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Abstract. We introduce a new class of convex penalty functions, called variational Gram func-
tions (VGFs), that can promote pairwise relations, such as orthogonality, among a set of vectors in a
vector space. These functions can serve as regularizers in convex optimization problems arising from
hierarchical classification, multitask learning, and estimating vectors with disjoint supports, among
other applications. We study convexity of VGFs, and give characterizations for their convex conju-
gates, subdifferentials, proximal operators, and related quantities. We discuss efficient optimization
algorithms for regularized loss minimization problems where the loss admits a common, yet simple,
variational representation and the regularizer is a VGF. These algorithms enjoy a simple kernel trick,
an efficient line search, as well as computational advantages over first order methods based on the
subdifferential or proximal maps. We also establish a general representer theorem for such learning
problems. Lastly, numerical experiments on a hierarchical classification problem are presented to
demonstrate the effectiveness of VGFs and the associated optimization algorithms.

1. Introduction. Let x1, . . . ,xm be vectors in Rn. It is well known that their
pairwise inner products xTi xj , for i, j = 1, . . . ,m, reveal essential information about
their relative orientations, and can serve as a measure for various properties such as
orthogonality. In this paper, we consider a class of functions that selectively aggregate
the pairwise inner products in a variational form,

(1) ΩM(x1, . . . ,xm) = max
M∈M

∑m
i,j=1Mijx

T
i xj ,

where M is a compact subset of the set of m by m symmetric matrices. Let X =
[x1 · · · xm] be an n × m matrix. Then the pairwise inner products xTi xj are the
entries of the Gram matrix XTX and the function above can be written as

(2) ΩM(X) = max
M∈M

〈XTX,M〉 = max
M∈M

tr(XMXT ) ,

where 〈A,B〉 = tr(ATB) denotes the matrix inner product. We call ΩM a variational
Gram function (VGF) of the vectors x1, . . . ,xm induced by the set M. If the set M

is clear from the context, we may write Ω(X) to simplify notation.
As an example, consider the case where M is given by a box constraint,

M =
{
M : |Mij | ≤M ij , i, j = 1, . . . ,m

}
,(3)

where M is a symmetric nonnegative matrix. In this case, the maximization in the
definition of ΩM picks either Mij = M ij or Mij = −M ij depending on the sign of
xTi xj , for all i, j = 1, . . . ,m (if xTi xj = 0, the choice is arbitrary). Therefore,

ΩM(X) = max
M∈M

∑m
i,j=1Mijx

T
i xj =

∑m
i,j=1M ij |xTi xj | .(4)

Equivalently, ΩM(X) is the weighted sum of the absolute values of pairwise inner
products. This function was proposed in [47] as a regularization function to promote
orthogonality between selected pairs of linear classifiers in the context of hierarchical
classification.
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Observe that the function tr(XMXT ) is a convex quadratic function of X if M
is positive semidefinite. As a result, the variational form ΩM(X) is convex if M is a
subset of the positive semidefinite cone Sm+ , because then it is the pointwise maximum
of a family of convex functions indexed by M ∈ M (see, e.g., [38, Theorem 5.5]).
However, this is not a necessary condition. For example, the set M in (3) is not a
subset of Sm+ unless M = 0, but the VGF in (4) is convex provided that the comparison

matrix of M (derived by negating the off-diagonal entries) is positive semidefinite [47].
In this paper, we study conditions under which different classes of VGFs are convex
and provide unified characterizations for the subdifferential, convex conjugate, and
the associated proximal operator for any convex VGF. Interestingly, a convex VGF
defines a seminorm1 as

(5) ‖X‖M :=
√

ΩM(X) = max
M∈M

(∑m
i,j=1Mijx

T
i xj

)1/2
.

If M ⊂ Sm+ , then ‖X‖M is the pointwise maximum of the seminorms ‖XM1/2‖F over
all M ∈M.

VGFs and the associated norms can serve as penalties or regularization functions
in optimization problems to promote certain pairwise properties among a set of vector
variables (such as orthogonality in the above example). In this paper, we consider
optimization problems of the form

minimize
X∈Rn×m

L(X) + λΩM(X) ,(6)

where L(X) is a convex loss function of the variable X = [x1 · · · xm], Ω(X) is
a convex VGF, and λ > 0 is a parameter to trade off the relative importance of
these two functions. We will focus on problems where L(X) is smooth or has an
explicit variational structure, and show how to exploit the structure of L(X) and Ω(X)
together to derive efficient optimization algorithms. More specifically, we employ a
unified variational representation for many common loss functions, as

(7) L(X) = max
g∈G

〈X,D(g)〉 − L̂(g) ,

where L̂ : Rp → R is a convex function, G is a convex and compact subset of Rp, and
D : Rp → Rn×m is a linear operator. Exploiting the variational structure in both
the loss function and the regularizer allows us to employ a variety of efficient primal-
dual algorithms, such as mirror-prox [36], which now only require projections onto
M and G, instead of computing subgradients or proximal mappings for the loss and
the regularizer. Our approach is specially helpful for regularization functions with
proximal mappings that are expensive to compute [24].

Exploiting this structure for the loss function and the regularizer enables a simple
preprocessing step for dimensionality reduction, presented in Section 5.2, which can
substantially reduce the per iteration cost of any optimization algorithm for (6). We
also present a general representer theorem for problems of the form (6) in Section 5.3
where the optimal solution is characterized in terms of the input data in a simple and
interpretable way. This representer theorem can be seen as a generalization of the
well-known results for quadratic functions [41].

1a seminorm satisfies all the properties of a norm except that it can be zero for a nonzero input.
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Organization. In Section 2, we give more examples of VGFs and explain the con-
nections with functions of Euclidean distance matrices, diversification, and robust
optimization. Section 3 studies the convexity of VGFs, as well as their conjugates,
semidefinite representability, corresponding norms, and subdifferentials. Their proxi-
mal operators are derived in Section 4. In Section 5, we study a class of structured loss
minimization problems with VGF penalties, and show how to exploit their structure,
to get an efficient optimization algorithm using a variant of the mirror-prox algorithm
with adaptive line search, to use a simple preprocessing step to reduce the computa-
tions in each iteration, and to provide a characterization of the optimal solution as
a representer theorem. Finally, in Section 6, we present a numerical experiment on
hierarchical classification to illustrate the application of VGFs.

Notation. In this paper, Sm denotes the set of symmetric matrices in Rm×m,
and Sm+ ⊂ Sm is the cone of positive semidefinite (PSD) matrices. We may omit
the superscript m when the dimension is clear from the context. The symbol �
represents the Loewner partial order and 〈·, ·〉 denotes the inner product. We use
capital letters for matrices and bold lower case letters for vectors. We use X ∈ Rn×m
and x = vec(X) ∈ Rnm interchangeably, with xi denoting the ith column of X;
i.e., X = [x1 · · · xm]. By 1 and 0 we denote matrices or vectors of all ones and
all zeros respectively, whose sizes would be clear from the context. The entrywise
absolute value of X is denoted by |X|. The `p norm of the input vector or matrix is
denoted by ‖ · ‖p, and ‖ · ‖F and ‖ · ‖op denote the Frobenius norm and the operator
norm, respectively. We overload the superscript ∗ for three purposes. For a linear
mapping D, the adjoint operator is denoted by D∗. For a norm denoted by ‖ · ‖,
with possible subscripts, the dual norm is defined as ‖y‖∗ = sup{〈x,y〉 : ‖x‖ ≤ 1}.
For other functions, denoted by a letter, namely f , the convex conjugate is defined
as f∗(y) = supy 〈x, y〉 − f(x). By arg min (arg max), we denote an optimal point
to a minimization (maximization) program, while Arg min (or Arg max) is the set of
all optimal points. The operator diag(·) is used to put a vector on the diagonal of
a zero matrix of corresponding size, to extract the diagonal entries of a matrix as a
vector, or for zeroing out the off-diagonal entries of a matrix. We use f ≡ g to denote
f(x) = g(x) for all x ∈ dom(f) = dom(g).

2. Examples and connections. In this section, we present examples of VGFs
associated to different choices of the set M. The list includes some well known func-
tions that can be expressed in the variational form of (1), as well as some new ones.

Vector norms. Any vector norm ‖ · ‖ on Rm is the square root of a VGF defined
by M = {uuT : ‖u‖∗ ≤ 1}. For a column vector x ∈ Rm, the VGF is given by

ΩM(xT ) = max
u
{tr(xTuuTx) : ‖u‖∗ ≤ 1} = max

u
{(xTu)2 : ‖u‖∗ ≤ 1} = ‖x‖2.

As another example for when n = 1, consider the case where M is a compact
convex set of diagonal matrices with positive diagonal entries. The corresponding
VGF (and norm) is defined as

(8) ΩM(xT ) = max
θ∈diag(M)

∑m
i=1 θix

2
i = ‖x‖2M,

which is a squared norm and the dual norm can be expressed as

(‖x‖∗M)2 = inf
θ∈diag(M)

m∑
i=1

1

θi
x2
i .
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This norm and its dual were first introduced in [34], in the context of regularization
for structured sparsity, and later discussed in detail in [3]. The k-support norm [2],
which is a norm used to encourage vectors to have k or fewer nonzero entries, is a
special case of the dual norm given above, corresponding to M = {diag(θ) : 0 ≤ θi ≤
1 , 1T θ ≤ k}. Our optimization approach for VGF regularized problems (Section 5)
requires projection onto M. Projection onto the intersection of a box with a half-space
is a special case of the continuous quadratic knapsack problem and can be performed
in linear time; e.g., see [25].

Weighted norms of the Gram matrix. Given a symmetric nonnegative matrix M ,
we can define a class of VGFs based on any norm ‖ · ‖ and its dual norm ‖ · ‖∗.
Consider

(9) M = {K ◦M : ‖K‖∗ ≤ 1, KT = K},

where ◦ denotes the matrix Hadamard product, (K◦M)ij = KijM ij for all i, j. Then,

ΩM(X) = max
‖K‖∗≤1

〈K ◦M,XTX〉 = max
‖K‖∗≤1

〈K,M ◦ (XTX)〉 = ‖M ◦ (XTX)‖ .

The followings are several concrete examples.
(i) If we let ‖ · ‖∗ in (9) be the `∞ norm, then M = {M : |Mij/M ij | ≤ 1, i, j =

1, . . . ,m}, which is the same as in (3). Here we use the convention 0/0 = 0, thus
Mij = 0 whenever M ij = 0. In this case, we obtain the VGF in (4):

ΩM(X) = ‖M ◦ (XTX)‖1 =
∑m
i,j=1M ij |xTi xj |

(ii) If we use the `2 norm in (9), then M =
{
M :

∑m
i,j=1(Mij/M ij)

2 ≤ 1
}

and

(10) ΩM(X) = ‖M ◦ (XTX)‖F =
(∑m

i,j=1(M ijx
T
i xj)

2
)1/2

.

This function has been considered in experiment design [8, 12].
(iii) Using `1 norm for ‖ · ‖∗ in (9) gives M =

{
M :

∑m
i,j=1 |Mij/M ij | ≤ 1

}
and

(11) ΩM(X) = ‖M ◦ (XTX)‖∞ = max
i,j=1,...,m

M ij |xTi xj | .

This case can also be traced back to [8] in the statistics literature, where the maximum
of |xTi xj | for i 6= j is used as the measure to choose among supersaturated designs.

Many other interesting examples can be constructed this way. For example, one
can model sharing vs competition using group-`1 norm of the Gram matrix which was
considered in vision tasks [22]. We will revisit the above examples to discuss their
convexity conditions in Section 3.

Spectral functions. From the definition, the value of a VGF is invariant under
left-multiplication of X by an orthogonal matrix, but this is not true for right multi-
plication. Hence, VGFs are not functions of singular values (e.g., see [29]) in general,
and are functions of the row space of X as well. This also implies that in general
Ω(X) 6≡ Ω(XT ). However, if the set M is closed under left and right multiplication
by orthogonal matrices, then ΩM(X) becomes a function of squared singular values
of X. For any matrix M ∈ Sm, denote the sorted vector of its singular values, in
descending order, by σ(M) and let Θ = {σ(M) : M ∈M}. Then we have

ΩM(X) = max
M∈M

tr(XMXT ) = max
θ∈Θ

∑min(n,m)
i=1 θi σi(X)2 ,(12)
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as a result of Von Neumann’s trace inequality [35]. Note the similarity of the above
to the VGF in (8). As an example, consider

M = {M : α1I �M � α2I, tr(M) ≤ α3},(13)

where 0 < α1 < α2 and mα1 ≤ α3 ≤ mα2 are given constants. Note that in this case,
M ⊂ Sm+ , which readily establishes the convexity of ΩM. For Mr := {M : 0 � M �
I, tr(M) ≤ r}, the corresponding norm ‖ · ‖Mr

is known as the Ky-Fan (2, r)-norm,
and ΩMr

has been analyzed in the context of low-rank regression analysis [16]. For M
in (13), the dual norm ‖ · ‖∗M is referred to as the spectral box-norm in [33], and Ω∗M
has been considered in [20] for clustered multitask learning where it is presented as a
convex relaxation for k-means. ‖ · ‖∗Mr

is considered in [14] for finding large low-rank
submatrices in a given nonnegative matrix.

Finite set M . For a finite set M = {M1, . . . ,Mp} ⊂ Sm+ , the VGF is given by

ΩM(X) = max
i=1,...,p

‖XM1/2
i ‖

2
F ,

i.e., the pointwise maximum of a finite number of squared weighted Frobenius norms.
In the following subsections, we consider classes of VGFs that can be used in

promoting diversity, have connections to Euclidean distance matrices, or can be in-
terpreted in a robust optimization framework.

2.1. Diversification. VGFs can be used for diversifying certain pairs of columns
of the input matrix; e.g., minimizing (4) pushes to zero the inner products xTi xj
corresponding to the nonzero entries in M as much as possible. As another example,
observe that two nonnegative vectors have disjoint supports if and only if they are
orthogonal to each other. Hence, using a VGF as (4), ΩM(X) =

∑m
i,j=1M ij |xTi xj |,

that promotes orthogonality, we can define

Ψ(X) := ΩM(|X|)(14)

to promote disjoint supports among certain columns of X; hence diversifying the
supports of columns of X. Convexity of (14) is discussed in Section 3.6. Different
approaches has been used in machine learning applications for promoting diversity;
e.g., see [31, 27, 19] and references therein.

2.2. Functions of Euclidean distance matrix. Consider a set M ⊂ Sm with
the property that M1 = 0 for all M ∈ M. For every M ∈ M, let A = diag(M)−M
and observe that

tr(XMXT ) =
∑m
i,j=1Mijx

T
i xj = 1

2

∑m
i,j=1Aij‖xi − xj‖22 .

This allows us to express the associated VGF as a function of the Euclidean distance
matrix D, which is defined by Dij = 1

2‖xi − xj‖22 for i, j = 1, . . . ,m (see, e.g., [9,
Section 8.3]). Let A = {diag(M)−M : M ∈M}. Then we have

ΩM(X) = max
M∈M

tr(XMXT ) = max
A∈A

〈A,D〉.

A sufficient condition for the above function to be convex in X is that each A ∈ A
is entrywise nonnegative, which implies that the corresponding M = diag(A1)−A is
diagonally dominant with nonnegative diagonal elements, hence positive semidefinite.
However, this is not a necessary condition and ΩM can be convex without all A’s
being entrywise nonnegative.
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2.3. Connection with robust optimization. The VGF-regularized loss min-
imization problem has the following connection to robust optimization (see, e.g., [7]):
the optimization program

minimize
X

max
M∈M

L(X) + tr(XMXT )

can be interpreted as seeking an X with minimal worst-case value over an uncer-
tainty set M. Alternatively, when M ⊂ Sm+ , this can be viewed as a problem with

Tikhonov regularization ‖XM1/2‖2F where the weight matrix M1/2 is subject to errors
characterized by the set M .

3. Convex analysis of VGF. In this section, we study the convexity of VGFs,
their conjugate functions and subdifferentials, as well as the related norms.

First, we review some basic properties. Notice that ΩM is the support function
of the set M at the Gram matrix XTX; i.e.,

ΩM(X) = max
M∈M

tr(XMXT ) = SM(XTX) ,(15)

where the support function of a set M is defined as SM(Y ) = supM∈M 〈M,Y 〉 (see,
e.g., [38, Section 13]). By properties of the support function (see [38, Section 15]),

ΩM ≡ Ωconv(M) ,

where conv(M) denotes the convex hull of M . It is clear that the representation of a
VGF (i.e., the associated set M) is not unique. Henceforth, without loss of generality
we assume M is convex unless explicitly noted otherwise. Also, for simplicity we
assume M is a compact set, while all we need is that the maximum in (1) is attained.
For example, a non-compact M that is unbounded along any negative semidefinite
direction is allowed. Lastly, we assume 0 ∈M.

Moreover, VGFs are left unitarily invariant; for any Y ∈ Rn×m and any orthog-
onal matrix U ∈ Rn×n, where UUT = UTU = I, we have Ω(Y ) = Ω(UY ) and
Ω∗(Y ) = Ω∗(UY ); use (2) and (19). We use this property in simplifying computa-
tions involving VGFs (such as proximal mapping calculations in Section 4) as well as
in establishing a general kernel trick and representer theorem in Section 5.2.

As we mentioned in the introduction, a sufficient condition for the convexity of
a VGF is that M ⊂ Sm+ . In Section 3.1, we discuss more concrete conditions for
determining convexity when the set M is a polytope. In Section 3.2, we describe a
more tangible sufficient condition for general sets.

3.1. Convexity with polytope M. Consider the case where M is a polytope
with p vertices, i.e., M = conv{M1, . . . ,Mp}. The support function of this set is
given as SM(Y ) = maxi=1,...,p 〈Y,Mi〉 and is piecewise linear [40, Section 8.E]. For a
polytope M, we define Meff as a subset of {M1, . . . ,Mp} with the smallest possible
size satisfying SM(XTX) = SMeff

(XTX) for all X ∈ Rn×m.
As an example, for M = {M : |Mij | ≤ M ij , i, j = 1, . . . ,m} which gives the

function defined in (4), we have

Meff ⊆ {M : Mii = M ii , Mij = ±M ij for i 6= j } .(16)

Whether the above inclusion holds with equality or not depends on n.

Theorem 1. For a polytope M ⊂ Sm, the associated VGF is convex if and only
if Meff ⊂ Sm+ .
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Proof. Obviously, Meff ⊂ Sm+ ensures convexity of maxM∈Meff
tr(XMXT ) =

ΩM(X). Next, we prove necessity of this condition for any Meff . Take any Mi ∈Meff .
If for every X ∈ Rn×m with Ω(X) = tr(XMiX

T ) there exists another Mj ∈Meff with
Ω(X) = tr(XMjX

T ), then Meff\{Mi} is an effective subset of M which contradicts
the minimality of Meff . Hence, there exists Xi such that Ω(Xi) = tr(XiMiX

T
i ) >

tr(XiMjX
T
i ) for all j 6= i. Hence, Ω is twice continuously differentiable in a small

neighborhood of Xi with Hessian ∇2Ω(vec(Xi)) = Mi ⊗ In, where ⊗ denotes the
matrix Kronecker product. Since Ω is assumed to be convex, the Hessian has to be
PSD which gives Mi � 0.

Next we give a few examples to illustrate the use of Theorem 1.
Example 1. We begin with the example defined in (4). Authors in [47] provided

the necessary (when n ≥ m − 1) and sufficient condition for convexity using results

from M-matrix theory: First, define the comparison matrix M̃ associated to the
symmetric nonnegative matrix M as M̃ii = M ii and M̃ij = −M ij for i 6= j . Then

ΩM is convex if M̃ is positive semidefinite, and this condition is also necessary when
n ≥ m − 1 [47]. Theorem 1 provides an alternative and more general proof. Denote
the minimum eigenvalue of a symmetric matrix M by λmin(M). From (16) we have

min
M∈Meff

λmin(M) = min
M∈Meff

‖z‖2=1

zTMz ≥ min
‖z‖2=1

∑
i

M iiz
2
i −

∑
i 6=j

M ij |zizj |

= min
‖z‖2=1

|z|T M̃ |z| ≥ λmin(M̃).(17)

When n ≥ m − 1, one can construct X ∈ Rn×m such that all off-diagonal entries of
XTX are negative (see the example in Appendix A.2 of [47]). On the other hand,
Lemma 2.1(2) of [11] states that the existence of such a matrix implies n ≥ m − 1.

Hence, M̃ ∈Meff if and only if n ≥ m− 1. Therefore, both inequalities in (17) should

hold with equality, which means that Meff ⊂ Sm+ if and only if M̃ � 0. By Theorem 1,
this is equivalent to the VGF in (4) being convex. If n < m − 1, then Meff may not

contain M̃ , thus M̃ � 0 is only a “sufficient” condition for convexity for general n.

M12

M11

M22

Fig. 1: The positive semidefinite cone, and the set in (3) defined by M =
[1, 0.8; 0.8, 1] , where 2×2 symmetric matrices are embedded into R3. The thick edge
of the cube is the set of all points with the same diagonal elements as M (see (16)),

and the two endpoints constitute Meff . Positive semidefiniteness of M̃ is a necessary
and sufficient condition for the convexity of ΩM : Rn×2 → R for all n ≥ m− 1 = 1.



8 JALALI, FAZEL, XIAO

Example 2. Similar to the set M above, consider a box that is not necessarily
symmetric around the origin. More specifically, let M = {M ∈ Sm : Mii = Dii , |M−
C| ≤ D} where C (denoting the center) is a symmetric matrix with zero diagonal,
and D is a symmetric nonnegative matrix. In this case, we have Meff ⊆ {M : Mii =
Dii , Mij = Cij±Dij for i 6= j}. When used as a penalty function in applications, this
can capture the prior information that when xTi xj is not zero, a particular range of
acute or obtuse angles (depending on the sign of Cij) between the vectors is preferred.
Similar to (17),

min
M∈Meff

λmin(M) ≥ min
‖z‖2=1

|z|T D̃|z|+ zTCz ≥ λmin(D̃) + λmin(C),

where D̃ is the comparison matrix associated to D . Note that C has zero diagonals
and cannot be PSD. Hence, a sufficient condition for convexity of ΩM defined by an
asymmetric box is that λmin(D̃) + λmin(C) ≥ 0.

Example 3. Consider the VGF defined in (11), associated to

(18) M = {M ∈ Sm :
∑

(i,j):Mij 6=0 |Mij/M ij | ≤ 1 , Mij = 0 if M ij = 0},

where M is a symmetric nonnegative matrix. Vertices of M are matrices with ei-
ther only one nonzero value M ii on the diagonal, or two nonzero off-diagonal en-
tries at (i, j) and (j, i) equal to 1

2M ij or − 1
2M ij . The second type of matrices

cannot be PSD as their diagonal is zero, and according to Theorem 1, convexity
of ΩM requires these vertices do not belong to Meff . Therefore, the matrices in
Meff should be diagonal. Hence, a convex VGF corresponding to the set (18) has
the form Ω(X) = maxi=1,...,mM ii‖xi‖22 . To ensure such a description for Meff we
need max{M ii‖xi‖22,M jj‖xj‖22} ≥ M ij |xTi xj | for all i, j and any X ∈ Rn×m, which

is equivalent to M iiM jj ≥ M
2

ij for all i, j. This is satisfied if M � 0. However,
positive semidefiniteness is not necessary. For example, all of the three 2 by 2 prin-
cipal minors of the following matrix are nonnegative as desired, but it is not PSD:
M = [1, 1, 2 ; 1, 2, 0 ; 2, 0, 5] 6� 0.

3.2. A spectral sufficient condition. As mentioned before, when M is not a
polytope, it seems less clear how we can provide necessary and sufficient guarantees for
convexity that are easy to check. However, simple sufficient conditions can be easily
checked for certain sets M, for example spectral sets (Lemma 2). We first provide an
example and consider a specialized approach to establish convexity, to illustrate the
advantage of a simple guarantee as the one we present in Lemma 2.

(i) Consider the VGF defined in (10) and its associated set given in (9) when
we plug in the Frobenius norm; i.e.,

M = {K ◦M : ‖K‖F ≤ 1, KT = K}.

In this case, M is not a polytope, but we can proceed with a similar analysis as in
the previous subsection. In particular, given any X ∈ Rn×m, the value of ΩM(X) is
achieved by an optimal matrix KX = (M ◦XTX)/‖M ◦XTX‖F . We observe that,

M � 0 =⇒ M ◦M � 0 ⇐⇒ KX ◦M � 0 , ∀X =⇒ ΩM is convex.

The first implication is by Schur Product Theorem [18, Theorem 7.5.1] and does
not hold in reverse. For example, besides obvious cases such as M = −I, consider
M ◦M = [1, 1, 2; 1, 2, 3; 2, 3, 5.01] � 0 where M 6� 0. The second implication, from left
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to right, is again by Schur Product Theorem. The right to left part is by observing
that for any n ≥ 1, X can always be chosen to select a principal minor of M ◦M .
The third implication is straightforward; pointwise maximum of convex quadratics is
convex. All in all, a sufficient condition for ΩM being convex is that the Hadamard
square of M , namely M ◦M , is PSD. It is worth mentioning that when M ◦M � 0,
hence real, nonnegative and PSD, it is referred to as a doubly nonnegative matrix.

Denote by M+ the orthogonal projection of a symmetric matrix M onto the PSD
cone, which is given by the matrix formed by only positive eigenvalues and their
associated eigenvectors of M .

Lemma 2 (a sufficient condition). ΩM is convex if for any M ∈ M there exists
M ′ ∈M such that M+ �M ′.

Proof. For any X, tr(XMXT ) ≤ tr(XM+X
T ) clearly holds. Therefore,

ΩM(X) = max
M∈M

tr(XMXT ) ≤ max
M∈M

tr(XM+X
T ) .

On the other hand, the assumption of the lemma gives

max
M∈M

tr(XM+X
T ) ≤ max

M ′∈M
tr(XM ′XT ) = ΩM(X)

which implies that the inequalities have to hold with equality, which implies that
ΩM(X) is convex. Note that the assumption of the lemma can hold while M+ 6⊆M.

On the other hand, it is easy to see that the condition in Lemma 2 is not necessary.
Consider M = {M ∈ S2 : |Mij | ≤ 1}. Although the associated VGF is convex
(because the comparison matrix is PSD), there is no matrix M ′ ∈M satisfying M ′ �
M+, where M = [0, 1; 1, 1] ∈ M and M+ ' [0.44, 0.72; 0.72, 1.17], as for any M ′ ∈ M

we have (M ′ −M+)22 < 0.
As discussed before, when M is a polytope, convexity of ΩM ≡ ΩMeff

is equivalent
to Meff ⊂ Sm+ . For general sets M, we showed that M+ ⊆ M is a sufficient condition
for convexity. Similar to the proof of Lemma 2, we can provide another sufficient
condition for convexity of a VGF: that all of the maximal points of M with respect to
the partial order defined by Sm+ (the Loewner order) are PSD. These are the points
M ∈M for which (M−M) ∩ Sm+ = {0m}. In all of these pursuits, we are looking for
a subset M′ of the PSD cone such that ΩM ≡ ΩM′ . When such a set exists, ΩM is
convex and various optimization-related quantities can be computed for it. Hereafter,
we assume there exists a set M′ ⊆M∩S+ for which ΩM ≡ ΩM′ , which in turn implies
ΩM ≡ ΩM∩S+ . For example, based on Theorem 1, this property holds for all convex
VGFs associated to a polytope M.

3.3. Conjugate function. For any function Ω, the conjugate function is defined
as Ω∗(Y ) = supX 〈X,Y 〉 −Ω(X) and the transformation that maps Ω to Ω∗ is called
the Legendre-Fenchel transform (e.g., [38, Section 12]). In this section, we derive
a representation for the conjugate function for a VGF. First, we state a result on
generalized Schur complements which will be used in the following sections.

Lemma 3 (generalized Schur complement [1]). For symmetric matrices M,C,[
M Y T

Y C

]
� 0 ⇐⇒ M � 0 , C − YM†Y T � 0 , Y (I −MM†) = 0,

where the last condition is equivalent to range(Y T ) ⊆ range(M).
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Proposition 4 (conjugate VGF). Consider a convex VGF associated to a com-
pact convex set M ⊂ Sm with ΩM ≡ ΩM∩Sm+ . The conjugate function is given by

Ω∗M(Y ) = 1
4 inf
M

{
tr(YM†Y T ) : range(Y T ) ⊆ range(M) , M ∈M ∩ Sm+

}
,(19)

where M† is the Moore-Penrose pseudo-inverse of M .

Note that Ω∗(Y ) = +∞ if the optimization problem in (19) is infeasible, i.e.,
if range(Y T ) 6⊆ range(M) for all M ∈ M ∩ Sm+ . This condition is equivalent to
Y (I −MM†) 6= 0 for all M ∈M∩ Sm+ , where MM† is the orthogonal projection onto
the range of M . This can be seen using the generalized Schur complement.

Proof. From the assumption ΩM ≡ ΩM∩S+ , we get Ω∗M ≡ Ω∗M∩S+ . Define

fM(Y ) = 1
4 inf
M,C

{
tr(C) :

[
M Y T

Y C

]
� 0 , M ∈M

}
.(20)

The positive semidefiniteness constraint implies M � 0, therefore fM ≡ fM∩S+ . Its
conjugate function is

f∗M(X) = sup
Y

sup
M,C

{
〈X,Y 〉 − 1

4 tr(C) :

[
M Y T

Y C

]
� 0 , M ∈M

}
= sup

M∈M∩S+
sup
Y,C

{
〈X,Y 〉 − 1

4 tr(C) :

[
M Y T

Y C

]
� 0

}
.(21)

Consider the Lagrangian dual of the inner optimization problem over Y and C; e.g.,
see [43] for a review. Let W � 0 be the dual variable with corresponding blocks, and
write the Lagrangian as

L(Y,C,W ) = 〈X,Y 〉 − 1
4 tr(C) + 〈W11,M〉+ 2〈W21, Y 〉+ 〈W22, C〉 ,

whose maximum value is finite only if W21 = − 1
2X and W22 = 1

4I. Therefore, the
dual problem is

min
W11

{
〈W11,M〉 :

[
W11 − 1

2X
T

− 1
2X

1
4I

]
� 0

}
= min

W11

{
〈W11,M〉 : W11 � XTX

}
,

which is equal to 〈M,XTX〉, and we used the generalized Schur complement in
Lemma 3. Notice that the above dual problem is bounded below (nonnegative since
M ∈ M ∩ S+) and strictly feasible; consider W11 = 1 + σ2

max(X) which implies
[W11,− 1

2X
T ;− 1

2X,
1
4I] � 0. Therefore, the dual is attained and strong duality holds;

e.g., see [46, Chapter 4]. By plugging the result in (21), we conclude f∗M ≡ ΩM∩S+ .
The domain of optimization in the definition of fM is a closed convex set, which we

denote by F . Then, 4fM (Y ) = infM,C tr(C)+ιF (M,C) can be viewed as a parametric
minimization. Denote this objective function by g(M,C), which is convex. For any
α ∈ R, the level set {(M,C) : g(M,C) ≤ α} is bounded because g(M,C) ≤ α
implies M � 0 and C � 0, as well as tr(C) ≤ α, and M is compact. Therefore, by
Theorem 1.17 and Proposition 2.22 in [40], fM is a proper, lower semi-continuous,
convex function. This, by [40, Theorem 11.1], implies f∗∗M = fM. Therefore, fM is
equal to Ω∗M∩S+ which we showed to be equal to Ω∗M. Using the generalized Schur

complement, in Lemma 3, for the semidefinite constraint in (20) gives the desired
representation in (19).

While (19) can be cumbersome to implement, (20) is a convenient semidefinite
representation of the same function. A set such as (3) illustrates this difference.
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3.4. Related norms. Given a convex VGF ΩM, with ΩM ≡ ΩM∩S+ , we have

ΩM(X) = sup
M∈M∩S+

tr(XMXT ) = sup
M∈M∩S+

‖XM1/2‖2F .

This representation shows that
√

ΩM is a seminorm: absolute homogeneity holds, and
it is easy to prove the triangle inequality for the maximum of seminorms. The next
lemma, which can be seen from Corollary 15.3.2 of [38], generalizes this assertion.

Lemma 5. Suppose a function Ω : Rn×m → R is homogeneous of order 2, i.e.,
Ω(θX) = θ2Ω(X) for all θ ∈ R. Then its square root ‖X‖ :=

√
Ω(X) is a seminorm

if and only if Ω is convex. If Ω is strictly convex then
√

Ω is a norm.

Proof. First, assume that Ω is convex. By plugging in X and −X in the definition
of convexity for Ω we get Ω(X) ≥ 0 , so the square root is well-defined. We show the
triangle inequality

√
Ω(X + Y ) ≤

√
Ω(X)+

√
Ω(Y ) holds for any X,Y . If Ω(X+Y )

is zero, the inequality is trivial. Otherwise, for any θ ∈ (0, 1) let A = 1
θX, B = 1

1−θY ,
and use the convexity and second-order homogeneity of Ω to get

Ω(X + Y ) = Ω(θA+ (1− θ)B) ≤ θΩ(A) + (1− θ)Ω(B) = 1
θΩ(X) + 1

1−θΩ(Y ).(22)

If Ω(X) ≥ Ω(Y ) = 0 , set θ = (Ω(X) + Ω(X + Y ))/(2Ω(X + Y )) > 0. Notice that
θ ≥ 1 provides Ω(X) ≥ Ω(X + Y ) as desired. On the other hand, if θ < 1 , we can
use it in (22) to get the desired result as

Ω(X + Y ) ≤ 1
θ Ω(X) =

2Ω(X + Y )Ω(X)

Ω(X + Y ) + Ω(X)
=⇒ Ω(X) ≥ Ω(X + Y ) .

And if Ω(X),Ω(Y ) 6= 0 , set θ =
√

Ω(X)/(
√

Ω(X) +
√

Ω(Y )) ∈ (0, 1) to get

Ω(X + Y ) ≤ 1
θ Ω(X) + 1

1−θ Ω(Y ) = (
√

Ω(X) +
√

Ω(Y ))2 .

Since
√

Ω satisfies the triangle inequality and absolute homogeneity, it is a seminorm.
Notice that Ω(X) = 0 does not necessarily imply X = 0, unless Ω is strictly convex.

Now, suppose that
√

Ω is a seminorm; hence convex. The function f defined by
f(x) = x2 for x ≥ 0 and f(x) = 0 for x ≤ 0 is non-decreasing, so the composition of
these two functions is convex and equal to Ω . It is worth mentioning that one can
alternatively use Corollary 15.3.2 of [38] to prove the first part of the lemma.

Considering ‖ · ‖M ≡
√

ΩM , we have 1
2‖ · ‖

2
M ≡ 1

2ΩM . Taking the conjugate
function of both sides yields 1

2 (‖·‖∗M)2 ≡ 2Ω∗M where we used the order-2 homogeneity

of ΩM . Therefore, ‖·‖∗M ≡ 2
√

Ω∗M . Given the representation of Ω∗M in Proposition 4,

one can derive a similar representation for
√

Ω∗M as follows.

Proposition 6. For a convex VGF ΩM associated to a nonempty compact convex
set M, with ΩM ≡ ΩM∩S+ ,

‖Y ‖∗M = 2
√

Ω∗M(Y ) = 1
2 inf
M,C

{
tr(C) + γM(M) :

[
M Y T

Y C

]
� 0

}
,(23)

where γM(M) = inf{λ ≥ 0 : M ∈ λM} is the gauge function associated to M .

Proof. The square root function, over positive numbers, can be represented in a
variational form as

√
y = inf {α + y

4α : α > 0} . Without loss of generality, suppose
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M is a compact convex set containing the origin. Provided that Ω∗M(Y ) > 0, from the
variational representation of a conjugate VGF function we have√

Ω∗M(Y ) = 1
4 inf
M,α>0

{
α+ 1

α tr(YM†Y T ) : range(Y T ) ⊆ range(M) , M ∈M ∩ S+

}
= 1

4 inf
M,α>0

{
α+ tr(YM†Y T ) : range(Y T ) ⊆ range(M) , M ∈ α(M ∩ S+)

}
where we observed M†/α = (αM)† and changed the variable αM to M , to get the
second representation. The last representation is the same as (23), as the constraint
restricts M to the PSD cone, for which γM(M) = γM∩S+(M). On the other hand,
when Ω∗M(Y ) = 0, the claimed representation returns 0 as well because 0 ∈M.

For example, M = {M � 0 : tr(M) ≤ 1} gives γM(M) = tr(M) which if plugged
in (23) yields the well-known semidefinite representation for nuclear norm; [43, Sec-
tion 3.1].

3.5. Subdifferentials. In this section, we characterize the subdifferential of
VGFs and their conjugate functions, as well as that of their corresponding norms.
Due to the variational definition of a VGF where the objective function is linear in
M , and the fact that M is assumed to be compact, it is straightforward to obtain the
subdifferential of ΩM (e.g., see [28, Theorem 2]).

Proposition 7. For a convex VGF with ΩM ≡ ΩM∩S+ , the subdifferential at X
is given by

∂ ΩM(X) = conv
{

2XM : tr(XMXT ) = Ω(X), M ∈M ∩ S+

}
.

When ΩM(X) 6= 0, we have ∂‖X‖M = 1
2‖X‖M ∂ ΩM(X).

As an example, the subdifferential of Ω(X) =
∑m
i,j=1M ij |xTi xj |, from (4), is

given by

∂ Ω(X) = {2XM : Mij = M ij sign(xTi xj) if 〈xi,xj〉 6= 0 ,(24)

Mii = M ii , |Mij | ≤M ij otherwise}.

Proposition 8. For a convex VGF with ΩM ≡ ΩM∩S+ , the subdifferential of its
conjugate function is given by

(25)
∂ Ω∗M(Y ) =

{
1
2 (YM† +W ) : Ω(YM† +W ) = 4Ω∗(Y ) = tr(YM†Y T ) ,

range(WT ) ⊆ ker(M) ⊆ ker(Y ) , M ∈M ∩ S+

}
.

When Ω∗M(Y ) 6= 0, we have ∂‖Y ‖∗M = 2
‖Y ‖∗

M

∂ Ω∗M(Y ).

The proof of Proposition 8 is given in the Appendix.
Since ∂Ω∗(Y ) is nonempty, for any choice of M0 , there exists a W such that

1
2 (YM†0 + W ) ∈ ∂Ω∗(Y ) . However, finding such W is not trivial. The following
lemma characterizes the subdifferential as the solution set of a convex optimization
problem involving Ω and affine constraints.

Lemma 9. Given Y and any choice of M0 ∈M∩S+ satisfying Y (I−M0M
†
0 ) = 0

and Ω∗(Y ) = 1
4 tr(YM†0Y

T ), we have

∂Ω∗(Y ) = Arg minZ {Ω(Z) : Z = 1
2 (YM†0 +W ) , WM0 = 0}.
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Assuming the optimality of M0 establishes the second equality and the second
inclusion in (25). Moreover, Ω(Z) ≥ tr(ZM0Z

T ) = 1
4 tr(YM†0Y

T ) = Ω∗(Y ) for all
feasible Z in the above. Note that WM0 = 0 is equivalent to range(WT ) ⊆ ker(M0).

The characterization of the whole subdifferential is helpful for understanding op-
timality conditions, but algorithms only need to compute a single subgradient, which
is easier than computing the whole subdifferential.

3.6. Composition of VGF and absolute values. The characterization of
the subdifferential allows us to establish conditions for convexity of Ψ(X) = Ω(|X|),
defined in (14) as a regularization function for diversity. Our result in Corollary 12 is
based on the following lemma.

Lemma 10. Given a continuous function f : Rn → R , consider h(x) := f(|x|) ,
and g(x) := miny≥|x| f(y) , where the absolute values and inequalities are all entry-
wise. Then,
(a) h∗∗ ≤ g ≤ h .
(b) If f is convex, then, g is convex and g = h∗∗.
(c) If f is convex, then, h is convex if and only if g = h.
(d) If f is convex and f has an entrywise nonnegative subgradient at any entrywise

nonnegative x, then, h is convex and g = h.

Proof. (a) In h∗(y) = supx {〈x,y〉−f(|x|)} , the optimal x should have the same
sign pattern as y ; hence h∗(y) = supx≥0 {〈x, |y|〉 − f(x)} . Next, we have

h∗∗(z) = sup
y

{
〈y, z〉 − sup

x≥0
{〈x, |y|〉 − f(x)}

}
= sup

y≥0
inf
x≥0

{
〈y, |z|〉 − 〈x,y〉+ f(x)

}
≤ inf

x≥0
sup
y≥0

{
〈y, |z|〉 − 〈x,y〉+ f(x)

}
= inf

x≥|z|
f(x) = g(z)

where we invoke the minimax inequality; e.g., [38, Lemma 36.1]. This shows the first
inequality in (a). The second inequality follows directly from the definition of g and h.

(b) Consider x1,x2 ∈ Rn and θ ∈ [0, 1] . For any ε > 0, there exist some yi ≥ |xi| ,
for i = 1, 2 , for which f(yi) ≤ g(xi) + ε. Then,

θy1 + (1− θ)y2 ≥ θ|x1|+ (1− θ)|x2| ≥ |θx1 + (1− θ)x2| .

Hence, by definition of g and convexity of f ,

g(θx1+(1−θ)x2) ≤ f(θy1+(1−θ)y2) ≤ θf(y1)+(1−θ)f(y2) ≤ θg(x1)+(1−θ)g(x2)+ε.

Therefore, g(θx1 + (1− θ)x2) ≤ θg(x1) + (1− θ)g(x2) + ε for any ε > 0, which implies
that g is convex. It is a classical result that the epigraph of the biconjugate h∗∗ is
the closed convex hull of the epigraph of h; in other words, h∗∗ is the largest lower
semi-continuous convex function that is no larger than h (e.g., [38, Theorem 12.2]).
Since g is convex and h∗∗ ≤ g ≤ h , we must have h∗∗ = g .

(c) Assuming h is a closed convex function, we have h = h∗∗ [38, Theorem 12.2],
thus part (a) implies h = g . On the other hand, given a convex function f , part (b)
states that g = h∗∗ is also convex. Hence, h = g implies convexity of h .

(d) For any x, any y ≥ |x|, and an entrywise nonnegative subgradient of f at
|x| ≥ 0, we have f(y) ≥ f(|x|) + 〈y − |x|,g〉 ≥ f(|x|). Therefore, h(x) = f(|x|) =
miny≥|x| f(y) = g(x) holds. Part (c) establishes the convexity of h.

We can provide a variation of Lemma 10(c) for norms.
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Lemma 11. Consider any norm ‖ · ‖ . Then, ‖| · |‖ is a norm itself if and only if
we have ‖|x|‖ = miny≥|x| ‖y‖ .

Proof. First, suppose ‖·‖a := ‖|·|‖ is a norm; hence it is an absolute and monotonic
norm; e.g., see [3, Proposition 1.7]. Therefore, for any y ≥ |x| we have ‖y‖a ≥ ‖x‖a
which gives miny≥|x| ‖y‖a ≥ ‖x‖a. Since |x| is feasible in this optimization, and
‖|x|‖a = ‖x‖a, we get the desired result: ‖|x|‖ = ‖x‖a = miny≥|x| ‖y‖. On the
other hand, consider g(x) := miny≥|x| ‖y‖. We show that it is a norm. Clearly, g is
nonnegative and homogenous, and g(x) = 0 implies that ‖y‖ = 0 for some y ≥ |x| ≥ 0
which implies x = 0 . The triangle inequality can be verified as,

g(x + z) = min
y≥|x+z|

‖y‖ ≤ min
y≥|x|+|z|

‖y‖ = min
y1≥|x| , y2≥|z|

‖y1 + y2‖

≤ min
y1≥|x| , y2≥|z|

‖y1‖+ ‖y2‖ = g(x) + g(z) .

Corollary 12. For a convex VGF ΩM, consider Ψ(X) := ΩM(|X|). Then,
(a) Ψ(X) is a convex function of X if and only if ΩM(|X|) = minY≥|X| ΩM(Y ).
(b) Provided that ΩM has an entrywise nonnegative subgradient at any entrywise

nonnegative X, then Ψ(X) = minY≥|X| ΩM(Y ) and it is convex in X.

For example, consider the VGF defined in (4), and assume M ≥ 0 is chosen in
way that ΩM is convex. The subdifferential ∂ΩM is given in (24). For any X ≥ 0, the
inner product of any two columns of X is nonnegative which implies 2XM ∈ ∂ΩM(X).
Since, 2XM ≥ 0, the condition of Lemma 10(d) is satisfied, and Ψ(X) = ΩM(|X|) is
convex with an alternative representation Ψ(X) = minY≥|X| ΩM(Y ). This specific
function Ψ has been used in [44] for learning matrices with disjoint supports.

4. Proximal operators. The proximal operator of a closed convex function h(·)
is defined as proxh(x) = arg minu {h(u) + 1

2‖u − x‖22}, which always exists and is
unique (e.g., [38, Section 31]). Computing the proximal operator is the essential step
in the proximal point algorithm ([32, 39]) and the proximal gradient methods (e.g.,
[37]). In each iteration of such algorithms, we need to compute proxτh(·) where τ > 0
is a step size parameter. To simplify the presentation, assume M ⊂ Sm+ and consider
the associated VGF. Then,

prox τΩ(X) = arg min
Y

max
M∈M

1
2‖Y −X‖

2
F + τ tr(YMY T ).(26)

Since M ⊂ S+ is a compact convex set, and the objective is convex-concave, one
can change the order of min and max (e.g., [38, Corollary 37.3.2]) and first solve
for Y in terms of any given X and M , which gives Y = X(I + 2τM)−1. Then, by
plugging this optimal Y in the above optimization program, and after some algebraic
manipulations, the optimal value of (26) will be equal to the optimal value of

max
M∈M

1
2‖X‖

2
F − 1

2 tr(X(I + 2τM)−1XT )

for which we can find an optimal M0 ∈M via

M0 ∈ Arg min
M∈M

tr
(
X(I + 2τM)−1XT

)
.

Plugging M0 in the expression we derived before for the optimal Y establishes that the
pair (Yopt,Mopt) = (X(I + 2τM0)−1,M0) is an optimal solution in (26). Therefore,
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prox τΩ(X) = Yopt = X(I + 2τM0)−1. To compute the proximal operator for the
conjugate function Ω∗ , one can use Moreau’s formula (see, e.g., [38, Theorem 31.5]):

(27) prox τΩ(X) + τ−1 prox τ−1Ω∗(X) = X .

Next we discuss proximal operators of norms induced by VGFs (Section 3.4).
Since computing the proximal operator of a norm is related to the orthogonal projec-
tion onto the dual norm ball, i.e., prox τ‖·‖(X) = X−Π‖·‖∗≤τ (X), we can express the

proximal operator of the norm ‖ · ‖ ≡
√

ΩM(·) as

prox τ‖·‖(X) = X − arg min
Y

min
M,C

{
‖Y −X‖2F : tr(C) ≤ τ2, M ∈M,

[
M Y T

Y C

]
� 0

}
,

using (20) and (23). Moreover, plugging (23) in the definition of proximal operator
gives

prox τ‖·‖∗(X) = arg min
Y

min
M,C

{
‖Y −X‖2F + τ(tr(C) + γM(M)) :

[
M Y T

Y C

]
� 0

}
,

where γM(M) = inf{λ ≥ 0 : M ∈ λM} is the gauge function associated to the
nonempty convex set M . The computational cost for computing proximal operators
can be high in general (involving solving semidefinite programs); however, they may
be simplified for special cases of M . For example, a fast algorithm for computing the
proximal operator of the VGF associated with the set M defined in (13) is presented in
[33]. For general problems, due to the convex-concave saddle point structure in (26),
we may use the mirror-prox algorithm [36] to obtain an inexact solution.

Left unitarily invariance and QR factorization. As mentioned before, VGFs and
their conjugates are left unitarily invariant. We can use this fact to simplify the
computation of corresponding proximal operators when n ≥ m . Consider the QR
decomposition of a matrix Y = QR where Q is an orthogonal matrix, QTQ = QQT =
I, and R = [RTY 0m×(n−m)]

T is an upper triangular matrix with RY ∈ Rm×m. From
the definition, we have Ω(Y ) = Ω(RY ) and Ω∗(Y ) = Ω∗(RY ). For the proximal
operators, we can use the QR decomposition X = Q[RTX 0]T to get

prox τΩ∗(X) = arg min
Y

min
M,C

{
‖Y −X‖22 + 1

2τ tr(C) :

[
M Y T

Y C

]
� 0 , M ∈M

}
= Q · arg min

R∈R
min
M,C

{
‖R−RX‖22 + 1

2τ tr(C) :

[
M RT

R C

]
� 0 , M ∈M

}
where R is the set of upper triangular matrices and the new PSD matrix is of size
2m instead of n+m that we had before. The above equality uses two facts. First,[

Im 0
0 QT

] [
M Y T

Y C

] [
Im 0
0 Q

]
=

[
M RT

R QTCQ

]
� 0(28)

where the right and left matrices in the multiplication are positive definite. Secondly,
tr(C) = tr(C ′) where C ′ = QTCQ and assuming C ′ to be zero outside the first m×m
block can only reduce the objective function. Therefore, we can ignore the last n−m
rows and columns of the above PSD matrix.

More generally, because of left unitarily invariance, the optimal Y ’s in all of the
optimization problems in this section have the same column space as the input matrix
X; otherwise, a rotation as in (28) produces a feasible Y with a smaller value for the
objective function.
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5. Algorithms for optimization with VGF. In this section, we discuss op-
timization algorithms for solving convex minimization problems, in the form of (6),
with VGF penalties. The proximal operators of VGFs we studied in the previous
section are the key parts of proximal gradient methods (see, e.g., [5, 6, 37]). More
specifically, when the loss function L(X) is smooth, we can iteratively update the
variables X(t) as follows:

X(t+1) = proxγtΩ(X(t) − γt∇L(X(t))), t = 0, 1, 2, . . . ,

where γt is a step size at iteration t. When L(X) is not smooth, then we can use sub-
gradients of L(X(t)) in the above algorithm, or use the classical subgradient method
on the overall objective L(X) + λΩ(X). In either case, we need to use diminishing
step size and the convergence can be very slow. Even when the convergence is rela-
tively fast (in terms of number of iterations), the computational cost of the proximal
operator in each iteration can be very high.

In this section, we focus on loss functions that have a special form shown in (29).
This form comes up in many common loss functions, some of which listed later in this
section, and allows for faster algorithms. We assume that the loss function L in (6)
has the following representation:

(29) L(X) = max
g∈G

〈X,D(g)〉 − L̂(g) ,

where L̂ : Rp → R is a convex function, G is a convex and compact subset of Rp,
and D : Rp → Rn×m is a linear operator. This is also known as a Fenchel-type
representation (see, e.g., [24]). Moreover, consider the infimal post-composition [4,
Definition 12.33] of L̂ : G → R by D(·) , defined as

(D . L̂)(Y ) = inf {L̂(G) : D(G) = Y , G ∈ G} .

Then, the conjugate to this function is equal to L . In other words, L(X) = L̂∗(D∗(X))
where L̂∗ is the conjugate function and D∗ is the adjoint operator. The composition of
a nonlinear convex loss function and a linear operator is very common for optimization
of linear predictors in machine learning (e.g., [17]), which we will demonstrate with
several examples later in this section.

With the variational representation of L in (29), and assuming ΩM ≡ ΩM∩S+ ,
we can write the VGF-penalized loss minimization problem (6) as a convex-concave
saddle-point optimization problem:

Jopt = min
X

max
M∈M∩S+, g∈G

〈X,D(g)〉 − L̂(g) + λ tr(XMXT ) .(30)

If L̂ is smooth (while L may be nonsmooth) and the sets G and M are simple (e.g.,
admitting simple projections), we can solve problem (30) using a variety of primal-dual
optimization techniques such as the mirror-prox algorithm [36, 24]. In Section 5.1,
we present a variant of the mirror-prox algorithm equipped with an adaptive line
search scheme. Then in Section 5.2, we present a preprocessing technique to transform
problems of the form (30) into smaller dimensions, which can be solved more efficiently
under favorable conditions.

Before diving into the algorithmic details, we examine some common loss func-
tions and derive the corresponding representation (29) for them. This discussion will
provide intuition for the linear operator D and the set G in relation with data and
prediction.
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Norm loss. Given a norm ‖ · ‖ and its dual ‖ · ‖∗ , consider the squared norm loss

L(x) = 1
2‖Ax− b‖2 = max

g
〈g, Ax− b〉 − 1

2 (‖g‖∗)2

where A ∈ Rp×n. In terms of the representation in (29), here we have D(g) = ATg,
L̂(g) = 1

2 (‖g‖∗)2 + bTg, and G = Rp. Similarly, a norm loss can be represented as

L(x) = ‖Ax− b‖ = max
g
{〈x, ATg〉 − bTg : ‖g‖∗ ≤ 1},

where we have D(g) = ATg, L̂(g) = bTg and G = {g : ‖g‖∗ ≤ 1}.
ε-insensitive (deadzone) loss. Another variant of the absolute loss function is

called the ε-insensitive loss (e.g., see [42] for more details and applications) and can
be represented, similar to (29), as

Lε(x) = max{0, |x| − ε} = max
α,β
{α(x− ε) + β(−x− ε) : α, β ≥ 0, α+ β ≤ 1}.

Hinge loss for binary classification. In binary classification problems, we are given
a set of training examples (a1, b1), . . . , (aN , bN ), where each as ∈ Rn is a feature vector
and bs ∈ {+1,−1} is a binary label. We would like to find x ∈ Rn such that the linear
function aTs x can predict the sign of label bs for each s = 1, . . . , N . The hinge loss
max{0, 1 − bs(aTs x)} returns 0 if bs(a

T
s x) ≥ 1 and a positive loss growing with the

absolute value of bs(a
T
s x) when it is negative. The average hinge loss over the whole

data set can be expressed as

L(x) =
1

N

N∑
s=1

max
{

0, 1− bs(aTs x)
}

= max
g∈G
〈g,1−Dx〉

where D = [b1a1, . . . , bNaN ]T . Here, in terms of (29), we have D(g) = −DTg ,
L̂(g) = −1Tg , and G = {g ∈ RN : 0 ≤ gs ≤ 1/N }.

Multi-class hinge loss. For multi-class classification problems, each sample as has
a label bs ∈ {1, . . . ,m}, for s = 1, . . . , N . Our goal is to learn a set of classifiers
x1, . . . ,xm, that can predict the labels bs correctly. For any given example as with
label bs, we say the prediction made by x1, . . . ,xm is correct if

(31) xTi as ≥ xTj as for all (i, j) ∈ I(bs),

where I(k) , for k = 1, . . . ,m , characterizes the required comparisons to be made for
any example with label k. Here are two examples.

1. Flat multi-class classification: I(k) = {(k, j) : j 6= k}. In this case, the
constraints in (31) are equivalent to the label bs = arg maxi∈{1,...,m} xTi as; see [45].

2. Hierarchical classification. In this case, the labels {1, . . . ,m} are organized
in a tree structure, and each I(k) is a special subset of the edges in the tree depending
on the class label k; see Section 6 and [13, 47] for further details.

Given the labeled data set (a1, b1), . . . , (aN , bN ), we can optimize X = [x1 · · · xm]
to minimize the averaged multi-class hinge loss

(32) L(X) =
1

N

N∑
s=1

max
{

0, 1− max
(i,j)∈I(bs)

{xTi as − xTj as}
}
,

which penalizes the amount of violation for the inequality constraints in (31).
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In order to represent the loss function in (32) in the form of (29), we need some
more notations. Let pk = |I(k)|, and define Ek ∈ Rm×pk as the incidence matrix for
the pairs in I(k) ; i.e., each column of Ek, corresponding to a pair (i, j) ∈ I(k), has
only two nonzero entries: −1 at the ith entry and +1 at the jth entry. Then the pk
constraints in (31) can be summarized as ETk X

Tas ≤ 0. It can be shown that the
multi-class hinge loss L(X) in (32) can be represented in the form (29) via

D(g) = −A E(g), and L̂(g) = −1Tg,

where A = [a1 · · · aN ] and E(g) = [Eb1g1 · · · EbN gN ]T ∈ RN×m. Moreover, the
domain of maximization in (29) is defined as

(33) G = Gb1 × . . .× GbN where Gk = {g ∈ Rpk : g ≥ 0 , 1Tg ≤ 1/N} .

Combining the above variational form for multi-class hinge loss and a VGF as penalty
on X, we can reformulate the nonsmooth convex optimization problem minX {L(X)+
λΩM(X)} as the convex-concave saddle point problem

(34) min
X

max
M∈M∩S+, g∈G

1Tg − 〈X,A E(g)〉+ λ tr(XMXT ).

5.1. Mirror-prox algorithm with adaptive line search. The mirror-prox
(MP) algorithm was proposed by Nemirovski [36] for approximating the saddle points
of smooth convex-concave functions and solutions of variational inequalities with Lip-
schitz continuous monotone operators. It is an extension of the extra-gradient method
[26], and more variants are studied in [23]. In this section, we first present a variant of
the MP algorithm equipped with an adaptive line search scheme. Then explain how
to apply it to solve the VGF-penalized loss minimization problem (30).

We describe the MP algorithm in the more general setup of solving variational
inequality problems. Let Z be a convex compact set in Euclidean space E equipped
with inner product 〈·, ·〉, and ‖ · ‖ and ‖ · ‖∗ be a pair of dual norms on E, i.e.,
‖ξ‖∗ = max‖z‖≤1〈ξ, z〉. Let F : Z → E be a Lipschitz continuous monotone mapping:

∀ z, z′ ∈ Z : ‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖, and, 〈F (z)− F (z′), z − z′〉 ≥ 0 .(35)

The goal of the MP algorithm is to approximate a (strong) solution to the variational
inequality associated with (Z, F ): 〈F (z∗), z − z∗〉 ≥ 0, ∀ z ∈ Z. Let φ(x, y) be a
smooth function that is convex in x and concave in y, and X and Y be closed convex
sets. Then the convex-concave saddle point problem

min
x∈X

max
y∈Y

φ(x, y),

can be posed as a variational inequality problem with z = (x, y)T , Z = X × Y and

(36) F (z) =

[
∇xφ(x, y)
−∇yφ(x, y)

]
.

The setup of the mirror-prox algorithm requires a distance-generating function
h(z) which is compatible with the norm ‖ · ‖. In other words, h(z) is subdifferentiable
on the relative interior of Z, denoted Zo, and is strongly convex with modulus 1 with
respect to ‖ · ‖, i.e., for all z, z′ ∈ Z, we have 〈∇h(z) − ∇h(z′), z − z′〉 ≥ ‖z − z′‖2.
For any z ∈ Zo and z′ ∈ Z, we can define the Bregman divergence at z as

Vz(z
′) = h(z′)− h(z)− 〈∇h(z), z′ − z〉,
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and the associated proximity mapping as

Pz(ξ) = arg min
z′∈Z

{〈ξ, z′〉+ Vz(z
′)} = arg min

z′∈Z
{〈ξ −∇h(z), z′〉+ h(z′)} .

With these definitions, we are now ready to present the MP algorithm in Figure 2.
Compared with the original MP algorithm [36, 23], our variant employs an adaptive
line search procedure to determine the step sizes γt , for t = 1, 2, . . . . We can exit the
algorithm whenever Vzt(zt+1) ≤ ε for some ε > 0. Under the assumptions in (35),
the MP algorithm in Figure 2 enjoys the same O(1/t) convergence rate as the one
proposed in [36], but performs much faster in practice. The proof requires only simple
modifications of the proof in [36, 23].

Algorithm: Mirror-Prox(z1, γ1, ε)

repeat
t := t+ 1
repeat
γt := γt/cdec

wt := Pzt(γtF (zt))
zt+1 := Pzt(γtF (wt))

until δt ≤ 0
γt+1 := cincγt

until Vzt(zt+1) ≤ ε
return z̄t := (

∑t
τ=1 γτ )−1

∑t
τ=1 γτwτ

Fig. 2: Mirror-Prox algorithm with adaptive line search. Here cdec > 1 and cinc > 1 are
parameters controlling the decrease and increase of the step size γt in the line search
trials. The stopping criterion for the line search is δt ≤ 0 where δt = γt〈F (wt), wt −
zt+1〉 − Vzt(zt+1) .

When L̂ is smooth and ΩM ≡ ΩM∩S+ , we can apply MP algorithm to solve the
saddle-point problem in (30). Then, the gradient mapping in (36) becomes

F (X,M,g) =

 vec(2λXM +D(g))
−λvec(XTX)

vec(∇L̂(g)−D∗(X))

 ,(37)

where D∗(·) is the adjoint operator to D(·). Assuming g lives in Rp, computing F
requires O(nm2 + nmp) operations for matrix multiplications. In Section 5.2, we
present a method that can potentially reduce the problem size by replacing n with
min{mp, n} . In the case of SVM with the hinge loss as in our real-data numerical
example, one can replace n by min{N,mp, n} , where N is the number of samples.

The assumption ΩM ≡ ΩM∩S+ provides us with a convex-concave saddle point
optimization problem in (30). However, mirror-prox iterations for (30) require a
projection onto M ∩ S+ (or more generally, computation of the proximity mapping
Pz(ξ) corresponding to the mirror map we choose and a set Z defined via M ∩ S+),
and such projections might be much more complicated than projection onto M. In
fact, while ΩM ≡ ΩM∩S+ implies that the achieving matrix in supM∈M〈M,XTX〉 is
always in M ∩ S+, we need a separate guarantee to be able to project onto M and
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M ∩ S+ interchangeably. We remark on a guarantee for this in the following, where
Lemma 13 and Corollary 14 provide sufficient conditions for when projection of a PSD
matrix onto M is equivalent to projection onto M ∩ S+.

Lemma 13. For any G � 0, consider P = ΠM(G) and its Moreau decomposition
with respect to the positive semidefinite cone as P = P+ − P− where P+, P− � 0 and
〈P+, P−〉 = 0. Then, P+ ∈M implies P− = 0 .

Proof. Apply the firm nonexpansive property of the projection operator onto a
convex set [40] to P = ΠM(G) and P+ = ΠM(P+) (implied by P+ ∈ M). We get
‖P − P+‖2F ≤ 〈P − P+, G − P+〉 which implies 〈P−, G〉 + ‖P−‖2F ≤ 0. Moreover, for
two PSD matrices G and P− we have 〈G,P−〉 ≥ 0. All in all, P− = 0.

Corollary 14. Provided that for any M ∈ M we have M+ ∈ M, then ΩM is
convex. Moreover, ΠM(G) � 0 for all G � 0.

Corollary 14 establishes an important property about the iterates of the mirror-
prox algorithm with h(·) = 1

2‖ · ‖
2
2 as the mirror map, corresponding to Pz(ξ) =

ΠZ(z − ξ). If in Algorithm 2 we initialize the part of z1 corresponding to M ’s to be
a PSD matrix, all of such parts in the iterations zt and wt remain PSD as 1) we add
a PSD matrix (λXTX from (37)) to the previous iteration, and, 2) the projection
onto M (which is not necessarily a subset of the PSD cone) ends up being a PSD
matrix (by Corollary 14), hence it is equivalent to projection onto M ∩ S+. Notice
that such condition is required for applying the mirror-prox algorithm: the objective
has to be convex-concave and the positive semidefiniteness of all iterations guarantees
this property.

The above provides a glimpse into a more general approach in optimization with
composite functions. While every proper closed convex function has a variational
representation in terms of its conjugate function, namely ΩM(X) = supY 〈X,Y 〉 −
Ω∗M(Y ), such expressions do not necessarily offer any computational advantage. With
a more clever exploitation of the structure, ΩM(X) can be seen as a composition of
the support function SM(·) with a structure mapping g(X) = XTX, as in (15). Then,

min
X

L(X) + ΩM(X) ≡ min
X

sup
Y
L(X) + 〈g(X), Y 〉 − S∗M(Y )

≡ min
X

sup
Y ∈M

L(X) + 〈XTX,Y 〉

where we use the fact that S∗M(Y ) is the indicator function for the set M. This can be
seen as an interpretation for how our proposed algorithm replaces proximal mapping
computations for ΩM with projections onto M (proximal mapping for the indicator
function for ΩM). Of course, to be able to use convex optimization algorithms, we
will need to establish results similar to Lemma 13 and Corollary 14.

5.2. A Kernel Trick (Reduced Formulation). As we discussed earlier, when
the loss function has the structure (29), we can write the VGF-penalized minimization
problem as a convex-concave saddle point problem

Jopt = min
X∈Rn×m

max
g∈G

〈X,D(g)〉 − L̂(g) + λΩ(X) .(38)

Since G is compact, Ω is convex in X , and L̂ is convex in g , we can use a minimax
theorem (e.g., [38, Corollary 37.3.2]) to interchange the max and min. Then, for any
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orthogonal matrix Q we have

Jopt = max
g∈G

min
X
〈X,D(g)〉 − L̂(g) + λΩ(X)

= max
g∈G

min
X
〈QTX,QTD(g)〉 − L̂(g) + λΩ(QTX)

= max
g∈G

min
X
〈X,QTD(g)〉 − L̂(g) + λΩ(X)(39)

where the second equality is due to the left unitarily invariance of Ω , and we renamed
the variable X to get the third equality. Observe that Q is an arbitrary orthogonal
matrix in (39) and can be chosen in a clever way to simplify D as described in the
sequel. Since D(g) is linear in g , consider a representation as

D(g) = [D1g · · · Dmg] = [D1 · · · Dm](Im ⊗ g) = D(Im ⊗ g),(40)

for some Di ∈ Rn×p and D ∈ Rn×mp . Then, express D as the product of an or-
thogonal matrix and a residue matrix, such as in QR decomposition D = QR , where
provided that n > mp , only the first mp rows of R can be nonzero (will be denoted
by R1). Define D′(g) = R1(Im⊗g) ∈ Rq×m for q = min{mp, n} . Plugging the above
choice of Q in (39) gives

Jopt = max
g∈G

min
X1,X2

〈
[
X1

X2

]
,

[
D′(g)

0

]
〉 − L̂(g) + λΩ(

[
X1

X2

]
) .

Observe that setting X2 to zero does not increase the value of Ω which allows for
restricting the above to the subspace X2 = 0 and getting

(41) Jopt = min
X∈Rq×m

max
g∈G
〈X,D′(g)〉 − L̂(g) + λΩ(X)

whose X variable has q = min{mp, n} rows compared to n rows in (38).
Notice that while the evaluation of Jopt via (41) can potentially be more efficient,

we are interested in recovering an optimal point X in (38) which is different from the
optimal points in (41). Tracing back the steps we took from (38) to (41), we get

X
(38)
opt = Q

[
X

(41)
opt

0

]
.

The special case of regularization with squared Euclidean norm has been under-
stood and used before; e.g., see [41]. However, the above derivations show that we
can get similar results when the regularization can be represented as a maximum of
squared weighted Euclidean norms.

It is worth mentioning that the reduced formulation in (41) can be similarly
derived via a dual approach; one has to take the dual of the loss-regularized optimiza-
tion problem (e.g., see Example 11.41 in [40]), use the left unitarily invariance of the
conjugate VGF to reduce D to D′, and dualize the problem again, to get (41).

5.3. A Representer Theorem. A general loss-regularized optimization prob-
lem as in (6) where the loss admits a Fenchel-type representation and the regularizer
is a strongly convex VGF (including all squared vector norms) enjoys a representer
theorem (see, e.g., [41]). More specifically, the optimal solution is linearly related
to the linear operator D in the representation of the loss. As mentioned before, for
many common loss functions, D encodes the samples, which reduces the following
proposition to the usual representer theorem.
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Theorem 15. For a loss-regularized minimization problem as in (6) where M ⊂
Sm++ and L admits a Fenchel-type representation as

L(X) = max
g∈G

〈X,D(g)〉 − L̂(g) = max
g∈G

〈X,D(Im ⊗ g)〉 − L̂(g) ,

the optimal solution Xopt admits a representation of the form

Xopt = DC

with a coefficient matrix C given by C = − 1
2λM

−1
opt⊗gopt (optimal solutions of (30)).

Proof. Denote the optimal solution of (30) by (Xopt,gopt,Mopt) , which shares
(Xopt,gopt) with (38). Consider the optimality condition as − 1

λD(gopt) ∈ ∂Ω(Xopt)
which implies Xopt ∈ ∂Ω∗(− 1

λD(gopt)); e.g., see [40, Proposition 11.3]. Now, suppose
M ⊂ Sm++ which implies ΩM is strongly convex. Considering the characterization of
subdifferential for Ω∗ from Proposition 8 as well as the representation of D(g) in (40)
we get

Xopt = − 1
2λD(gopt)M

−1
opt = − 1

2λD(Im ⊗ gopt)M
−1
opt = − 1

2λD(M−1
opt ⊗ gopt) .

This representer theorem allows us to apply our methods in more general re-
producing kernel Hilbert spaces (RKHS) by choosing a problem specific reproducing
kernel; e.g., see [41, 47].

6. Numerical Example. In this section, we discuss the application of VGFs in
hierarchical classification to demonstrate the effectiveness of the presented approach
in a real data experiment. More specifically, we compare the modified mirror-prox al-
gorithm with adaptive line search presented in Section 5.1 with the variant of Regular-
ized Dual Averaging (RDA) method used in [47] in the text categorization application
discussed in [47].

Let (a1, b1), . . . , (aN , bN ) be a set of labeled data where each ai ∈ Rn is a feature
vector and the associated bi ∈ {1, . . . ,m} is a class label. The goal of multi-class
classification is to learn a classification function f : Rn → {1, . . . ,m} so that, given
any sample a ∈ Rn (not necessarily in the training set), the prediction f(a) attains a
small classification error compared with the true label.

In hierarchical classification, the class labels {1, . . . ,m} are organized in a category
tree, where the root of the tree is given the fictitious label 0 (see Figure 3a). For
each node i ∈ {0, 1, . . . ,m}, let C(i) be the set of children of i, S(i) be the set of
siblings of i, and A(i) be the set of ancestors of i excluding 0 but including itself. A
hierarchical linear classifier f(a) is defined in Figure 3b, which is parameterized by
the vectors x1, . . . ,xm through a recursive procedure. In other words, an instance is
labeled sequentially by choosing the category for which the associated vector outputs
the largest score among its siblings, until a leaf node is reached. An example of this
recursive procedure is shown in Figure 3a. For the hierarchical classifier defined above,
given an example as with label bs, a correct prediction made by f(a) implies that (31)
holds with

I(k) =
{

(i, j) : j ∈ S(i), i ∈ A(k)
}
.

Given a set of examples (a1, b1), . . . , (aN , bN ), we can train a hierarchical classifier
parametrized by X = [x1 · · · xm] by solving the problem minX

{
L(X)+λΩ(X)

}
, with

the loss function L(X) defined in (32) and an appropriate VGF penalty function Ω(X).
As discussed in Section 5, the training optimization problem can be reformulated as a
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0

1 2

3 4

xT1 a < xT2 a

xT3 a < xT4 a

a

x1 x2

x3 x4

b = 3

(a)

f(a) =


initialize i := 0
while C(i) is not empty

i := arg max
j∈C(i)

xTj a

return i


(b)

Fig. 3: (3a): An example of hierarchical classification with four class labels {1, 2, 3, 4}.
The instance a is classified recursively until it reaches the leaf node b = 3, which is
its predicted label. (3b): Definition of the hierarchical classification function.

convex-concave saddle point problem of the form (34) and solved by the mirror-prox
algorithm described in Section 5.1. In addition, we can use the reduction procedure
discussed in Section 5.2 to reduce computational costs.

As discussed in [47], one can assume a model where classification at different
levels of the hierarchy rely on different features or different combinations of features.
Therefore, authors in [47] proposed regularization with |xTi xj | whenever j ∈ A(i) . A
convex formulation of such a regularization function can be given in the form (4) with

M =
{
M : Mii = M ii , |Mij | = |M ij |

}
where the nonzero pattern ofM corresponds to the pairs of ancestor-descendant nodes.
According to (17), we have M ⊂ Sm+ provided that λmin(M̃) ≥ 0 .

As a real-world example, we consider the classification dataset Reuters Corpus
Volume I, RCV1-v2 [30], which is an archive of over 800,000 manually categorized
newswire stories and is available in libSVM. A subset of the hierarchy of labels in
RCV1-v2, with m = 23 labels (18 leaves), is called ECAT and is used in our experi-
ments. The samples and the classifiers are of dimension n = 47236 . Lastly, there are
2196 training, and 69160 test samples available.

We solve the same loss-regularized problem as in [47], but using mirror-prox (dis-
cussed in Section 5.1) instead of regularized dual averaging (RDA). The regularization
function is a VGF and is given in (4). A reformulation of the whole problem as a
smooth convex-concave problem is given in (34). To obtain comparable results, we
use the same matrix M and regularization parameter λ = 1 as in [47]. Note that in
this experiment, n = 47236 while m = 23 and p > 2196, so the kernel trick is not
particularly useful since n is not larger than mp .

Since we are solving the same problem as [47], the prediction error on test data
will be the same as the error reported in this reference, which is better than the
other methods. Moreover, one can look at the estimated classifiers and how well
they validate the orthogonality assumption. Figure 4 compares the pairwise inner
products of classifiers estimated by our approach for hierarchical classification and
those estimated by “transfer” method (see [47] for details on this method).

In the setup of the mirror-prox algorithm, we use 1
2‖ · ‖

2
2 as the mirror map

which requires the least knowledge about the optimization problem (see [23] for the
requirements when combining a number of mirror maps corresponding to different
constraint sets in the saddle point optimization problem). With this mirror map, the
steps of mirror-prox only require orthogonal projection onto G and M . The projection
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0 124 101 100 84 94 94 89 90 92 96 90 89 92

124 0 112 118 91 89 89 91 88 93 92 90 90 91

101 112 0 98 94 86 89 90 93 83 78 90 92 85

100 118 98 0 92 90 87 90 90 89 91 90 89 90

84 91 94 92 0 141 130 89 87 98 110 91 90 99

94 89 86 90 141 0 89 91 92 84 77 89 90 85

94 89 89 87 130 89 0 90 93 84 74 91 90 83

89 91 90 90 89 91 90 0 153 97 91 90 90 90

90 88 93 90 87 92 93 153 0 111 104 91 90 90

92 93 83 89 98 84 84 97 111 0 56 89 91 90

96 92 78 91 110 77 74 91 104 56 0 96 96 71

90 90 90 90 91 89 91 90 91 89 96 0 145 105

89 90 92 89 90 90 90 90 90 91 96 145 0 110

92 91 85 90 99 85 83 90 90 90 71 105 110 0

0 124 104 103 85 95 92 91 90 89 98 87 90 93

124 0 108 113 91 90 89 89 90 91 91 89 91 90

104 108 0 101 93 86 91 91 89 90 82 95 89 88

103 113 101 0 92 89 88 88 92 90 87 90 91 89

85 91 93 92 0 140 127 91 91 88 104 94 80 96

95 90 86 89 140 0 93 89 90 92 82 89 95 86

92 89 91 88 127 93 0 89 90 92 79 84 99 86

91 89 91 88 91 89 89 0 146 100 89 90 90 91

90 90 89 92 91 90 90 146 0 114 97 92 92 81

89 91 90 90 88 92 92 100 114 0 80 87 86 105

98 91 82 87 104 82 79 89 97 80 0 92 103 83

87 89 95 90 94 89 84 90 92 87 92 0 142 102

90 91 89 91 80 95 99 90 92 86 103 142 0 114

93 90 88 89 96 86 86 91 81 105 83 102 114 0

Fig. 4: Pairwise angles (in degrees) between the estimated classifiers for dataset
MCAT (part of RCV1-v2 [30]) via (left) regularization by the VGF in (4) and (right)
the “transfer” method (see [47] and references therein). The circled entries in red
correspond to ancestor-descendant relations in the hierarchy of MCAT labels.

onto G in (33) boils down to separate projections onto N scaled simplexes (where the
summation of entries is bounded by 1 and not necessarily equal to 1). Each projection
amounts to zeroing out the negative entries followed by a projection onto the `1 unit
norm ball (e.g., using the simple process described in [15]).

The variant of RDA proposed in [47] has a convergence rate of O(ln(t)/σt) for
the objective value, where σ is the strong convexity parameter of the objective. On
the other hand, mirror-prox enjoys a convergence rate of O(1/t) as given in [36].
Although there is a clear advantage to the MP method compared to RDA in terms of
the theoretical guarantee, one should be aware of the difference between the notions
of gap for the two methods. Figure 5a compares ‖Xt − Xfinal‖F for MP and RDA
using each one’s own final estimate Xfinal . In terms of the runtime, we empirically
observe that each iteration of MP takes about 3 times more time compared to RDA.
However, as evident from Figure 5a, MP is still much faster in generating a fixed-
accuracy solution. Figure 5b illustrates the decay in the value of the gap for mirror-
prox method, Vzt(zt+1) , which confirms the theoretical convergence rate of O(1/t).

7. Discussion. In this paper, we introduce variational Gram functions, which
include many existing regularization functions as well as important new ones. Con-
vexity properties of this class, conjugate functions, subdifferentials, semidefinite rep-
resentability, proximal operators, and other convex analysis properties are studied.
By exploiting the structure in loss and the regularizer, namely L(X) = L̂∗(D∗(X))
and ΩM(X) = SM(XTX), we provide various tools and insight into such regularized
loss minimization problems: By adapting the mirror-prox method [36], we provide
a general and efficient optimization algorithm for VGF-regularized loss minimization
problems. We establish a general kernel trick and a representer theorem for such
problems. Finally, the effectiveness of VGF regularization as well as the efficiency
of our optimization approach is illustrated by a numerical example on hierarchical
classification for text categorization.
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Fig. 5: Convergence behavior for mirror-prox and RDA in our numerical experiment.
(a) Average error over the m classifiers between each iteration and the final estimate,
‖Xt−Xfinal‖F . (b) MP’s gap Vzt(zt+1). (c) The value of loss function relative to the
final value. For visualization purposes, all of the plots show data points at every 10
iterations. All vertical axes have a logarithmic scale.

There are numerous directions for future research on this class of functions. One
issue to address is how to systematically pick an appropriate set M when defining a
new VGF for some new application. Statistical properties of VGFs, for example the
corresponding sample complexity, are of interest from a learning theory perspective.
The presented kernel trick (which uses the left unitarily invariance property of VGFs)
can be potentially extended to other invariant regularizers. And last but not least, it
is interesting to see if there is a variational Gram representation for any squared left
unitarily invariant norm.

Appendix A. Proof of Proposition 8. First, let us simplify some notation.
Throughout the proof, we denote 1

2Ω by Ω, and 2Ω∗ by Ω∗. Denote by ιM(M)
the indicator function of the set M which is 1 when M ∈ M and +∞ otherwise.
Since ΩM ≡ ΩM∩S+ , we assume M ⊂ S+, with no loss of generality. Observe that
Ω∗(Y ) = infM f(Y,M) + ιM(M) where

f(Y,M) :=

{
1
2 tr(YM†Y T ) if range(Y T ) ⊆ range(M) , M � 0

+∞ otherwise.

Function f(Y,M) coincides with σD(A,B), for A = 0 and B = 0, in Equation (2) of
[10]. Then, by Corollary 4, and Equation (8), in [10], we get

∂f(Y,M) = {(Z,H) : 1
2Z

TZ +H � 0 , Y = ZM , 〈M, 1
2Z

TZ +H〉 = 0} .(42)

Since g(Y,M) := f(Y,M) + ιM(M) is convex, we can use results from parametric
minimization, [40, Theorem 10.13], to get: for Y with Ω∗(Y ) 6= +∞ and for any
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choice of M0 ∈M satisfying Ω∗(Y ) = 1
2 tr(YM†0Y

T ) and Y (I −M0M
†
0 ) = 0, we have

∂Ω∗(Y ) = {Z : (Z, 0) ∈ ∂g(Y,M0)}(43)

= {Z : (Z,−H) ∈ ∂f(Y,M0), H ∈ ∂ιM(M0), for some H}(44)

= {Z : 1
2Z

TZ � H, Y = ZM0,(45)

supM∈M〈M,H〉 = 〈M0, H〉 = 1
2 tr(ZM0Z

T ), for some H}
= {Z : 1

2Z
TZ � H, Y = ZM0,(46)

supM∈M〈M,H〉 = 〈M0, H〉 = 1
2 tr(ZM0Z

T ) = Ω(Z), for some H}
= {Z : Y = ZM0, Ω(Z) = 1

2 tr(ZM0Z
T )}.(47)

Let us elaborate on these derivations. For (45), we used (42) as well as ∂ιM(M0) :=
{G : 〈G,M −M0〉 ≤ 0 , ∀M ∈M} = {G : supM∈M〈M,G〉 = 〈M0, G〉}, as M0 ∈M.
For (46), consider any Z ∈ ∂Ω∗(Y ) and any H corresponding to Z in (45), and observe

Ω(Z) ≤ supM∈M〈M,H〉 = 〈M0, H〉 = 1
2 tr(ZM0Z

T ) ≤ Ω(Z),(48)

where the first inequality is due to 1
2Z

TZ � H. Hence inequalities in (48) hold with
equality and (46) is established. Ignoring H in (46) establishes the forward inclusion
for (47). On the other hand, for any Z in the right hand side of (47), and for any Y ′

Ω∗(Y ′) ≥ 〈Y ′, Z〉 − Ω(Z) = 〈Y ′, Z〉 − Ω∗(Y ) = 〈Y ′ − Y, Z〉+ Ω∗(Y )

where we used Fenchel’s inequality, as well as the characterization of Z. Therefore,
Z ∈ ∂Ω∗(Y ). This establishes (47). Lastly, recall that M0 is an achieving matrix in

Ω∗(Y ), which implies Y (I −M0M
†
0 ) = 0. This in turn implies that (e.g., see [1])

Y = ZM0 ⇐⇒ ∃W ; Z = YM†0 +W , WM0 = 0 .(49)

Moreover, (48) (with equalities), property M0 = M0M
†
0M0, and Y = ZM0, imply

Ω(Z) = 1
2 tr(ZM0Z

T ) = 1
2 tr(ZM0M

†
0M0Z

T ) = 1
2 tr(YM†0Y

T ) = Ω∗(Y ) .(50)

Combining (47), (49), and (50), yields

(51)
∂Ω∗(Y ) = {Z = YM†0 +W : Ω(Z) = 1

2 tr(ZM0Z
T ) = Ω∗(Y ) ,

range(Y T ) ⊆ range(M0) ⊆ ker(W ) , M0 ∈M}

which is the claimed characterization (after we adjust for the 1
2 -rescaling we did in

the beginning). Note that for an achieving M0, range(Y T ) ⊆ range(M0) has to hold
for the conjugate function to have a finite value.

It is worth mentioning that the introduction of H and then omitting it hints on
the possibility of simpler proofs. We postpone this to future examinations.
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Èkonom. i Mat. Metody, 12 (1976), pp. 747–756.
[27] Alex Kulesza, Ben Taskar, et al., Determinantal point processes for machine learning,

Found. Trends Mach. Learn., 5 (2012), pp. 123–286.
[28] V. L. Levin, The application of E. Helly’s theorem in convex programming, problems of best



28 JALALI, FAZEL, XIAO

approximation, and related questions, Mat. Sb. (N.S.), 79 (121) (1969), pp. 250–263.
[29] Adrian S. Lewis, The convex analysis of unitarily invariant matrix functions, J. Convex Anal.,

2 (1995), pp. 173–183.
[30] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li, RCV1: A new benchmark collection

for text categorization research, J. Mach. Learn. Res., 5 (2004), pp. 361–397.
[31] Jonathan Malkin and Jeff Bilmes, Ratio semi-definite classifiers, in Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing, Las Vegas,
Nevada, USA, 2008, pp. 4113–4116.

[32] Bernard Martinet, Régularisation d’inéquations variationnelles par approximations succes-
sives, Rev. Française Informat. Recherche Opérationnelle, 4 (1970), pp. 154–158.

[33] Andrew M McDonald, Massimiliano Pontil, and Dimitris Stamos, New perspectives on
k-support and cluster norms, J. Mach. Learn. Res., 17 (2016), pp. 1–38.

[34] Charles A. Micchelli, Jean M. Morales, and Massimiliano Pontil, Regularizers for struc-
tured sparsity, Adv. Comput. Math., 38 (2013), pp. 455–489.

[35] Leonid Mirsky, A trace inequality of John von Neumann, Monatsh. Math., 79 (1975), pp. 303–
306.

[36] Arkadi Nemirovski, Prox-method with rate of convergence O(1/t) for variational inequalities
with lipschitz continuous monotone operators and smooth convex-concave saddle point
problems, SIAM J. Optim., 15 (2004), pp. 229–251.

[37] Yu. Nesterov, Gradient methods for minimizing composite functions, Math. Program., 140
(2013), pp. 125–161.

[38] R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton
University Press, Princeton, N.J., 1970.

[39] , Monotone operators and the proximal point algorithm, SIAM J. Control Optimization,
14 (1976), pp. 877–898.

[40] R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational analysis, Springer-Verlag,
Berlin, 1998.

[41] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola, A generalized representer the-
orem, in Proceedings of the Fourteenth Annual Conference on Computational Learning
Theory, Amsterdam, The Netherlands, 2001, pp. 416–426.

[42] Alex J. Smola and Bernhard Schölkopf, A tutorial on support vector regression, Statistics
and Computing, 14 (2004), pp. 199–222.

[43] Lieven Vandenberghe and Stephen Boyd, Semidefinite programming, SIAM Rev., 38 (1996),
pp. 49–95.
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