sampler would
be much more efficient than the non-conjugate sampler bkitignabout how we assess the likelihood of data
under new cluster disitributions. For a row cluster to beeatjé must samplé. new parameters from the prior
and have these new parameters model the density of the rder bigdn existing components. Intuitively, we
would expect to have a low probability of adding new compdsevith this procedure. Instead, the collapsed
sampler integrates over the base distribution’s samplamaiaility.

4.2 Split-merge for cluster indicators

Gibbs updates to single indicator variables can only malalsteps in state-space and it is possible that the a
Markov chain will remain stuck in poor local minima. For mixes, splitting and merging clusters can provide
the necessary jumps to escape local minima and explore thstdte-space. We have applied the conjugate
split-merge algorithm of Jain and Neal [6] and describesteatials below.

The basic idea of split-merge is the following. We are indézd in two types of proposals: one proposes
merging two rows of biclusters into a single row of biclusters; thketproposesplitting a row of biclusters into

3See [7] for a non-conjugate version of the split-merge atlgor.



two rows of biclusters. Split-merge proposals requiredtdensities:P(u), the joint probability of a partition
under the PY priorP(X]|u), the likelihood of the data given a partition; an¢hrf |u), the transition probability
from the current state to the new stat&n*. How we compute is the most important aspect of the split-merge
algorithm and we describe it next.

The split-merge algorithm proceeds as follows. Sampleonmify two row indices,f andg. If f = ¢ then
propose splitting a row of biclusters currently associatéti row clusteru s, into two rows of biclusters with
cluster labelsf* = f andg® = K + 1, whereK is the current number of occupied clusters. Initially, row
indicatorsu; = f are randomly assigneff® andg*. We then perform several iterations rektricted Gibbs to
reach the launch stafe The transition probability u*|u) is the product of probability of reaching the final
indicator configuration from the launch state, using a fieatnicted Gibbs scan.

If f # g, then we propose merging; andu, into a cluster labeleg™ = f and removing clusteg. The
transition probability qu™|u) is 1. The reverse transition probability is the product ofimulated restricted
Gibbs scan from a launch split state to the current spliestilte launch split state is found by randomly splitting
elements of:y andu,,, then performing several restricted Gibbs scans.

Onceu® or u™ is ready to be proposed, we can compute their acceptancealplids, which for MH is:

q(uu*) P (u*) P (x|u*)
q(uu) P(u) P(xlu)

a(u*lu) = min |1,

Both the ratios of priors and likelihoods simplify to:

P _ (o grgy LD ()
Pa — () TGS
P@u™) _ 1 T (n})
P (u) (a+ K+dy) T'(ng) T (ng)
P (x|u™) _ H (X,ﬁfpﬂ@) H X,@]pﬂ@)
P (x|u) : H (xufl|¢’

Pl (H("u?gl'@)
H

P (x[u) X ;1| @) H (xu,1|®)

In our experiments, we alternate a full Gibbs scandandv, followed by five split-merge proposals. We
propose a split-merge move arwith probability N/(N + D, and forv, with probabilityD /(N + D). We flip a
coin to decide whether we propose split or merge moves (otheplit proposals are rare events).

4.3 Inferring Pitman-Yor hyperparameters

There is no reason why both PY parameteesdd should not be sampled during simulation. Elaborate samplin
schemes do exist for the concentration parameter for DPun@gt{12], but this is unnecessary; we use random
walk Metropolis moves. As mentioned earlier, sensiblergrior « andd are Gamma and Beta distributions. Our
hyperparameters for the discount parameter are such fhasbiirs smalleti.

5 Gaussian model

We now describe the biclustering model we use in our experisét is possible to use non-conjugate Gibbs with
the following, but in our experiments we integrate out thellster parameters.

5.1 A robust bicluster model

We will assume for the moment that there is only a single kteluto keep the presentation clear. We will follow
with the full bicluster model. We assume the following distition hierarchy:

4A restricted Gibbs scan is the same as the collapsed Gibhsigsaribed in Section 4.1, but only involving the rows in pheposal and
those indicators can only choose betwg&hand g=,.



zijlw,a, s ~ Normal(w,(as)_l)

wlm,b,s ~ Normal(m,(bs)_l)

v vl
~ Gamm
sy, e a(2 3 )

wherew is the bicluster centre;is a precision parameter affecting the noise in the data enttedistributionsg
andb are positive scalars which affect the precision parametes;the global mean of the centres; the precisions
have Gamma priors with shaggand inverse scal%%; v is a degrees-of-freedom parameter, controlling the
variance of precisions; the expected value of the precismn

This distribution hierarchy providesrabust model of the bicluster data. When we integrate out the centre
and precisions of the bicluster, the result is a Studensttidution with» degrees of freedom; the Student-t is
considered less sensitive to outliers than Gaussians dtgefatter tail, and thus more robust.

The marginal likelihood ofV univariate entries in a bicluster, after integrating outtoes and precisions, is a
multivariate Student-t of dimensiaN with meany, precision matrixQ, and degrees of freedomwhere

a T
—ml —ca(1- —% 11
p=m Q C“( - ND+b )

We are also interested in the predictive distribution of eteey of size N,,, conditionedX, a multivariate
Student-t of dimensiotV,, with v degrees of freedom and

a- Zz 1,5= 1I2J+bm a T
r= a-ND+b V@=cl{l-mprmy ot

5.2 Complete Gaussian biclustering model

In the previous section we gave the marginal and predictisgilutions of a Gaussian model with a single
bicluster. Here we expand the model to include the cagé af biclusters. Using the same notation from Section
?? b = {wkl, Skl} and® = {m, a,b,v, C}, so that

F (il pusv,, P)

Normal (wkl, (askl)fl)

1
Go (¢u u] ) = Normal (m, (bSkl Gamma<z K_)
H(xx|®) = Student-{uw, Qui,v)
(le|xkl 5 ) = Student-(uil’ Qil7 Ij)
where .
- LD DL Vik L
e =l o=y Nii,—i + b
and
_ a7
Qu = ca(I a~Nkl+b11 )
a T
a = ca|lIl— 11
Qu < 6 (Nki,—i + Na) + b >

6 Experiments

We perform two types of experiments that are not only impurta practitioners, but also demonstrate the per-
formance capability of our Bayesian biclustering algarithThe first is missing value imputation, where we
assess the quality of imputed values using root mean-sgusme(RMSE). The second is cluster analysis, which
is much more difficult to assess. For this we merely show soiciadberings and word neighbourhoods using
MCMC cluster samples.



6.1 Data sets

We study our method on three different types of data, allextbjof bicluster research: DNA microarray data,
document data, and recommendation data.

RNA probes: We first removed all columns with all missing values, thdrr@alvs with any missing values,
resulting in a matrix of siz&28 by 217.°

Documents We have taken a small subset of the origimadsgroup dataset, using the log of the counts plus
one (;; = log(n;; + 1)).

Recommendation We have taken a subset of tRachmovie dataset, using the same transformation of ranks
as we did for word counts. For this dataset, we consider zaissing values (in constrast to the other datasets).
Thus, a dataset of siz&0 by 500 only has19% of entries observed.

6.2 Missing value imputation

Different application areas have different reasons why thmpute missing values. Biologists working with DNA
microarray data are often faced with missing values for isdveasons, mostly due to artifacts in processing
microarray images or by actual missing experimental dataloBists may be interested in the actual imputed
values, but often they require complete data matrices tmpercluster analysi§.Predicted values are extremely
important for recommendation systems, where the rankifigsg, movies by users, and the relationships between
users, are used to recommend movies.

Even though out method integrates over missing valuesssissgour methods imputation capability is one
way of analysing the quality of the biclusters it discovev¥de compare our algorithm with several imputation
methods designed for DNA microarray data. Baseline metfibdsmissing values with zeros or the row average
of observations (ROW). More advanced methods are basedrmul&r Value Decomposition (SVD) and k-
nearest-neighbours (KNN) [5, 11]. These both iterate irapom until imputed values have converged. The
most sophisticated methods we compare with are based drslpaares analysis (LS) [1] and probabilistic PCA
(BPCA) [10].

Our main modeling assumption—block constant biclusteray-only be valid in few data sets one may
encounter. Many microarray data sets, for example, areoobiyi not block-constant. Experiments may record
experiments which are time-dependent, for instance. Ih sases, biclustering with constant values will provide
poor descriptions of the data. We can sometimes improvedtfermance of imputation algorithms by initializing
the missing values with the average predicted values franm@thod (see RNA results). This is another way of
demonstrating the quality of the biclustering.

Our imputation experiments are straightforward. For eathskt, there is an original mati% which may or
may not contain missing values (this is the case for EACH odgind a missing completely at random (MCAR),
we perform experiments with — 90% of the observed entries set to missing. For each missingwatereates
versions of the data with different missing entries. As ritargd before, we assess quality by RMSE.

We can see from Figure 4 that our algorithm, despite not bedesigned for imputation, performed well on
data with high missing rates. On the RNA data, we can imprbeea¢sults of BPCA by initializing it with our
expected predictions. Our results indicate that our allgris quite robust to high rates of missing data.

6.3 Cluster analysis

In Figures 5 and 6 we show biclusterings from all data setsictow when zeros are treated as missing values
(top Figure 6), that the biclustering is more interestinbisTis due to the extra noise in this data. Less biclusters
are formed when zeros are treated as missing, but theseteidware still valid for this level of sparsity. We also
show word neighbours from NEWSGROUPS in Table 1.

7 Conclusion

We have presented an fully Bayesian biclustering algoritmah is very robust to missing values, precluding any
need for imputation before further analysis. This has intgurconsequences for practitioners. If one is actually
interested in studying imputed values, our algorithm isatdg of imputing values. For data matrices that are very
sparse, other imputation methods fail, and therefore siehing algorithms that rely on complete data will fail
as well. Our method shows much more gradual degradationrforpgance as the missing rate increases. In the
future we will work on a version for multinomial data and wélktend the biclustering to hierarchies.

5Thanks to Tim Hughes and Quaid Morris for providing this uplshed data.
80f course, for these situations, our method obviates intipatédefore clustering.
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Figure 4:Top: Inputation results for the EACH MOVIE dataset. Even at vieigh sparsity $8% missing rate),
our method is still able to perform reasonably w8lbttom: Inputation results for the RNA dataset. For this data,
even though our imputation performed poorly, initializiB§CA (see REG) with our imputed values improved
BPCA significantly.
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Figure 5: Top: NEWSGROUPS biclustering samplBottom: RNA biclustering sample. Patrtition lines are left
out for clarity.



USERS

MOVIES
EACH MOVIE

USERS

MOVIES

Figure 6:Top: EACH MOVIE. A biclustering result when zeros are treatedbserved. We have left out partition
lines for clarity. Bottom: EACH MOVIE A biclustering result when zeros are treated &ssing.
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doesn | write world inform discuss
get origin | second| system | effect
lot articl found includ interest
true free reason | program | reason
word check book file real
hand | subject| exist number high
show | exampl | respons| gener refer
great chang place order
idea exist give place
never open show give
suggest| etc power power
quit control end respons
hard new fact fact
claim net put nation
turn manag | interest person
talk bit articl control
man found | discuss articl
wrong | interest| build sinc
respons| suggest| hand second
book type refer answer

Table 1: Nearest neighbours of a random set of words in a MWSGROUP dataset. The neighbours were
based on the probability of a word being in the same clustanather word, based on biclustering samples.
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