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Abstract

We study the problem of troubleshooting machine learning
systems that rely on analytical pipelines of distinct compo-
nents. Understanding and fixing errors that arise in such in-
tegrative systems is difficult as failures can occur at multiple
points in the execution workflow. Moreover, errors can prop-
agate, become amplified or be suppressed, making blame as-
signment difficult. We propose a human-in-the-loop method-
ology which leverages human intellect for troubleshooting
system failures. The approach simulates potential component
fixes through human computation tasks and measures the ex-
pected improvements in the holistic behavior of the system.
The method provides guidance to designers about how they
can best improve the system. We demonstrate the effective-
ness of the approach on an automated image captioning sys-
tem that has been pressed into real-world use.

Introduction
Advances in machine learning have enabled the design of
integrative systems that perform sophisticated tasks via the
execution of analytical pipelines of components. Despite the
widespread adoption of such systems, current applications
lack the ability to understand, diagnose, and fix their own
mistakes which consequently reduces users’ trust and limits
future improvements. Therefore, the problem of understand-
ing and troubleshooting failures of machine learning sys-
tems is of particular interest in the community (Sculley et al.
2015). Our work studies component-based machine learning
systems composed of specialized components that are indi-
vidually trained for solving specific problems and work alto-
gether for solving a single complex task. We analyze how the
special characteristics of these integrated learning systems,
including continuous (non-binary) success measures, entan-
gled component design, and non-monotonic error propaga-
tion, make it challenging to assign blame to individual com-
ponents. These challenges hinder future system improve-
ments as designers lack an understanding of how different
potential fixes on components may improve the overall sys-
tem output.
Approach. We introduce a troubleshooting methodology
which relies on crowdworkers to identify and fix mistakes
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Figure 1: Troubleshooting with humans in the loop

in existing systems. Human intervention is crucial to the ap-
proach as human fixes simulate improved component out-
put that cannot be produced otherwise without significant
system development efforts. Figure 1 shows the main flow
of our approach. First, workers evaluate the system output
without any fix to analyze the current system state. To simu-
late a component fix, the input and output of the component
accompanied with the fix description are sent to a crowd-
sourcing platform as microtasks. Once workers apply the
targeted fixes for a component, the fixed output is integrated
back into the running system, which thereby generates an
improved version of the component. The system is executed
as a simulation with the injected fix and the output is eval-
uated again via crowdworkers. The overall process collects
a valuable set of log data on system failures, human fixes,
and their impact on the final output. This data can then be
analyzed to identify the most effective combination of com-
ponent improvements to guide future development efforts.
Case study. We apply our methodology to a state-of-the-art
integrative learning system developed to automatically cap-
tion images (Fang et al. 2015). The system involves three
machine learning components in a pipeline, including visual
detection, language generation, and caption ranking. The
multimodal nature of this case study allows us to demon-
strate the applicability of the approach for components pro-
cessing different forms of data and carrying out various
tasks. The methodology reveals new insights on the error
dynamics previously unknown to the designers, and offers
recommendations on how to best improve the system. For
example, in contrast to what system designers had assumed,
improving the Reranker is more effective than improving the
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Figure 2: The image captioning system

Visual Detector. Experiments highlight the benefits of mak-
ing informed decisions about component fixes as their ef-
fectiveness varies greatly (18%, 3% and 27% for the three
components respectively).

Background and Problem Characterization
We now define the problem of troubleshooting component-
based machine learning systems. We start by describing the
image captioning system as a running example and then con-
tinue with the problem formalization.

Case Study: An Image Captioning System
The system (Fang et al. 2015) that we use as a case study
automatically generates captions as textual descriptions for
images. This task has emerged as a challenge problem1 in ar-
tificial intelligence as it involves visual and language under-
standing and has multiple real-world applications, including
the provision of descriptions for assisting visually impaired
people. Figure 2 shows the system architecture, consisting
of three machine learning components. The first and third
components leverage convolutional neural networks com-
bined with multiple instance learning (Zhang, Platt, and Vi-
ola 2005). The second one is a maximum-entropy language
model (Berger, Pietra, and Pietra 1996).
Visual Detector. The first component takes an image as an
input and detects a list of words associated with recognition
scores. The detector recognizes only a restricted vocabulary
of the 1000 most common words in the training captions.
Language Model. This component is a statistical model that
generates likely word sequences as captions based on the
words recognized from the Visual Detector, without having
access to the input image. The set of the 500 most likely
image captions and the respective log-likelihood scores are
forwarded to the Caption Reranker.
Caption Reranker. The task of the component is to rerank
the captions generated from the Language Model and select
the best match for the image. The Reranker uses multiple
features among which the similarity between the vector rep-

1http://mscoco.org/dataset/#captions-challenge2015

resentations of images and captions. The caption with the
highest ranking score is selected as the final best caption.
Dataset. All components are individually trained on the
MSCOCO dataset (Lin et al. 2014) which was built as an
image captioning training set and benchmark. It contains
160,000 images as well as five human-generated captions
for all images. We use images randomly sampled from the
validation dataset to evaluate our approach.

Problem Characterization
Problem context. This work studies machine learning sys-
tems consisting of several components designed to carry out
specific tasks in the system. The system takes a set of data as
system input and the individual components work together
to produce a final system output. We assume that the sys-
tem architecture is provided to the methodology by system
designers by specifying:

1. The set of system components along with the component
input and output data types.

2. A set of directed communication dependencies between
components denoting the input / output exchange. The
whole set of dependencies defines the system execution
workflow. In our methodology, we only handle acyclic
dependencies but allow for branching.

Problem definition. Troubleshooting of component-based
machine learning systems can be decoupled to answering
the following two questions:
Question 1: How does the system fail?
The system designer is interested in identifying and mea-
suring the different types of system failures and their fre-
quencies as well as the failures of individual components
in the system context.

Question 2: How to improve the system?
System failures can be addressed by various potential fixes
applicable to individual components. To guide future ef-
forts on improving the system, the system designer is in-
terested in knowing the effects of component fixes on: (i)
specific input instances, and (ii) the overall system out-
put quality. The first requirement is relevant to fine-grained
instance-based debugging that a troubleshooting method-
ology should implement, while the second one provides
guidance on future efforts to improve the whole system.

The first question aims at analyzing the current state of the
system. The second question explores future opportunities
and investigates the efficiency of different strategies to im-
prove the system. Next, we examine the special character-
istics of component-based machine learning systems that
make the problem of troubleshooting challenging. These
characteristics differentiate this problem from previous work
on troubleshooting and motivate our methodology.
Continuous quality measures. Uncertainty is inherent in
machine learning components. When these components
work together to solve complex tasks, the measure of qual-
ity for individual components and the system as a whole is
no longer binary, rather it spans a wide spectrum. There-
fore, the evaluation of these systems needs to go beyond ac-
curacy metrics to deeper analysis of system behavior. For
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Figure 3: Continuous output quality in the captioning system
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Figure 4: Component entanglement in the captioning system

instance, Figure 3 shows a few examples from image cap-
tioning where the system and component output varies in
quality and the types of mistakes. Troubleshooting in this
quality continuum where all components are only partially
correct is non-trivial.
Complex component entanglement. In component-based
machine learning systems, components have complex influ-
ences on each other as they may be tightly coupled or the
boundaries between their responsibilities may not be clear.
When the quality of a component depends on the output of
previous components, blame cannot be assigned to individ-
ual components without decoupling imperfection problems
in component inputs. Figure 4 illustrates a typical scenario
of component entanglement in the image captioning system.
The final caption is clearly unsatisfactory as it mentions a
non-existing object (blender). However, the Visual Detec-
tor assigns a low score to the word blender (0.57), which
makes the detector only partially responsible for the mistake.
The Language Model is also partially responsible as it cre-
ates a sentence with low commonsense awareness. Finally,
the caption reranker chooses as the best caption a sentence
that includes a word with a low score. In this example, errors
from all components are interleaved and it is not possible to
disentangle their individual impact on the final error.
Non-monotonic error. We note that improving the outputs
of components does not guarantee system improvement. On
the contrary, doing so may lead to quality deterioration. For
example, when components are tuned to suppress erroneous
behavior of preceding components, applying fixes to the ear-
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Figure 5: Non-monotonic error in the captioning system

lier ones may result to unknown failures. Figure 5 shows an
example of non-monotonic error behavior. Here, the Visual
Detector makes a mistake by including computer in the
list. The initial assumption would be that if the list is fixed
so that it contains only the prominent words, then the quality
of the caption should increase. In reality, the caption after the
fix is more erroneous than the original. Since the language
model finds a teddy bear wearing glasses unlikely, it creates
a caption that mentions a person instead.

Human-in-the-loop Methodology
Due to these problem characteristics, blame assignment is
challenging in integrative systems and analyzing only the
current state of the system is not sufficient to develop strate-
gies for system improvement. As shown in Figure 1, our
methodology overcomes these challenges by introducing
humans in the loop for: (i) simulating component fixes, and
(ii) evaluating the system before and after fixes to directly
measure the effect of future system improvements.
Methodology setup. The troubleshooting methodology is
applicable to systems that follow the assumptions of: (i) sys-
tem modularity with clearly defined component inputs and
outputs, and (ii) human interpretability of the component in-
put / output. To apply the methodology to a new system, the
system designer provides the set of components and their
input/outputs within the system execution workflow. After
identifying a list of component fixes that can potentially
improve the system, the system designer formulates corre-
sponding crowdsourcing tasks for these fixes and the over-



all system evaluation. Both types of tasks should describe
the high-level goal of the system, the context in which it
operates as well as its requirements (e.g. an image caption-
ing system designed to assist users with visual impairments).
In addition, component fixing tasks should be appropriately
formulated so that their expected output matches the output
of implementable fixes that the system designer plans to test.
Troubleshooting steps. The execution of the methodology
is guided by the fix workflow, which is a combination of var-
ious component fixes to be evaluated. The system designer
chooses which fix workflows to execute and evaluate for the
purpose of troubleshooting. For a given fix workflow, the
steps of our methodology are as follows:
1. Current system evaluation — workers assess the final

output of the current system on various quality measures.
2. Component fix simulation — for each fix in the workflow,

workers complete the respective micro-task for examin-
ing and correcting the component output.

3. Fix workflow execution — executing a fix workflow in-
volves integrating the corrected outputs of each compo-
nent into the system execution.

4. After-fix system evaluation — workers re-evaluate the
new system output after incorporating component fixes.
When a workflow includes fixes for multiple components,

steps 2 and 3 need to be repeated so that the fixes of earlier
components are reflected on the inputs of later components.
Troubleshooting outcomes. Applying human fix workflows
simulates improved component states and helps system de-
signers to observe the effect of component fixes on system
performance, overcoming the challenges raised by the prob-
lem characteristics.
1. Continuous quality measures — Comparing the system

quality before and after various fix workflow executions
not only can quantify the current quality of system and
component output, but it can also isolate and quantify
the effect of individual component fixes. For example,
if many components are partially failing and are possibly
responsible for a specific error, the system designer can
test the respective fixes, systematically understand their
impact, and decide which are the most promising ones.

2. Non-monotonic error — Non-monotonic error propaga-
tion can be disclosed when the overall system quality
drops after a component fix. When such a behavior is ob-
served, the system designer can conclude that although
these fixes may improve the internal component state,
they are not advisable to be implemented in the current
state of the system as they produce negative artifacts in
the holistic system.

3. Complex component entanglement — Entanglement de-
tection requires the execution of workflows with different
combinations of fixes to measure the individual and the
joint effect of component fixes. For example, if two con-
secutive components are entangled, individual fixes in ei-
ther one of them may not improve the final output. How-
ever, if both components are fixed jointly, this may trigger
a significant improvement. The designer could also use
this information to detect entanglement and potentially
correct the system architecture in future versions.

Component Fix description
Visual Detector Add / remove objects
Visual Detector Add / remove activities
Language Model Remove noncommonsense captions
Language Model Remove non-fluent captions
Caption Reranker Rerank Top 10 captions

Table 1: Summary of fixes for the image captioning system.

Troubleshooting the Image Captioning System
We now describe the customized crowdsourcing tasks for
our case study for both system evaluation and component
fixes. Table 1 lists all component fixes specifically designed
for this case study. The task design is an iterative process in
collaboration with system designers so that human fixes can
appropriately simulate implementable improvements.
System evaluation. The system evaluation task is designed
to measure different quality metrics associated with captions
as well as the overall human satisfaction. The task shows
workers an image-caption pair and asks them to evaluate the
following quality measures: accuracy (1-5 Likert scale), de-
tail (1-5 Likert scale), language (1-5 Likert scale), common-
sense (0-1), and general evaluation. For each measure, we
provided a detailed description along with representative ex-
amples. However, we intentionally did not instruct workers
for the general evaluation to prevent biasing them on which
quality measure is more important (e.g. accuracy vs. detail).
Visual Detector fixes. We designed two different tasks for
fixing object and activity detections respectively represented
by nouns and verbs in the word list. The object fix shows
workers the input image with the list of nouns present in the
visual detector output. Workers are asked to correct the list
by either removing objects or adding new ones. The activity
fix has a similar design. We intentionally group addition and
removal fixes to simulate improvements of the Visual Detec-
tor in precision and recall as potential implementable fixes
in this component. The result of any Visual Detector fix is
a new word list which is passed to the Language Model to-
gether with the worker agreement scores (e.g. majority vote).
Language Model fixes. These fixes are designed for remov-
ing sentences that are either not commonsense or not flu-
ent. The tasks do not share the input image with the worker,
as the Language Model itself does not have access to the
image. In the commonsense fix, workers mark whether a
caption describes a likely situation that makes sense in the
real world. For example, the caption A cat playing a
video game has no commonsense awareness in a general
context. In the language fix, the goal is to evaluate the lan-
guage fluency of captions in a 1-5 Likert scale. In addition,
workers highlight problematic parts of the sentence which
they think would make the caption fluent if fixed appropri-
ately. The resulting list of problematic segments is a reusable
resource to filter out captions that contain the same patterns.

Both fixes simulate improved versions of the Language
Model that generate commonsense sentences in a fluent lan-
guage. To integrate Language Model fixes in the system ex-
ecution we exclude the noncommonsense and the non-fluent
captions from the list forwarded to the Caption Reranker.



Eval. Sat. Unsat.
Accuracy (1-5) 3.674 4.474 2.579
Detail (1-5) 3.563 4.265 2.601
Language (1-5) 4.509 4.693 4.256
Commonsense (0-1) 0.957 1.000 0.898
General (1-5) 3.517 4.306 2.437
%Satisfactory (0-1) 57.8% 100% 0%

Table 2: Current system evaluation.

Caption Reranker fixes. This task shows an image together
with the corresponding top 10 captions from the Reranker
(in random order), and asks workers to pick up to 3 captions
that they think fit the image best. The answers are then ag-
gregated via majority vote and the caption with the highest
agreement is selected as the new system output.

Experimental Evaluation
The evaluation of the captioning system with our method-
ology uses an Evaluation dataset of 1000 images ran-
domly selected from the MSCOCO validation dataset. All
experiments were performed on Amazon Mechanical Turk.
We report the system quality based on human assessments.
An additional analysis using automatic machine translation
scores can be found in the longer version of the paper (Nushi
et al. 2016).

Current System State
First, we evaluate the current system state as shown in
Table 2. To gain a deeper understanding of the system
performance, we divide the Evaluation data in two
datasets: Satisfactory and Unsatisfactory based
on the general evaluation score collected from the sys-
tem evaluation task. We consider every answer in 1-3 as
an unsatisfactory evaluation, and every other answer in
4-5 as satisfactory. All instances whose original caption
reaches a majority agreement on being satisfactory belong
to the Satisfactory dataset. The rest is classified as
Unsatisfactory.
Result: Only 57.8% of the images in the Evaluation
dataset have a satisfactory caption. The comparison be-
tween the Satisfactory and Unsatisfactory par-
titions shows that the highest discrepancies happen for the
accuracy and detail measures, highlighting the correlation
of accuracy and detail with the overall satisfaction.

Current Component State
An additional functionality of a human-assisted trou-
bleshooting methodology is to evaluate the quality of the
existing individual system components.
Visual Detector Figure 6 shows the precision and recall
of the Visual Detector for both objects and activities when
compared to the human-curated lists created from the major-
ity vote aggregation of multiple workers’ fixes. In the same
figure, we also show the size of the lists before and after
applying human fixes.
Result: The Visual Detector produces longer lists for ob-
jects than for activities but with lower precision and recall.
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Figure 6: Visual Detector fixes and the component state.

Commonsense
fix

Language
fix Both fixes

Top1-Eval. 8.0% 22.9% 25.0%
Top10-Eval. 8.6% 21.7% 27.1%
Top1-Val. 3.0% 15.2% 16.1%
Top10-Val. 2.6% 14.2% 14.9%

Table 3: Percentage of pruned captions from the Language
Model and the component state.

Language Model. In the Language Model fixes, we exam-
ine only those captions from the Language Model that are
among the Top10 best captions in the Caption Reranker.
Given that many of the 500 generated sentences never ap-
pear as best captions of the Reranker, and the Language
Model output is quite extensive to be fully fixed via crowd-
sourcing, we focus only on those captions that are likely
to impact the system output. Table 3 shows the percent-
age of captions pruned after applying the two fixes. The
Validation dataset here represents the whole MSCOCO
dataset which contains 40,504 images.
Result: Due to self-repetition within the dataset, fixes gen-
erated for the 1000 images of the Evaluation dataset
generalize well to the whole Validation set, pruning
16.1% of the Top1 captions and 14.9% of the Top10 cap-
tions. Language fixes have a higher coverage than the com-
monsense ones.

Caption Reranker. Caption Reranker fixes also focus only
on the Top10 best captions. After reranking this set with the
crowdsourcing majority vote, we observe that the best cap-
tion changes for 76.9% of the images. In 46.1% of the cases,
the original caption was never chosen by any of the workers.
For 19.2% of the images, the majority of workers reported
that they could not find any caption in the list that is a good
fit for the image. These cases are indeed more serious fail-
ures that cannot be recovered through reranking only.

Component Fixes and System Improvement
Visual Detector fixes. Table 4 shows results from applying
the four types of fixes on the Visual Detector. These fixes
increase the number of satisfactory captions in the dataset
up to 17.6% compared to the initial state of the system. Ob-
ject fixes are more effective than the activity ones for two
reasons. First, the precision of the Visual Detector is origi-
nally significantly lower for objects than for activities (0.44



No fix Object Activity Addition Removal All
fixes

Accuracy 3.674 4.045 3.681 3.709 4.000 4.035
Detail 3.563 3.900 3.590 3.604 3.880 3.916
Language 4.509 4.505 4.427 4.521 4.423 4.432
Csense. 0.957 0.947 0.940 0.957 0.933 0.942
General 3.517 3.848 3.510 3.549 3.796 3.831
%Sat. 57.8% 69.1% 57.1% 58.5% 66.8% 68.0%

Table 4: Visual Detector fixes — Evaluation dataset.

No fix Commonsense Language All fixes
Accuracy 3.674 3.698 3.696 3.712
Detail 3.563 3.583 3.590 3.602
Language 4.509 4.575 4.618 4.632
Csense. 0.957 0.973 0.974 0.982
General 3.517 3.546 3.557 3.572
%Sat. 57.8% 58.5% 59.2% 59.3%

Table 5: Language Model fixes — Evaluation dataset.

vs. 0.8), which offers more room for improvement for object
fixes. Second, activity fixes are limited by the shortcomings
of the Language Model. Even when a corrected list of ac-
tivities is provided to the Language Model, it may fail to
form commonsense captions containing the corrected activ-
ities (e.g. A woman holding an office) due to non-
monotonic error behavior of the system.
Result: The entangled design between the Visual Detec-
tor and the Language Model causes non-monotonic error
propagation in particular for activity fixes.

Language Model fixes. Language fixes are generally more
effective than the commonsense fixes as they have a higher
coverage and they generalize better to other images. Fixes
in the Language Model increase the number of satisfactory
captions by only 3%.
Result: The impact of Language Model fixes is limited
due to the fact that most captions with language mis-
takes also have other problems which cannot be fixed only
through this component.

Caption Reranker fixes. As a final component, fixes in
the Caption Reranker directly affect the final caption. This
means that if there is a plausible caption in the Top10 set
better than the original best caption, that caption is going
to be ranked higher after the fix and will directly improve
the system output. This explains why Caption Reranker
improvements are higher than all other component fixes.
Result: The system improves by a factor of 27% after the
Reranker fixes. Although this provides the most effective
system improvement, its influence is limited to instances
with at least one satisfactory caption in Top10, which is
the case only for 80.8% of our dataset.

Complete fix workflow. Table 7 shows the improve-
ments from each component and the complete fix work-
flow which sequentially applies all component fixes. Fig-
ure 7 decouples the results for the Satisfactory and
Unsatisfactory partitions of the data set.

No fix Reranking (All fixes)
Accuracy 3.674 4.145
Detail 3.563 3.966
Language 4.509 4.626
Csense. 0.957 0.988
General 3.517 3.973
%Sat. 57.8% 73.6%

Table 6: Caption Reranker fixes — Evaluation dataset.

No fix Visual
Detector

Language
Model

Caption
Reranker

All
fixes

Accuracy 3.674 4.035 3.712 4.145 4.451
Detail 3.563 3.916 3.602 3.966 4.247
Language 4.509 4.432 4.632 4.626 4.660
Csense. 0.957 0.942 0.982 0.988 0.998
General 3.517 3.831 3.572 3.973 4.264
%Sat. 57.8% 68.0% 59.3% 73.6% 86.9%

Table 7: Complete fix workflow — Evaluation dataset
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Figure 7: Human evaluation scores on the Satisfactory
and Unsatisfactory datasets.

Result: The complete fix workflow increases the number
of satisfactory captions by 50%. In contrast to the ini-
tial assumptions of system designers, fixes in the Caption
Reranker are most effective due to the entanglement in
the previous components. Most improvements come from
the Unsatisfactory partition of the dataset. However,
because of non-monotonic error behavior in specific in-
stances, some of the fixes result in slight deteriorations on
the Satisfactory partition (e.g. Visual Detector fixes).

Examples of Fix Integration
Figure 8 presents examples of different ways fix workflows
affect the system output. Figure 8(a) is an example of fixes
to the Visual Detector resulting in a satisfactory system out-
put. In this example, workers removed the erroneous ob-
ject kite and added umbrella which propagated the im-
provement to the final caption. In the larger dataset, suc-
cessful propagations of individual component fixes to the
final output are also observed for activity fixes, common-
sense fixes, and caption refinement fixes. Figure 8(b) shows
an example of fixes having a limited improvement on the
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Before fix
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laptop computer.
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of a table.
(guitar missing)(c) Dictionary limitation

Figure 8: Examples of applying the complete fix workflow

final caption due to the commonsense barrier of the Lan-
guage Model. In this example, the word horse was present
in both the original and the fixed word list. However, none
of the sentences generated by the Language Model could de-
pict the situation in the image as it was not found to be likely.
This example is not unique, the Unsatisfactory dataset
contains a few more images of the same nature which de-
scribe an unlikely situation that are (at the moment) hard to
be described by a statistical automated system. Figure 8(c)
is an example in which improvements from fixes are hin-
dered by the limited size of the dictionary. Since the word
guitar is not in the dictionary, the final caption fails to
provide a satisfactory description.

Discussion
Quality control and methodology cost. For all crowd-
sourcing experiments we applied the following quality con-
trol techniques: (i) spam detection based on worker dis-
agreement, (ii) worker training via representative examples
and detailed instructions, (iii) periodical batching to prevent
worker overload and keep them engaged. These techniques
ensured high-quality data and enabled us to rely on the ma-
jority vote aggregation. Depending on the human computa-
tion task, specialized label aggregation techniques can also
be leveraged to further improve data quality.

The cost of human-in-the loop troubleshooting depends
on the number of components, the number of fixes, the fix
workload, and the size of the dataset to be investigated. Our
analysis covered various fix workflows on all components
in the 1000 images Evaluation dataset which showed
to be a good representative of the Validation dataset.
The total cost of the complete fix workflow (the most expen-
sive one) was $1,850, respectively spent in system evalua-
tion ($250), Visual Detector fixes ($450), Language Model
fixes ($900), and Caption Reranker fixes ($250). For a more
specialized troubleshooting, the system designer can guide
the process towards components that are prime candidates
for improvement or on errors to which users are most sensi-
tive. We provide further details on quality control and cost
aspects in the longer version of the paper (Nushi et al. 2016).

Our analysis shows that even with a reasonably small
subset of data, our human-in-the loop methodology can ef-
ficiently characterize system failure and identify potential
component fixes. Alternative improvement methods (i.e. re-

training) require a larger amount of data and oftentimes do
not ensure significant improvements. This can happen due
inherent learning barriers in the system or slow learning
curves of underlying algorithms.
System improvement. The results from the methodology
provide guidance on next steps to improve the captioning
system. First, improving the Reranker emerges as the most
promising direction to pursue. Second, due to entanglement
issues, improvements on the Visual Detector are suppressed
by the shortcomings of the Language Model. Therefore, Vi-
sual Detector fixes need to be accompanied with a more ca-
pable and commonsense Language Model. Note these in-
sights cannot be revealed via other methodologies that do
not involve human computation as it is challenging to auto-
matically simulate improved components without significant
engineering effort.

There are multiple ways how human input collected from
simulating component fixes can help with permanently im-
plementing component fixes. Human fixes on the Visual
Detector reveal that the majority of mistakes are false de-
tections. This issue can be addressed by improving model
precision. Moreover, the data collected from language and
commonsense fixes can be used for training better language
models. or for immediately filtering out phrases and sen-
tences flagged by workers. Finally, since a common type
of reranking error occurs when the component chooses sen-
tences with words scored low by the Detector, the Reranker
can be improved by increasing the weight of the image-
caption similarity score.
Generalizability. The general methodology we presented
can be applied to a broad range of component-based systems
that are designed to be modular and their component input
/ output is human-interpretable. Even in systems in which
these assumptions do not hold in the functional component
design, a new structure can be discovered by logically sep-
arating components in boundaries where data dependencies
are guaranteed and the exchanged data can be analyzed by
humans.

Applying the methodology to a new system requires the
designer to customize the methodology by identifying com-
ponent fixes, defining system quality measures and design-
ing human computation tasks for evaluation and for simulat-
ing component fixes. In addition to the captioning system,
we conceptually applied our methodology to two other sys-



tems: (i) question answering with knowledge bases and web
search (Yih et al. 2015), and (ii) an email-based reminder
for a personal assistant. Our feasibility analysis showed that
both applications are compatible with the methodology and
highlighted that the most crucial aspect of customization
is providing careful and non-ambiguous training to crowd-
sourcing workers tailored to the system context. Given the
novelty of the proposed human interventions, the resulting
crowdsourcing tasks are expected to be different from the
typical labeling tasks frequently encountered in today’s plat-
forms. Such problems are usually more interesting and en-
gaging to crowdsourcing workers.
Alternative use cases. In this work, we discuss the benefits
of using a human-in-the-loop methodology for troubleshoot-
ing integrative systems by simulating fixes within the ex-
isting individual components of a system. The methodol-
ogy can additionally be used for further troubleshooting use
cases as follows:
• Component prototyping — An interesting application of

human interventions is to completely simulate the output
of a component if building it is currently difficult or too
expensive. This would allow system designers to make
feasibility studies before developing a new component.

• Architectural fixes — Our goal in this work was to study
single-component fixes that precisely follow the current
given architecture. Besides individual component fixes, a
system designer may be interested to explore fixes with
architectural modifications (e.g. exposing the image to
the Language Model), which is useful if designers are
not bound to the initial architecture. Some examples in-
clude merging, dividing, or introducing new components.
In these cases, the task design for human fixes needs to be
adjusted according to the new architectural specification
and the data exchange flow between components.

• Imperfect fixes — In our evaluation, we analyzed fixes
that simulate perfect component states. However, build-
ing flawless components is not always feasible. There-
fore, it is realistic to leverage the methodology to test im-
perfect fixes by only partially incorporating the human-
generated corrections.

Related Work
Human input for Machine Learning. The contribution of
crowdsourcing to machine learning has been mostly limited
to the creation of offline data sets for learning (e.g., (Lin et
al. 2014; Sheng, Provost, and Ipeirotis 2008)), with recent
interest in active crowd participation to the development of
machine learning algorithms (Cheng and Bernstein 2015;
Zou, Chaudhuri, and Kalai 2015; Chang, Kittur, and Hahn
2016). However, there has been only limited work on un-
derstanding and diagnosing errors of such systems. On de-
bugging a single classifier, researchers have developed tech-
niques for a domain expert to interact with the machine
learning process (Chakarov et al. 2016; Kulesza et al. 2010;
Patel et al. 2010; Attenberg, Ipeirotis, and Provost 2011).
Our work contributes to this line of literature by studying the
diagnosis of component-based systems, rather than individ-
ual predictive components, by leveraging the crowd input.

Crowdsourcing for Image Captioning. Crowdsourcing is
heavily used for collecting data for object recognition and
image captioning (Lin et al. 2014; Fang et al. 2015). In terms
of evaluating the performance of a component-based sys-
tem, previous work explored replacing different components
with human input to measure the effect of component imper-
fections on system performance (Parikh and Zitnick 2011b;
2011a; Yao et al. 2015). This approach provides information
on the current system but does not offer guidance on system
improvements. Our work differs from these studies in that it
evaluates the effect of different component fixes on system
performance to guide decisions on future improvements.
Troubleshooting and Blame Assignment. The problems
of error diagnosis and blame assignment have been stud-
ied for systems whose components are not machine learned
and the state of components is binary through rule-based and
model-based diagnosis approaches (Darwiche 2000). Breese
and Heckerman developed Bayesian networks for predicting
the state of each component and for making decisions about
the next repair action to take (Breese and Heckerman 1996).
In recent work, Sculley et. al., overviewed the challenges
of maintaining and improving real-world machine learning
systems highlighting error diagnosis as a critical task in par-
ticular for component-based systems (Sculley et al. 2015).
An alternative way of improving machine learning algo-
rithms is active learning (Settles 2010). Current techniques
are applicable to single components (e.g. classifiers) but not
to integrative systems with multiple components which is
the focus of this work.

Conclusion and Future Work
We reviewed our efforts for troubleshooting component-
based machine learning systems. The proposed methodol-
ogy highlights the benefits of deeper integration of crowd
input on troubleshooting and improving these integrative
systems. Future work directions include the exploration of
models that learn from the log data of our methodology to
predict which fixes are most likely to improve the system
quality for a given input. Such models can enable algorithms
to query human fixes during system execution for improved
system output. Finally, there is an opportunity to develop
generalizable pipelines for automating human-in-the-loop
troubleshooting of machine learning systems with reusable
crowdsourcing task templates. Such a pipeline would pro-
vide valuable insights on system development and create a
feedback loop in support of continuous improvement.
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