
Hierarchical Recurrent Attention Network for Response Generation

Chen Xing12∗ , Wei Wu3 , Yu Wu4 , Ming Zhou3 , Yalou Huang12 , Wei-Ying Ma3

1College of Computer and Control Engineering, Nankai University, Tianjin, China
2College of Software, Nankai University, Tianjin, China

3 Microsoft Research, Beijing, China
4State Key Lab of Software Development Environment, Beihang University, Beijing, China
{v-chxing,wuwei,v-wuyu,mingzhou,wyma}@microsoft.com ylhuang@nankai.edu.cn

Abstract

We study multi-turn response generation
in chatbots where a response is generated
according to a conversation context. Ex-
isting work has modeled the hierarchy of
the context, but does not pay enough at-
tention to the fact that words and utter-
ances in the context are differentially im-
portant. As a result, they may lose im-
portant information in context and gen-
erate irrelevant responses. We propose
a hierarchical recurrent attention network
(HRAN) to model both aspects in a uni-
fied framework. In HRAN, a hierarchical
attention mechanism attends to important
parts within and among utterances with
word level attention and utterance level at-
tention respectively. With the word level
attention, hidden vectors of a word level
encoder are synthesized as utterance vec-
tors and fed to an utterance level encoder
to construct hidden representations of the
context. The hidden vectors of the context
are then processed by the utterance level
attention and formed as context vectors for
decoding the response. Empirical studies
on both automatic evaluation and human
judgment show that HRAN can signifi-
cantly outperform state-of-the-art models
for multi-turn response generation.

1 Introduction

Conversational agents include task-oriented dia-
log systems which are built in vertical domains
for specific tasks (Young et al., 2013; Boden,
2006; Wallace, 2009; Young et al., 2010), and
non-task-oriented chatbots which aim to realize
natural and human-like conversations with people

∗The work was done when the first author was an intern
in Microsoft Research Asia.

Figure 1: An example of multi-turn conversation

regarding to a wide range of issues in open do-
mains (Jafarpour et al., 2010). A common practice
to build a chatbot is to learn a response genera-
tion model within an encoder-decoder framework
from large scale message-response pairs (Shang
et al., 2015; Vinyals and Le, 2015). Such mod-
els ignore conversation history when responding,
which is contradictory to the nature of real con-
versation between humans. To resolve the prob-
lem, researchers have taken conversation history
into consideration and proposed response gener-
ation for multi-turn conversation (Sordoni et al.,
2015; Serban et al., 2015; Serban et al., 2016b;
Serban et al., 2016c).

In this work, we study multi-turn response gen-
eration for open domain conversation in chatbots
in which we try to learn a response generation
model from responses and their contexts. A con-
text refers to a message and several utterances in
its previous turns. In practice, when a message
comes, the model takes the context as input and
generate a response as the next turn. Multi-turn
conversation requires a model to generate a re-
sponse relevant to the whole context. The com-
plexity of the task lies in two aspects: 1) a conver-
sation context is in a hierarchical structure (words
form an utterance, and utterances form the con-
text) and has two levels of sequential relationships
among both words and utterances within the struc-
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ture; 2) not all parts of the context are equally
important to response generation. Words are dif-
ferentially informative and important, and so are
the utterances. State-of-the-art methods such as
HRED (Serban et al., 2016a) and VHRED (Ser-
ban et al., 2016c) focus on modeling the hierar-
chy of the context, whereas there is little explo-
ration on how to select important parts from the
context, although it is often a crucial step for gen-
erating a proper response. Without this step, ex-
isting models may lose important information in
context and generate irrelevant responses1. Fig-
ure 1 gives an example from our data to illustrate
the problem. The context is a conversation be-
tween two speakers about height and boyfriend,
therefore, to respond to the context, words like
“girl”, “boyfriend” and numbers indicating height
such as “160” and “175” are more important than
“not good-looking”. Moreover, u1 and u4 convey
main semantics of the context, and therefore are
more important than the others for generating a
proper response. Without modeling the word and
utterance importance, the state-of-the-art model
VHRED (Serban et al., 2016c) misses important
points and gives a response “are you a man or
a woman” which is OK if there were only u3
left, but nonsense given the whole context. Af-
ter paying attention to the important words and ut-
terances, we can have a reasonable response like
“No, I don’t care much about height” (the response
is generated by our model, as will be seen in ex-
periments).

We aim to model the hierarchy and the impor-
tant parts of contexts in a unified framework. In-
spired by the success of the attention mechanism
in single-turn response generation (Shang et al.,
2015), we propose a hierarchical recurrent atten-
tion network (HRAN) for multi-turn response gen-
eration in which we introduce a hierarchical atten-
tion mechanism to dynamically highlight impor-
tant parts of word sequences and the utterance se-
quence when generating a response. Specifically,
HRAN is built in a hierarchical structure. At the
bottom of HRAN, a word level recurrent neural
network (RNN) encodes each utterance into a se-
quence of hidden vectors. In generation of each
word in the response, a word level attention mech-

1Note that one can simply concatenate all utterances and
employs the classic sequence-to-sequence with attention to
model word importance in generation. This method, how-
ever, loses utterance relationships and results in bad genera-
tion quality, as will be seen in expeirments.

anism assigns a weight to each vector in the hid-
den sequence of an utterance and forms an utter-
ance vector by a linear combination of the vectors.
Important hidden vectors correspond to important
parts in the utterance regarding to the generation
of the word, and contribute more to the forma-
tion of the utterance vector. The utterance vectors
are then fed to an utterance level RNN which con-
structs hidden representations of the context. Dif-
ferent from classic attention mechanism, the word
level attention mechanism in HRAN is dependent
on both the decoder and the utterance level RNN.
Thus, both the current generated part of the re-
sponse and the content of context can help select
important parts in utterances. At the third layer, an
utterance attention mechanism attends to impor-
tant utterances in the utterance sequence and sum-
marizes the sequence as a context vector. Finally,
at the top of HRAN, a decoder takes the context
vector as input and generates the word in the re-
sponse. HRAN mirrors the data structure in multi-
turn response generation by growing from words
to utterances and then from utterances to the out-
put. It extends the architecture of current hierar-
chical response generation models by a hierarchi-
cal attention mechanism which not only results in
better generation quality, but also provides insight
into which parts in an utterance and which utter-
ances in context contribute to response generation.

We conduct an empirical study on large scale
open domain conversation data and compare our
model with state-of-the-art models using both au-
tomatic evaluation and side-by-side human com-
parison. The results show that on both met-
rics our model can significantly outperform ex-
isting models for multi-turn response genera-
tion. We release our source code and data at
https://github.com/LynetteXing1991/HRAN.

The contributions of the paper include (1) pro-
posal of attending to important parts in contexts
in multi-turn response generation; (2) proposal of
a hierarchical recurrent attention network which
models hierarchy of contexts, word importance,
and utterance importance in a unified framework;
(3) empirical verification of the effectiveness of
the model by both automatic evaluation and hu-
man judgment.

2 Related Work

Most existing effort on response generation is paid
to single-turn conversation. Starting from the ba-



sic sequence to sequence model (Sutskever et al.,
2014), various models (Shang et al., 2015; Vinyals
and Le, 2015; Li et al., 2015; Xing et al., 2016;
Li et al., 2016; ?) have been proposed under
an encoder-decoder framework to improve genera-
tion quality from different perspectives such as rel-
evance, diversity, and personality. Recently, multi-
turn response generation has drawn attention from
academia. For example, Sordoni et al. (2015)
proposed DCGM where context information is en-
coded with a multi-layer perceptron (MLP). Ser-
ban et al. (2016a) proposed HRED which models
contexts in a hierarchical encoder-decoder frame-
work. Under the architecture of HRED, more vari-
ants including VHRED (Serban et al., 2016c) and
MrRNN (Serban et al., 2016b) are proposed in or-
der to introduce latent and explicit variables into
the generation process. In this work, we also study
multi-turn response generation. Different from the
existing models which do not model word and ut-
terance importance in generation, our hierarchical
recurrent attention network simultaneously mod-
els the hierarchy of contexts and the importance
of words and utterances in a unified framework.

Attention mechanism is first proposed for ma-
chine translation (Bahdanau et al., 2014; Cho et
al., 2015), and is quickly applied to single-turn re-
sponse generation afterwards (Shang et al., 2015;
Vinyals and Le, 2015). Recently, Yang et al.
(2016) proposed a hierarchical attention network
for document classification in which two levels of
attention mechanisms are used to model the con-
tributions of words and sentences in classification
decision. Seo et al. (2016) proposed a hierarchical
attention network to precisely attending objects of
different scales and shapes in images. Inspired by
these work, we extend the attention mechanism for
single-turn response generation to a hierarchical
attention mechanism for multi-turn response gen-
eration. To the best of our knowledge, we are the
first who apply the hierarchical attention technique
to response generation in chatbots.

3 Problem Formalization

Suppose that we have a data set D =
{(Ui,Yi)}Ni=1. ∀i, (Ui,Yi) consists of a re-
sponse Yi = (yi,1, . . . , yi,Ti) and its context
Ui = (ui,1, . . . , ui,mi) with yi,j the j-th word,
ui,mi the message, and (ui,1, . . . , ui,mi−1) the ut-
terances in previous turns. In this work, we re-
quire mi > 2 and thus each context has at

least one utterance as conversation history. ∀j,
ui,j =

(
wi,j,1, . . . , wi,j,Ti,j

)
where wi,j,k is the k-

th word. We aim to estimate a generation prob-
ability p(y1, . . . , yT |U) from D , and thus given
a new conversation context U, we can gener-
ate a response Y = (y1, . . . , yT ) according to
p(y1, . . . , yT |U).

In the following, we will elaborate how to con-
struct p(y1, . . . , yT |U) and how to learn it.

4 Hierarchical Recurrent Attention
Network

We propose a hierarchical recurrent attention net-
work (HRAN) to model the generation probability
p(y1, . . . , yT |U). Figure 2 gives the architecture
of HRAN. Roughly speaking, before generation,
HRAN employs a word level encoder to encode
information of every utterance in context as hidden
vectors. Then, when generating every word, a hi-
erarchical attention mechanism attends to impor-
tant parts within and among utterances with word
level attention and utterance level attention respec-
tively. With the two levels of attention, HRAN
works in a bottom-up way: hidden vectors of ut-
terances are processed by the word level attention
and uploaded to an utterance level encoder to form
hidden vectors of the context. Hidden vectors of
the context are further processed by the utterance
level attention as a context vector and uploaded to
the decoder to generate the word.

In the following, we will describe details and
the learning objective of HRAN.

4.1 Word Level Encoder

Given U = (u1, . . . , um), we employ a bidirec-
tional recurrent neural network with gated recur-
rent units (BiGRU) (Bahdanau et al., 2014) to en-
code each ui, i ∈ {1, . . . ,m} as hidden vectors
(hi,1, . . . ,hi,Ti). Formally, suppose that ui =
(wi,1, . . . , wi,Ti), then ∀k ∈ {1, . . . , Ti}, hi,k is
given by

hi,k = concat(
−→
h i,k,

←−
h i,k), (1)

where concat(·, ·) is an operation defined as con-
catenating the two arguments together,

−→
h i,k is the

k-th hidden state of a forward GRU (Cho et al.,
2014), and

←−
h i,k is the k-th hidden state of a back-

ward GRU. The forward GRU reads ui in its order
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Figure 2: Hierarchical Recurrent Attention Network

(i.e., from wi,1 to wi,Ti), and calculates
−→
h i,k as

zk = σ(Wzei,k + Vz
−→
h i,k−1)

rk = σ(Wrei,k + Vr
−→
h i,k−1)

sk = tanh(Wsei,k + Vs(
−→
h i,k−1 ◦ rk))

−→
h i,k = (1− zk) ◦ sk + zk ◦

−→
h i,k−1,

(2)

where
−→
h i,0 is initialized with a isotropic Gaus-

sian distribution, ei,k is the embedding of wi,k,
zk and rk are an update gate and a reset gate
respectively, σ(·) is a sigmoid function, and
Wz,Wr,Ws,Vz,Vr,Vs are parameters. The
backward GRU reads ui in its reverse order (i.e.,
from wi,Ti to wi,1) and generates {

←−
h i,k}Ti

k=1 with
a parameterization similar to the forward GRU.

4.2 Hierarchical Attention and Utterance
Encoder

Suppose that the decoder has generated t − 1
words, at step t, word level attention calculates a
weight vector (αi,t,1, . . . , αi,t,Ti) (details are de-
scribed later) for {hi,j}Ti

j=1 and represents utter-
ance ui as a vector ri,t. ∀i ∈ {1, . . . ,m}, ri,t is
defined by

ri,t =

Ti∑
j=1

αi,t,jhi,j . (3)

{ri,t}mi=1 are then utilized as input of an utterance
level encoder and transformed to (l1,t, . . . , lm,t) as
hidden vectors of the context. After that, utterance
level attention assigns a weight βi,t to li,t (details
are described later) and forms a context vector ct
as

ct =

m∑
i=1

βi,tli,t. (4)

In both Equation (3) and Equation (4), the more
important a hidden vector is, the larger weight it

will have, and the more contributions it will make
to the high level vector (i.e., the utterance vector
and the context vector). This is how the two levels
of attention attends to the important parts of utter-
ances and the important utterances in generation.

More specifically, the utterance level encoder is
a backward GRU which processes {ri,t}mi=1 from
the message rm,t to the earliest history r1,t. Simi-
lar to Equation (2), ∀i ∈ {m, . . . , 1}, li,t is calcu-
lated as

z′i = σ(Wzlri,t + Vzlli+1,t)

r′i = σ(Wrlri,t + Vrlli+1,t)

s′i = tanh(Wslri,t + Vsl(li+1,t ◦ r′i))
li,t = (1− z′i) ◦ s′i + z′i ◦ li+1,t,

(5)

where lm+1,t is initialized with a isotropic Gaus-
sian distribution, z′i and r′i are the update gate and
the reset gate of the utterance level GRU respec-
tively, and Wzl,Vzl,Wrl,Vrl,Wsl,Vsl are pa-
rameters.

Different from the classic attention mechanism,
word level attention in HRAN depends on both
the hidden states of the decoder and the hidden
states of the utterance level encoder. It works in
a reverse order by first weighting {hm,j}Tm

j=1 and
then moving towards {h1,j}T1

j=1 along the utter-
ance sequence. ∀i ∈ {m, . . . , 1}, j ∈ {1, . . . , Ti},
weight αi,t,j is calculated as

ei,t,j = η(st−1, li+1,t,hi,j);

αi,t,j =
exp(ei,t,j)∑Ti

k=1 exp(ei,t,k)
,

(6)

where lm+1,t is initialized with a isotropic Gaus-
sian distribution, st−1 is the (t−1)-th hidden state
of the decoder, and η(·) is a multi-layer perceptron
(MLP) with tanh as an activation function.



Note that the word level attention and the utter-
ance level encoding are dependent with each other
and alternatively conducted (first attention then
encoding). The motivation we establish the depen-
dency between αi,t,j and li+1,t is that content from
the context (i.e., li+1,t) could help identify im-
portant information in utterances, especially when
st−1 is not informative enough (e.g., the generated
part of the response are almost function words).
We require the utterance encoder and the word
level attention to work reversely, because we think
that compared to history, conversation that hap-
pened after an utterance in the context is more
likely to be capable of identifying important in-
formation in the utterance for generating a proper
response to the context.

With {li,t}mi=1, the utterance level attention cal-
culates a weight βi,t for li,t as

e′i,t = η(st−1, li,t);

βi,t =
exp(e′i,t)∑m
i=1 exp(e

′
i,t)

.
(7)

4.3 Decoding the Response

The decoder of HRAN is a RNN language model
(Mikolov et al., 2010) conditioned on the context
vectors {ct}Tt=1 given by Equation (4). Formally,
the probability distribution p(y1, . . . , yT |U) is de-
fined as

p(y1, ..., yT |U) = p(y1|c1)

T∏
t=2

p(yt|ct, y1, ..., yt−1). (8)

where p(yt|ct, y1, ..., yt−1) is given by

st = f(eyt−1 , st−1, ct)

p(yt|ct, y1, ..., yt−1) = Iyt · softmax(st, eyt−1),
(9)

where st is the hidden state of the decoder at step t,
eyt−1 is the embedding of yt−1, f is a GRU, Iyt is
the one-hot vector for yt, and softmax(st, eyt−1)
is a V -dimensional vector with V the response
vocabulary size and each element the generation
probability of a word. In practice, we employ the
beam search (Tillmann and Ney, 2003) technique
to generate the n-best responses.

Let us denote Θ as the parameter set of HRAN,
then we estimate Θ from D = {(Ui,Yi)}Ni=1 by
minimizing the following objective function:

Θ̂ = arg min
Θ

−
N∑
i=1

log (p(yi,1, ..., yi,Ti |Ui)) (10)

5 Experiments

We compared HRAN with state-of-the-art meth-
ods by both automatic evaluation and side-by-side
human judgment.

5.1 Data Set

We built a data set from Douban Group2 which is a
popular Chinese social networking service (SNS)
allowing users to discuss a wide range of topics
in groups through posting and commenting. In
Douban Group, regarding to a post under a specific
topic, two persons can converse with each other
by one posting a comment and the other quoting
it and posting another comment. We crawled 20
million conversations between two persons with
the average number of turns as 6.32. The data
covers many different topics and can be viewed
as a simulation of open domain conversations in a
chatbot. In each conversation, we treated the last
turn as response, and the remaining turns as con-
text. As preprocessing, we first employed Stan-
ford Chinese word segmenter3 to tokenize each
utterance in the data. Then we removed the con-
versations whose response appearing more than
50 times in the whole data to prevent them from
dominating learning. We also removed the con-
versations shorter than 3 turns and the conversa-
tions with an utterance longer than 50 words. Af-
ter the preprocessing, there are 1, 656, 652 conver-
sations left. From them, we randomly sampled
1 million conversations as training data, 10, 000
conversations as validation data, and 1, 000 con-
versations as test data, and made sure that there is
no overlap among them. In the test data, the con-
texts were used to generate responses and their re-
sponses were used as ground truth to calculate per-
plexity of generation models. We kept the 40, 000
most frequent words in the contexts of the training
data to construct a context vocabulary. The vo-
cabulary covers 98.8% of words appearing in the
contexts of the training data. Similarly, we con-
structed a response vocabulary that contains the
40, 000 most frequent words in the responses of
the training data which covers 99.0% words ap-
pearing in the responses. Words outside the two
vocabularies were treated as “UNK”. The data will
be publicly available.

2https://www.douban.com/group/explore
3http://nlp.stanford.edu/software/segmenter.shtml



Model Validation Perplexity Test Perplexity
S2SA 43.679 44.508
HRED 46.279 47.467

VHRED 44.548 45.484
HRAN 40.257 41.138

Table 1: Perplexity results

5.2 Baselines

We compared HRAN with the following models:
S2SA: we concatenated all utterances in a con-

text as a long sequence and treated the sequence
and the response as a message-response pair. By
this means, we transformed the problem of multi-
turn response generation to a problem of single-
turn response generation and employed the stan-
dard sequence to sequence with attention (Shang
et al., 2015) as a baseline.

HRED: the hierarchical encoder-decoder
model proposed by (Serban et al., 2016a).

VHRED: a modification of HRED (Serban et
al., 2016c) where latent variables are introduced
in to generation. In all models, we set the dimen-
sionality of hidden states of encoders and decoders
as 1000, and the dimensionality of word embed-
ding as 620. All models were initialized with
isotropic Gaussian distributions X ∼ N (0, 0.01)
and trained with an AdaDelta algorithm (Zeiler,
2012) on a NVIDIA Tesla K40 GPU. The batch
size is 128. We set the initial learning rate as 1.0
and reduced it by half if the perplexity on val-
idation began to increase. We implemented the
models with an open source deep learning tool
Blocks4.

5.3 Evaluation Metrics

How to evaluate a response generation model is
still an open problem but not the focus of the pa-
per. We followed the existing work and employed
the following metrics:

Perplexity: following (Vinyals and Le, 2015),
we employed perplexity as an evaluation metric.
Perplexity is defined by Equation (11). It mea-
sures how well a model predicts human responses.
Lower perplexity generally indicates better gener-
ation performance. In our experiments, perplex-
ity on validation was used to determine when to
stop training. If the perplexity stops decreasing
and the difference is smaller than 2.0 five times in
validation, we think that the algorithm has reached
convergence and terminate training. We tested the
generation ability of different models by perplex-

4https://github.com/mila-udem/blocks

Models Win Loss Tie Kappa
HRAN v.s. S2SA 27.3 20.6 52.1 0.37
HRAN v.s. HRED 27.2 21.2 51.6 0.35

HRAN v.s. VHRED 25.2 20.4 54.4 0.34

Table 2: Human annotation results (in %)

ity on the test data.

PPL = exp

{
− 1

N
ΣN

i=1 log(p(Yi|Ui))

}
. (11)

Side-by-side human annotation: we also com-
pared HRAN with every baseline model by side-
by-side human comparison. Specifically, we re-
cruited three native speakers with rich Douban
Group experience as human annotators. To each
annotator, we showed a context of a test example
with two generated responses, one from HRAN
and the other one from a baseline model. Both
responses are the top one results in beam search.
The two responses were presented in random or-
der. We then asked the annotator to judge which
one is better. The criteria is, response A is better
than response B if (1) A is relevant, logically con-
sistent to the context, and fluent, while B is either
irrelevant or logically contradictory to the context,
or it is disfluent (e.g., with grammatical errors or
UNKs); or (2) both A and B are relevant, consis-
tent, and fluent, but A is more informative and in-
teresting than B (e.g., B is a universal reply like
“I see”). If the annotator cannot tell which one is
better, he/she was asked to label a “tie”. Each an-
notator individually judged 1000 test examples for
each HRAN-baseline pair, and in total, each one
judged 3000 examples (for three pairs). Agree-
ments among the annotators were calculated using
Fleiss’ kappa (Fleiss and Cohen, 1973).

Note that we do not choose BLEU (Papineni et
al., 2002) as an evaluation metric, because (1) Liu
et al. (Liu et al., 2016) have proven that BLEU
is not a proper metric for evaluating conversa-
tion models as there is weak correlation between
BLEU and human judgment; (2) different from the
single-turn case, in multi-turn conversation, one
context usually has one copy in the whole data.
Thus, without any human effort like what Sordoni
et al. (Sordoni et al., 2015) did in their work, each
context only has a single reference in test. This
makes BLEU even unreliable as a measurement
of generation quality in open domain conversation
due to the diversity of responses.

5.4 Evaluation Results
Table 1 gives the results on perplexity. HRAN
achieves the lowest perplexity on both validation



Figure 3: Case study (utterances between two persons in contexts are split by “⇒”)

and test. We conducted t-test on test perplexity and
the result shows that the improvement of HRAN
over all baseline models is statistically significant
(p-value < 0.01).

Table 2 shows the human annotation results.
The ratios were calculated by combining the anno-
tations from the three judges together. We can see
that HRAN outperforms all baseline models and
all comparisons have relatively high kappa scores
which indicates that the annotators reached rela-
tively high agreements in judgment. Compared
with S2SA, HRED, and VHRED, HRAN achieves
preference gains (win-loss) 6.7%, 6%, 4.8% re-
spectively. Sign test results show that the improve-
ment is statistically significant (p-value< 0.01 for
HRAN v.s. S2SA and HRAN v.s. HRED, and p-
value < 0.05 for HRAN v.s. VHRED). Among
the three baseline models, S2SA is the worst one,
because it loses relationships among utterances in
the context. VHRED is the best baseline model,
which is consistent with the existing literatures
(Serban et al., 2016c). We checked the cases on
which VHRED loses to HRAN and found that
on 56% cases, VHRED generated irrelevant re-
sponses while responses given by HRAN are rele-
vant, logically consistent, and fluent.

5.5 Discussions

Case study: Figure 3 lists some cases from the
test set to compare HRAN with the best baseline
VHRED. We can see that HRAN not only can
answer the last turn in the context (i.e., the mes-

Model Win Loss Tie PPL
No UD Att 22.3% 24.8% 52.9% 41.54

No Word Att 20.4% 25.0% 50.6% 43.24
No Utterance Att 21.1% 23.7% 55.2% 47.35

Table 3: Model ablation results

sage) properly by understanding the context (e.g.,
case 2), but also be capable of starting a new topic
according to the conversation history to keep the
conversation going (e.g., case 1). In case 2, HRAN
understands that the message is actually asking
“why can’t you come to have dinner with me?”
and generates a proper response that gives a plau-
sible reason. In case 1, HRAN properly brings up
a new topic by asking the “brand” of the user’s “lo-
tion” when the current topic “how to exfoliate my
skin” has come to an end. The new topic is based
on the content of the context and thus can naturally
extends the conversation in the case.

Visualization of attention: to further illustrate
why HRAN can generate high quality responses,
we visualized the hierarchical attention for the
cases in Figure 3 in Figure 4. In every sub-figure,
each line is an utterance with blue color indicat-
ing word importance. The leftmost column of
each sub-figure uses red color to indicate utterance
importance. Darker color means more important
words or utterances. The importance of a word or
an utterance was calculated by the average weight
of the word or the utterance assigned by attention
in generating the response given at the bottom of
each sub-figure. It reflects an overall contribu-
tion of the word or the utterance to generate the
response. Above each line, we gave the transla-



(a) Visualization of case 1 (b) Visualization of case 2

(c) Visualization of case 3 (d) Visualization of case 4

Figure 4: Attention visualization (the importance of a word or an utterance is calculated as their average
weights when generating the whole response)

tion of the utterance, and below it, we translated
important words. Note that word-to-word trans-
lation may cause confusion sometimes, therefore,
we left some words (most of them are function
words) untranslated. We can see that the hierar-
chical attention mechanism in HRAN can attend
to both important words and important utterances
in contexts. For example, in Figure 4(c), words
including “girl” and “boyfriend” and numbers in-
cluding “160” and “175” are highlighted, and u1
and u4 are more important than others. The result
matches our intuition in introduction. In Figure
4(b), HRAN assigned larger weights to u1, u4 and
words like “dinner” and “why”. This explains why
the model can understand that the message is ac-
tually asking “why can’t you come to have dinner
with me?”. The figures provide us insights on how
HRAN understands contexts in generation.

Model ablation: we then examine the effect
of different components of HRAN by removing
them one by one. We first removed li+1 from
η(st−1, li+1,t,hi,j) in Equation (6) (i.e., removing
utterance dependency from word level attention)
and denoted the model as “No UD Att”, then we
removed word level attention and utterance level
attention separately, and denoted the models as
“No Word Att” and “No Utterance Att” respec-
tively. We conducted side-by-side human compar-
ison on these models with the full HRAN on the
test data and also calculated their test perplexity
(PPL). Table 3 gives the results. We can see that

all the components are useful because removing
any of them will cause performance drop. Among
them, word level attention is the most important
one as HRAN achieved the most preference gain
(4.6%) to No Word Att on human comparison.

Error analysis: we finally investigate how to
improve HRAN in the future by analyzing the
cases on which HRAN loses to VHRED. The er-
rors can be summarized as: 51.81% logic con-
tradiction, 26.95% universal reply, 7.77% irrel-
evant response, and 13.47% others. Most bad
cases come from universal replies and responses
that are logically contradictory to contexts. This
is easy to understand as HRAN does not explicitly
model the two issues. The result also indicates that
(1) although contexts provide more information
than single messages, multi-turn response gener-
ation still has the “safe response” problem as the
single-turn case; (2) although attending to impor-
tant words and utterances in generation can lead
to informative and logically consistent responses
for many cases like those in Figure 3, it is still not
enough for fully understanding contexts due to the
complex nature of conversations. The irrelevant
responses might be caused by wrong attention in
generation. Although the analysis might not cover
all bad cases (e.g., HRAN and VHRED may both
give bad responses), it sheds light on our future di-
rections: (1) improving response diversity, e.g., by
introducing extra content into generation like Xing
et al. (Xing et al., 2016) and Mou et al. (Mou et al.,



2016) did for single-turn conversation; (2) model-
ing logics in contexts; (3) improving attention.

6 Conclusion

We propose a hierarchical recurrent attention net-
work (HRAN) for multi-turn response generation
in chatbots. Empirical studies on large scale con-
versation data show that HRAN can significantly
outperform state-of-the-art models.
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