
To Create What You Tell: Generating Videos from Captions*

Yingwei Pan, Zhaofan Qiu, Ting Yao, Houqiang Li and Tao Mei
University of Science and Technology of China, Hefei, China

Microsoft Research, Beijing, China
{panyw.ustc,zhaofanqiu}@gmail.com;{tiyao,tmei}@microsoft.com;lihq@ustc.edu.cn

ABSTRACT

We are creating multimedia contents everyday and every-
where. While automatic content generation has played a
fundamental challenge to multimedia community for decades,
recent advances of deep learning have made this problem
feasible. For example, the Generative Adversarial Networks
(GANs) is a rewarding approach to synthesize images. N-
evertheless, it is not trivial when capitalizing on GANs to
generate videos. The difficulty originates from the intrinsic
structure where a video is a sequence of visually coherent and
semantically dependent frames. This motivates us to explore
semantic and temporal coherence in designing GANs to gener-
ate videos. In this paper, we present a novel Temporal GANs
conditioning on Captions, namely TGANs-C, in which the
input to the generator network is a concatenation of a latent
noise vector and caption embedding, and then is transformed
into a frame sequence with 3D spatio-temporal convolutions.
Unlike the naive discriminator which only judges pairs as
fake or real, our discriminator additionally notes whether
the video matches the correct caption. In particular, the
discriminator network consists of three discriminators: video
discriminator classifying realistic videos from generated ones
and optimizes video-caption matching, frame discriminator
discriminating between real and fake frames and aligning
frames with the conditioning caption, and motion discrimi-
nator emphasizing the philosophy that the adjacent frames
in the generated videos should be smoothly connected as in
real ones. We qualitatively demonstrate the capability of our
TGANs-C to generate plausible videos conditioning on the
given captions on two synthetic datasets (SBMG and TBMG)
and one real-world dataset (MSVD). Moreover, quantitative
experiments on MSVD are performed to validate our proposal
via Generative Adversarial Metric and human study.
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Input sentence:  digit 6 is moving up and down. 

Output video:

Input sentence:  digit 7 is left and right and digit 5 is up and down. 

Output video:

Input sentence:  a cook puts noodles into some boiling water. 

Output video:

Figure 1: Examples of video generation from captions on

Single-Digit Bouncing MNIST GIFs, Two-Digit Bounc-

ing MNIST GIFs and Microsoft Research Video Descrip-
tion Corpus, respectively.
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1 INTRODUCTION

Characterizing and modeling natural images and videos re-
mains an open problem in computer vision and multimedia
community. One fundamental issue that underlies this chal-
lenge is the difficulty to quantify the complex variations and
statistical structures in images and videos. This motivates
the recent studies to explore Generative Adversarial Nets
(GANs) [5] in generating plausible images [4, 18]. Never-
theless, a video is a sequence of frames which additionally
contains temporal dependency, making it extremely hard
to extend GANs to video domain. Moreover, as videos are
often accompanied by text descriptors, e.g., tags or captions,
learning video generative models conditioning on text then
reduces sampling uncertainties and has a great potential
real-world applications. Particularly, we are interested in pro-
ducing videos from captions in this work, which is a brave
new and timely problem. It aims to generate a video which
is semantically aligned with the given descriptive sentence as
illustrated in Figure 1.
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In general, there are two critical issues in video generation
employing caption conditioning: temporal coherence across
video frames and semantic match between caption and the
generated video. The former yields insights into the learning
of generative model that the adjacent video frames are of-
ten visually and semantically coherent, and thus should be
smoothly connected over time. This can be regarded as an
intrinsic and generic property to produce a video. The later
pursues a model with the capability to create realistic videos
which are relevant to the given caption descriptions. As such,
the conditioned treatment is taken into account, on one hand
to create videos resembling the training data, and on the
other, to regularize the generative capacity by holistically
harnessing the relationship between caption semantics and
video content.

By jointly consolidating the idea of temporal coherence and
semantic match in translating text in the form of sentence in-
to videos, this paper extends the recipe of GANs and presents
a novel Temporal GANs conditioning on Caption (TGANs-C)
framework for video generation, as shown in Figure 2. Specif-
ically, sentence embedding encoded by the Long-Short Term
Memory (LSTM) networks is concatenated to the noise vector
as an input of the generator network, which produces a se-
quence of video frames by utilizing 3D convolutions. As such,
temporal connections across frames are explicitly strength-
ened throughout the progress of video generation. In the
discriminator network, in addition to determining whether
videos are real or fake, the network must be capable of learn-
ing to align videos with the conditioning information. In
particular, three discriminators are devised, including video
discriminator, frame discriminator and motion discriminator.
The former two classify realistic videos and frames from the
generated ones, respectively, and also attempt to recognize
the semantically matched video/frame-caption pairs from
mismatched ones. The latter one is to distinguish the dis-
placement between consecutive real or generated frames to
further enhance temporal coherence. As a result, the whole
architecture of TGANs-C is trained end-to-end by optimizing
three losses, i.e., video-level and frame-level matching-aware
loss to correct label of real or synthetic video/frames and
align video/frames with correct caption, respectively, and
temporal coherence loss to emphasize temporal consistency.

The main contribution of this work is the proposal of a
new architecture, namely TGANs-C, which is one of the first
effort towards generating videos conditioning on captions.
This also leads to the elegant views of how to guarantee
temporal coherence across generated video frames and how
to align video/frame content with the given caption, which
are the problems not yet fully understood in the literature.
Through an extensive set of quantitative and qualitative
experiments, we validate the effectiveness of our TGANs-C
model on three different benchmarks.

2 RELATED WORK

We briefly group the related work into two categories: natural
image synthesis and video generation. The former draws upon

research in synthesizing realistic images by utilizing deep
generative models, while the latter investigates generating
image sequence/video from scratch.

Image Synthesis. Synthesizing realistic images has been
studied and analyzed widely in AI systems for characterizing
the pixel level structure of natural images. There are two
main directions on automatically image synthesis: Variational
Auto-Encoders (VAEs) [10] and Generative Adversarial Net-
works (GANs) [5]. VAEs is a directed graphical model which
firstly constrains the latent distribution of the data to come
from prior normal distribution and then generates new sam-
ples through sampling from this distribution. This direction
is straightforward to train but introduce potentially restric-
tive assumptions about approximate posterior distribution,
always resulting in overly smoothed samples. Deep Recurrent
Attentive Writer (DRAW) [9] is one of the early works which
utilizes VAEs to generate images with a spatial attention
mechanism. Furthermore, Mansimov et al. extend this model
to generate images conditioning on captions by iteratively
drawing patches on a canvas and meanwhile attending to
relevant words in the description [12].

GANs can be regarded as the generator network modules
learnt with a two-player minimax game mechanism and has
shown the distinct ability of producing plausible images [4, 18].
Goodfellow et al. propose the theoretical framework of GANs
and utilize GANs to generate images without any supervised
information in [5]. Although the earlier GANs offer a distinct
and promising direction for image synthesis, the results are
somewhat noisy and blurry. Hence, Laplacian pyramid is
further incorporated into GANs in [4] to produce high quality
images. Later in [15], GANs is expended with a specialized
cost function for classification, named auxiliary classifier
GANs (AC-GANs), for generating synthetic images with
global coherence and high diversity conditioning on class
labels. Recently, Reed et al. utilize GANs for image synthesis
based on given text descriptions in [19], enabling translation
from character level to pixel level.

Video Generation. When extending the existing gener-
ative models (e.g., VAEs and GANs) to video domain, very
few works exploit such video generation from scratch task
as both the spatial and temporal complex variations need to
be characterized, making the problem very challenging. In
the direction of VAEs, Mittal et al. employ Recurrent VAEs
and an attention mechanism in a hierarchical manner to
create a temporally dependent image sequence conditioning
on captions [13]. For video generation with GANs, a spatio-
temporal 3D deconvolutions based GANs is firstly proposed
in [25] by untangling the scene’s foreground from the back-
ground. Most recently, the 3D deconvolutions based GANs
is further decomposed into temporal generator consisting
of 1D deconvolutional layers and image generator with 2D
deconvolutional layers for video generation in [20].

In short, our work in this paper belongs to video gen-
eration models capitalizing on adversarial learning. Unlike
the aforementioned GANs-based approaches which mainly
focus on video synthesis in an unconditioned manner, our
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Figure 2: Temporal GANs conditioning on Captions (TGANs-C) framework mainly consists of a generator network 𝐺

and a discriminator network 𝐷 (better viewed in color). Given a sentence 𝒮, a bi-LSTM is first utilized to contextually
embed the input word sequence, followed by a LSTM-based encoder to obtain the sentence representation S. The

generator network 𝐺 tries to synthesize realistic videos with the concatenated input of the sentence representation
S and random noise variable z. The discriminator network 𝐷 includes three discriminators: video discriminator to

distinguish real video from synthetic one and align video with the correct caption, frame discriminator to determine

whether each frame is real/fake and semantically matched/mismatched with the given caption, and motion discriminator
to exploit temporal coherence between consecutive frames. Accordingly, the whole architecture is trained with the

video-level matching-aware loss, frame-level matching-aware loss and temporal coherence loss in a two-player minimax

game mechanism.

research is fundamentally different in the way that we aim
at generating videos conditioning on captions. In addition,
we further improve video generation from the aspects of in-
volving frame-level discriminator and strengthening temporal
connections across frames.

3 VIDEO GENERATION FROM
CAPTIONS

The main goal of our Temporal GANs conditioning on Cap-
tions (TGANs-C) is to design a generative model with the
ability of synthesizing a temporal coherent frame sequence
semantically aligned with the given caption. The training of
TGANs-C is performed by optimizing the generator network
and discriminator network (video and frame discriminators
which simultaneously judge synthetic or real and semantically
mismatched or matched with the caption for video and frame)
in a two-player minimax game mechanism. Moreover, the
temporal coherence prior is additionally incorporated into
TGANs-C to produce temporally coherent frame sequence
in two different schemes. Therefore, the overall objective
function of TGANs-C is composed of three components, i.e.,
video-level matching-aware loss to correct the label of real
or synthetic video and align video with matched caption,
frame-level matching-aware loss to further enhance the image
reality and semantic alignment with the conditioning caption
for each frame, and temporal coherence loss (i.e., temporal co-
herence constraint loss/temporal coherence adversarial loss)
to exploit the temporal coherence between consecutive frames
in unconditional/conditional scheme. The whole architecture
of TGANs-C is illustrated in Figure 2.

3.1 Generative Adversarial Networks

The basic generative adversarial networks (GANs) consists
of two networks: a generator network 𝐺 that captures the
data distribution for synthesizing image and a discriminator
network 𝐷 that distinguishes real images from synthetic ones.
In particular, the generator network 𝐺 takes a latent variable
z randomly sampled from a normal distribution as input
and produces a synthetic image 𝑥𝑠𝑦𝑛 = 𝐺 (z). The discrim-
inator network 𝐷 takes an image 𝑥 as input stochastically
chosen (with equal probability) from real images or synthet-
ic ones through 𝐺 and produces a probability distribution
𝑃 (𝑆|𝑥) = 𝐷 (𝑥) over the two image sources (i.e., synthetic
or real). As proposed in [5], the whole GANs can be trained
in a two-player minimax game. Concretely, given an image
example 𝑥, the discriminator network 𝐷 is trained to mini-
mize the adversarial loss, i.e., maximizing the log-likelihood
of assigning correct source to this example:

𝑙𝑎(𝑥) = −𝐼(𝑆=𝑟𝑒𝑎𝑙) log
(︀
𝑃 (𝑆 = 𝑟𝑒𝑎𝑙|𝑥)

)︀
−(1− 𝐼(𝑆=𝑟𝑒𝑎𝑙)) log

(︀
1− 𝑃 (𝑆 = 𝑟𝑒𝑎𝑙|𝑥)

)︀
,

(1)

where the indicator function 𝐼condition = 1 if condition is true;
otherwise 𝐼condition = 0. Meanwhile, the generator network 𝐺
is trained to maximize the adversarial loss in Eq.(1), targeting
for maximally fooling the discriminator network 𝐷 with its
generated synthetic images {𝑥𝑠𝑦𝑛}.

3.2 Temporal GANs Conditioning on
Captions (TGANs-C)

In this section, we elaborate the architecture of our TGANs-C,
the GANs based generative model consisting of two networks:
a generator network 𝐺 for synthesizing videos conditioning on
captions, and a discriminator network 𝐷 that simultaneous-
ly distinguishes real videos/frames from synthetic ones and



aligns the input videos/frames with semantically matching
captions. Moreover, two different schemes for modeling tempo-
ral coherence across frames are incorporated into TGANs-C
for video generation.

3.2.1 Generator Network. Suppose we have an input sen-
tence 𝒮, where 𝒮 = {𝑤1, 𝑤2, ..., 𝑤𝑁𝑠−1, 𝑤𝑁𝑠} including 𝑁𝑠

words. Let w𝑡 ∈ R𝑑𝑤 denote the 𝑑𝑤-dimensional “one-hot”
vector (binary index vector in a vocabulary) of the 𝑡-th word
in sentence 𝒮, thus the dimension of the textual feature w𝑡,
i.e., 𝑑𝑤, is the vocabulary size. Taking the inspiration from
recent success of Recurrent Neural Networks (RNN) in im-
age/video captioning [16, 17, 26–28], we first leverage the
bidirectional LSTM (bi-LSTM) [21] to contextually embed
each word and then encode the embedded word sequence
into the sentence representation S via LSTM. In particular,
the bi-LSTM consisting of forward and backward LSTMs [7]
is adopted here. The forward LSTM reads the input word
sequence in its natural order (from 𝑤1 to 𝑤𝑁𝑠) and then calcu-

lates the forward hidden states sequence {
−→
ℎ 1,
−→
ℎ 2, ...,

−→
ℎ 𝑁𝑠},

whereas the backward LSTM produces the backward hidden

states sequence {
←−
ℎ 1,
←−
ℎ 2, ...,

←−
ℎ 𝑁𝑠} with the input sequence

in the reverse order (from 𝑤𝑁𝑠 to 𝑤1). The outputs of forward
LSTM and backward LSTM are concatenated as the con-
textually embedded word sequence {ℎ1, ℎ2, ..., ℎ𝑁𝑠}, where
ℎ𝑡 =

[︀−→
ℎ 𝑡

⊤
,
←−
ℎ 𝑡

⊤]︀⊤
. Then, we feed the embedded word se-

quence into the next LSTM-based encoder and treat the final
LSTM output as the sentence representation S ∈ R𝑑𝑠 . Note
that both bi-LSTM and LSTM-based encoder are pre-learnt
with sequence auto-encoder [3] in an unsupervised learning
manner. Concretely, a LSTM-based decoder is additionally
attached on the top of LSTM-based encoder for reconstruct-
ing the original word sequence. Such LSTM-based decoder
will be removed and only the bi-LSTM and LSTM-based en-
coder are reserved for representing sentences with improved
generalization ability after pre-training over large quantities
of sentences.

Next, given the input sentence S and random noise vari-
able z ∈ R𝑑𝑧 ∼ 𝒩 (0, 1), a generator network 𝐺 is devised
to synthesize a frame sequence: {R𝑑𝑠 ,R𝑑𝑧} → R𝑑𝑐×𝑑𝑙×𝑑ℎ×𝑑𝑑

where 𝑑𝑐, 𝑑𝑙, 𝑑ℎ and 𝑑𝑑 denote the channels number, sequence
length, height and width of each frame, respectively. To mod-
el the spatio-temporal information within videos, the most
natural way is to utilize the 3D convolutions filters [24] with
deconvolutions [29] which can simultaneously synthesize the
spatial information via 2D convolutions filters and provide
temporal invariance across frames. Particularly, the generator
network 𝐺 first encapsulates both the random noise variable
z and input sentence S into a fixed-length input latent vari-
able p, which is applied with feature transformation and
concatenation, and then synthesizes the corresponding video
𝑣𝑠𝑦𝑛 = 𝐺 (z,S) based on the input p through 3D deconvo-
lutional layers. The fixed-length input latent variable p is
computed as

p =
[︁
z⊤,S⊤W𝑠

]︁⊤
∈ R𝑑𝑧+𝑑𝑝 , (2)

where W𝑠 ∈ R𝑑𝑠×𝑑𝑝 is the transformation matrix for sen-
tence representation. Accordingly, the generator network 𝐺

produces the synthetic video 𝑣𝑠𝑦𝑛 = {𝑓1
𝑠𝑦𝑛, 𝑓

2
𝑠𝑦𝑛, ..., 𝑓

𝑑𝑙
𝑠𝑦𝑛} con-

ditioning on sentence 𝒮 where 𝑓 𝑖
𝑠𝑦𝑛 ∈ R𝑑𝑐×𝑑ℎ×𝑑𝑑 represents

𝑖-th synthetic frame.

3.2.2 Discriminator Network. The discriminator network
𝐷 is designed to enable three main abilities: (1) distinguish-
ing real video from synthetic one and aligning video with
the correct caption, (2) determining whether each frame is
real/fake and semantically matched/mismatched with the
conditioning caption, (3) exploiting the temporal coherence
across consecutive real frames. To address the three crucial
points, three basic discriminators are particularly devised:

∙ Video discriminator 𝐷0 (𝑣,𝒮) ({R𝑑𝑣 ,R𝑑𝑠} → [0, 1]):
𝐷0 first encodes input video 𝑣 ∈ R𝑑𝑣 into a video-
level tensor m𝑣 with a size of 𝑑𝑐0×𝑑𝑙0×𝑑ℎ0×𝑑𝑑0 via
3D convolutional layers. Then, the video-level tensor
m𝑣 is augmented with the conditioning caption S
for discriminating whether the input video is real
and simultaneously semantically matched with the
given caption.

∙ Frame discriminator𝐷1

(︀
𝑓 𝑖,𝒮

)︀
({R𝑑𝑓 ,R𝑑𝑠} → [0, 1]):

𝐷1 transforms each frame 𝑓 𝑖 ∈ R𝑑𝑓 in 𝑣 into a frame-
level tensor m𝑓𝑖 ∈ R𝑑𝑐0×𝑑ℎ0

×𝑑𝑑0 through 2D convo-
lutional layers and then augments frame-level tensor
m𝑓𝑖 with the conditioning caption S to recognize
the real frames with matched caption.

∙ Motion discriminator 𝐷2

(︀
𝑓 𝑖, 𝑓 𝑖−1

)︀
({R𝑑𝑓 ,R𝑑𝑓 } →

R𝑑𝑐0×𝑑ℎ0
×𝑑𝑑0 ): 𝐷2 distills the 2D motion tensor −→m𝑓𝑖

to represent the temporal dynamics across consecu-
tive frames 𝑓 𝑖 and 𝑓 𝑖−1. Please note that we adopt
the most direct way to measure such motion vari-
ance between two consecutive frames by subtracting
previous frame-level tensor from current one (i.e.,
−→m𝑓𝑖 = m𝑓𝑖 −m𝑓𝑖−1).

Specifically, in the training epoch, we can easily obtain a set
of real-synthetic video triplets 𝒯 according to the prior given
captions, where each tuple {𝑣𝑠𝑦𝑛+ , 𝑣𝑟𝑒𝑎𝑙+ , 𝑣𝑟𝑒𝑎𝑙−} consists of
one synthetic video 𝑣𝑠𝑦𝑛+ conditioning on given caption 𝒮,
one real video 𝑣𝑟𝑒𝑎𝑙+ described by the same caption 𝒮, and
one real video 𝑣𝑟𝑒𝑎𝑙− described by different caption from 𝒮.
Therefore, three video-caption pairs are generated based on
the caption 𝒮 and its corresponding video tuple: the synthetic
and semantically matched pair {𝑣𝑠𝑦𝑛+ ,𝒮}, real and semanti-
cally matched pair {𝑣𝑟𝑒𝑎𝑙+ ,𝒮}, and another real but seman-
tically mismatched pair {𝑣𝑟𝑒𝑎𝑙− ,𝒮}. Each video-caption pair
{𝑣,𝒮} is then set as the input to the discriminator network
𝐷, followed by three kinds of losses to be optimized and each
for one discriminator accordingly.

Video-level matching-aware loss. Noticing that the in-
put video-caption pair {𝑣,𝒮} might not only be from distinct-
ly sources (i.e., real or synthetic), but also contain matched
or mismatched semantics. However, the conventional dis-
criminator network can only differentiate the video sources



without any explicit notion of the semantic relationship be-
tween video content and caption. Taking the inspiration from
the matching-aware discriminator in [19], we elaborate the
video-level matching-aware loss for video discriminator 𝐷0 to
learn better alignment between video and the conditioning
caption. In particular, for the video discriminator 𝐷0, the con-
ditioning caption 𝒮 is first transformed with the embedding
function 𝜙0 (S) ∈ R𝑑𝑠0 followed by rectification. Then the
embedded sentence representation is spatially replicated to
construct a 𝑑𝑠0 × 𝑑𝑙0 × 𝑑ℎ0 × 𝑑𝑑0 tensor, which is further con-
catenated with the video-level tensor m𝑣 along the channel
dimension. Finally the probability of recognizing real video
with matched caption 𝐷0 (𝑣,𝒮) is measured via a 1× 1× 1
convolution followed by rectification and a 𝑑𝑙0 × 𝑑ℎ0 × 𝑑𝑑0
convolution. Hence, given the real-synthetic video triplet
{𝑣𝑠𝑦𝑛+ , 𝑣𝑟𝑒𝑎𝑙+ , 𝑣𝑟𝑒𝑎𝑙−} and the conditioning caption 𝒮, the
video-level matching-aware loss is measured as

ℒ𝑣 = − 1
3

[︀
log (𝐷0 (𝑣𝑟𝑒𝑎𝑙+ ,𝒮)) + log (1−𝐷0 (𝑣𝑟𝑒𝑎𝑙− ,𝒮))

+ log(1−𝐷0(𝑣𝑠𝑦𝑛+ ,𝒮))
]︀ . (3)

By minimizing this loss over positive video-caption pair (i.e.,
{𝑣𝑟𝑒𝑎𝑙+ ,𝒮}) and negative video-caption pairs (i.e., {𝑣𝑠𝑦𝑛+ ,𝒮}
and {𝑣𝑟𝑒𝑎𝑙− ,𝒮}), the video discriminator 𝐷0 is trained to
not only recognize each real video from synthetic ones but
also classify semantically matched video-caption pair from
mismatched ones.

Frame-level matching-aware loss. To further enhance
the frame reality and semantic alignment with the condi-
tioning caption for each frame, a frame-level matching-aware
loss is involved here which enforces the frame discriminator
𝐷1 to discriminate whether each frame of the input video is
both real and semantically matched with the caption. For the
frame discriminator 𝐷1, similar to 𝐷0, an embedding func-
tion 𝜙1 (S) ∈ R𝑑𝑠0 is utilized to transform the conditioning
caption 𝒮 into the low-dimensional representation. Then we
replicate the sentence embedding spatially to concatenate it
with the frame-level tensor of each frame along the channel di-
mension. Accordingly, the final probability of recognizing real
frame with matched caption 𝐷0

(︀
𝑓 𝑖,𝒮

)︀
is achieved through

a 1× 1 convolution followed by rectification and a 𝑑ℎ0 × 𝑑𝑑0
convolution. Therefore, given the real-synthetic video triplet
{𝑣𝑠𝑦𝑛+ , 𝑣𝑟𝑒𝑎𝑙+ , 𝑣𝑟𝑒𝑎𝑙−} and the conditioning caption 𝒮, we
calculate the frame-level matching-aware loss as

ℒ𝑓 = − 1
3𝑑𝑙

[︀ 𝑑𝑙∑︀
𝑖=1

log(𝐷1(𝑓 𝑖
𝑟𝑒𝑎𝑙+

,𝒮)) +
𝑑𝑙∑︀
𝑖=1

log(1−𝐷1(𝑓 𝑖
𝑟𝑒𝑎𝑙−

,𝒮))

+
𝑑𝑙∑︀
𝑖=1

log(1−𝐷1(𝑓 𝑖
𝑠𝑦𝑛+ ,𝒮))

]︀ ,

(4)

where 𝑓 𝑖
𝑟𝑒𝑎𝑙+ , 𝑓

𝑖
𝑟𝑒𝑎𝑙− and 𝑓 𝑖

𝑠𝑦𝑛+ denotes the 𝑖-th frame in
𝑣𝑟𝑒𝑎𝑙+ , 𝑣𝑟𝑒𝑎𝑙− and 𝑣𝑠𝑦𝑛+ , respectively.

Temporal coherence loss. Temporal coherence is one
generic prior for video modeling, which reveals the intrinsic
characteristic of video that the consecutive video frames are
usually visually and semantically coherent. To incorporate

this temporal coherence prior into TGANs-C for video gen-
eration, we consider two kinds of schemes on the basis of
motion discriminator 𝐷2

(︀
𝑓 𝑖, 𝑓 𝑖−1

)︀
.

(1) Temporal coherence constraint loss. Motivated by [14],
the similarity of two consecutive frames can be directly de-
fined according to the Euclidean distances between their
frame-level tensors, i.e., the magnitude of motion tensor:

𝒟
(︀
𝑓 𝑖, 𝑓 𝑖−1

)︀
=

⃦⃦⃦
m𝑓𝑖 −m𝑓𝑖−1

⃦⃦⃦2
2
=

⃦⃦⃦
−→m𝑓𝑖

⃦⃦⃦2
2
. (5)

Then, given the real-synthetic video triplet, we characterize
the temporal coherence of the synthetic video 𝑣𝑠𝑦𝑛+ as a
constraint loss by accumulating the Euclidean distances over
every two consecutive frames:

ℒ(1)
𝑡 =

1

𝑑𝑙 − 1

𝑑𝑙∑︁
𝑖=2

𝒟(𝑓 𝑖
𝑠𝑦𝑛+ , 𝑓 𝑖−1

𝑠𝑦𝑛+ ). (6)

Please note that the temporal coherence constraint loss is
designed only for optimizing generator network 𝐺. By mini-
mizing this loss of synthetic video, the generator network 𝐺
is enforced to produce temporally coherent frame sequence.

(2) Temporal coherence adversarial loss. Different from the
first scheme formulating temporal coherence as a monotonous
constraint in an unconditional manner, we further devise an
adversarial loss to flexibly emphasize temporal consistency
conditioning on the given caption. Similar to frame discrim-
inator 𝐷1, the motion tensor −→m𝑓𝑖 in motion discriminator
𝐷2 is first augmented with embedded sentence representa-
tion 𝜙2 (S). Next, such concatenated tensor representation is
leveraged to measure the final probability Φ2(

−→m𝑓𝑖 ,𝒮) of clas-
sifying the temporal dynamics between consecutive frames as
real ones conditioning on the given caption. Thus, given the
real-synthetic video triplet {𝑣𝑠𝑦𝑛+ , 𝑣𝑟𝑒𝑎𝑙+ , 𝑣𝑟𝑒𝑎𝑙−} and the
conditioning caption 𝒮, the temporal coherence adversarial
loss is measured as

ℒ(2)
𝑡 = − 1

3(𝑑𝑙−1)

[︀ 𝑑𝑙∑︀
𝑖=2

log(Φ2(
−→m𝑓𝑖

𝑟𝑒𝑎𝑙+
,𝒮))

+
𝑑𝑙∑︀
𝑖=2

log(1− Φ2(
−→m𝑓𝑖

𝑟𝑒𝑎𝑙−
,𝒮))

+
𝑑𝑙∑︀
𝑖=2

log(1− Φ2(
−→m𝑓𝑖

𝑠𝑦𝑛+
,𝒮))

]︀
, (7)

where −→m𝑓𝑖
𝑟𝑒𝑎𝑙+

, −→m𝑓𝑖
𝑟𝑒𝑎𝑙−

and −→m𝑓𝑖
𝑠𝑦𝑛+

denotes the motion ten-

sor in 𝑣𝑟𝑒𝑎𝑙+ , 𝑣𝑟𝑒𝑎𝑙− and 𝑣𝑠𝑦𝑛+ , respectively. By minimizing
the temporal coherence adversarial loss, the temporal dis-
criminator 𝐷2 is trained to not only recognize the temporal
dynamics across synthetic frames from real ones but also
align the temporal dynamics with the matched caption.

3.2.3 Optimization. The overall training objective func-
tion of TGANs-C integrates the video-level matching-aware
loss in Eq.(3), frame-level matching-aware loss in Eq.(4) and
temporal coherence constraint loss/temporal coherence ad-
versarial loss in Eq.(6)/Eq.(7). As our TGANs-C is a variant
of the GANs architecture, we train the whole architecture in
a two-player minimax game mechanism. For the discrimina-
tor network 𝐷, we update its parameters according to the



following overall loss

ℒ̂(1)
𝐷

=
∑︁
𝒯

1

2

(︀
ℒ𝑣 + ℒ𝑓

)︀
, (8)

ℒ̂(2)
𝐷

=
∑︁
𝒯

1

3

(︁
ℒ𝑣 + ℒ𝑓 + ℒ(2)

𝑡

)︁
, (9)

where 𝒯 is the set of real-synthetic video triplets, ℒ̂(1)
𝐷 and

ℒ̂(2)
𝐷 denotes the discriminator network 𝐷’s overall adversari-

al loss in unconditional scheme (i.e., TGANs-C with temporal
coherence Constraint loss (TGANs-C-C)) and conditional
scheme (i.e., TGANs-C with temporal coherence Adversarial
loss (TGANs-C-A)), respectively. By minimizing this ter-
m, the discriminator network 𝐷 is trained to classify both
videos and frames with correct sources, and simultaneously
align videos and frames with semantically matching captions.
Moreover, for TGANs-C-A, the discriminator network 𝐷 is
additionally enforced to distinguish the temporal dynamics
across frames with correct sources and also align the temporal
dynamics with the matched captions.

For the generator network 𝐺, its parameters are adjusted
with the following overall loss

ℒ̂(1)
𝐺

= −
∑︀

𝑣
𝑠𝑦𝑛+∈𝒯

1
3

[︀
log(𝐷0(𝑣𝑠𝑦𝑛+ ,𝒮)) + 1

𝑑𝑙

𝑑𝑙∑︀
𝑖=1

log(𝐷1(𝑓
𝑖
𝑠𝑦𝑛+ ,𝒮))

− 1
𝑑𝑙−1

𝑑𝑙∑︀
𝑖=2

𝒟(𝑓𝑖
𝑠𝑦𝑛+ , 𝑓𝑖−1

𝑠𝑦𝑛+ )
]︀ ,

(10)

ℒ̂(2)
𝐺

= −
∑︀

𝑣
𝑠𝑦𝑛+∈𝒯

1
3

[︀
log(𝐷0(𝑣𝑠𝑦𝑛+ ,𝒮)) + 1

𝑑𝑙

𝑑𝑙∑︀
𝑖=1

log(𝐷1(𝑓
𝑖
𝑠𝑦𝑛+ ,𝒮))

+ 1
𝑑𝑙−1

𝑑𝑙∑︀
𝑖=2

log(Φ2(
−→m

𝑓𝑖
𝑠𝑦𝑛+

,𝒮))
]︀ ,

(11)

where ℒ̂(1)
𝐺 and ℒ̂(2)

𝐺 denotes the generator network 𝐺’s overall
adversarial loss in TGANs-C-C and TGANs-C-A, respective-
ly. The generator network 𝐺 is trained to fool the discrim-
inator network 𝐷 on videos/frames source prediction with
its synthetic videos/frames and meanwhile align synthetic
videos/frames with the conditioning captions. Moreover, for
TGANs-C-C, the consecutive synthetic frames are enforced to
be similar in an unconditional scheme, while for TGANs-C-A,
it additionally aims to fool 𝐷 on temporal dynamics source
prediction with the synthetic videos in a conditional scheme.
The training process of TGANs-C is given in Algorithm 1.

3.3 Testing Epoch

After the optimization of TGANs-C, we can obtain the learnt

generator network 𝐺. Thus, given a test caption 𝒮, the bi-
LSTM is first utilized to contextually embed the input word
sequence, followed by a LSTM-based encoder to achieve the

sentence representation Ŝ. The sentence representation Ŝ
is then concatenated with the random noise variable z as
in Eq.(2) and finally fed into the generator network 𝐺 to

produce the synthetic video 𝑣𝑠𝑦𝑛 = {𝑓1
𝑠𝑦𝑛, 𝑓

2
𝑠𝑦𝑛, ..., 𝑓

𝑑𝑙
𝑠𝑦𝑛}.

4 EXPERIMENTS

We evaluate and compare our proposed TGANs-C with state-
of-the-art approaches by conducting video generation task on

Algorithm 1 The training of Temporal GANs conditioning on
Captions (TGANs-C)

1: Given the number of maximum training iteration 𝑇 .
2: for 𝑡 = 1 to 𝑇 do

3: Fetch input batch with sampled video-sentence pairs
{(𝒮, 𝑣𝑟𝑒𝑎𝑙+ )}.

4: for Each video-sentence pair (𝒮, 𝑣𝑟𝑒𝑎𝑙+ ) do

5: Get the random noise variable z ∼ 𝒩 (0, 1).
6: Produce the synthetic video 𝑣𝑠𝑦𝑛+ = 𝐺 (z,S) condition-

ing on the caption 𝒮 via the generator network 𝐺.

7: Randomly select one real video 𝑣𝑟𝑒𝑎𝑙− described by a
different caption from 𝒮.

8: end for

9: Obtain all the real-synthetic tuple {𝑣𝑠𝑦𝑛+ , 𝑣𝑟𝑒𝑎𝑙+ , 𝑣𝑟𝑒𝑎𝑙−}
with the corresponding caption 𝒮, denoted as 𝒯 in total.

10: Compute video-level matching-aware loss via Eq. (3).

11: Compute frame-level matching-aware loss via Eq. (4).
12: -Scheme 1: TGANs-C-C

13: Compute temporal coherence constraint loss via Eq. (6).
14: Update the discriminator network 𝐷 w.r.t loss in Eq. (8).
15: Update the generator network 𝐺 w.r.t loss in Eq. (10).

16: -Scheme 2: TGANs-C-A

17: Compute temporal coherence adversarial loss via Eq. (7).
18: Update the discriminator network 𝐷 w.r.t loss in Eq. (9).

19: Update the generator network 𝐺 w.r.t loss in Eq. (11).

20: end for

three datasets of progressively increasing complexity: Single-
Digit Bouncing MNIST GIFs (SBMG) [13], Two-digit Bounc-
ing MNIST GIFs (TBMG) [13], and Microsoft Research Video
Description Corpus (MSVD) [2]. The first two are recently
released GIF-based datasets consisting of MNIST [11] digits
moving frames and the last is a popular video captioning
benchmark of YouTube videos.

4.1 Datasets

SBMG. Similar to priors works [22, 23] in generating synthet-
ic dataset, SBMG is produced by having single handwritten
digit bouncing inside a 64×64 frame. It is composed of 12,000
GIFs and every GIF is 16 frames long, which contains a sin-
gle 28× 28 digit moving left-right or up-down. The starting
position of the digit is chosen uniformly at random. Each
GIF is accompanied with single sentence describing the digit
and its moving direction, as shown in Figure 3(a).

TBMG. TBMG is an extended synthetic dataset of SB-
MG which contains two handwritten digits bouncing. The
generation process is the same as SBMG and the two digits
within each GIF move left-right or up-down separately. Figure
3(b) shows two exemplary GIF-caption pairs in TBMG.

MSVD. MSVD contains 1,970 video snippets collected
from YouTube. There are roughly 40 available English de-
scriptions per video. In experiments, we manually filter out
the videos about cooking and generate a subset of 518 cook-
ing videos. Following the settings in [6], our cooking subset
is split with 363 videos for training and 155 for testing. Since
video generation is a challenging problem, we assembled this
subset with cooking scenario to better diagnose pros and



sentence:  digit 2 is left and right. 

sentence:  digit 3 is up and down. 

sentence:  digit 6 is up and down and digit 3 is left and right. 

sentence:  digit 9 is up and down and digit 8 is up and down. 

sentence:  a woman is slicing a cucumber into pieces. 

sentence:  a man is pouring pancake mixture into a frying pan. 

(a) Single-Digit Bouncing MNIST GIFs

(b) Two-Digit Bouncing MNIST GIFs

(c) Microsoft Research Video Description Corpus

Figure 3: (a)—(c): Exemplary video-caption pairs from

three benchmarks: (a) Single-Digit Bouncing MNIST

GIFs; (b) Two-Digit Bouncing MNIST GIFs; (c) Mi-
crosoft Research Video Description Corpus.

cons of models. We randomly select two examples from this
subset and show them in Figure 3(c).

4.2 Experimental Settings

Parameter Settings. We uniformly sample 𝑑𝑙 = 16 frames
for each GIF/video and each word in the sentence is repre-
sented as “one-hot” vector. The architecture of our TGANs-C
is mainly developed based on [18, 19]. We resize all the GIF-
s/videos in three datasets with 48× 48 pixels. In particular,
for sentence encoding, the dimension of the input and hidden
layers in bi-LSTM and LSTM-based encoder are all set to
256. For the generator network 𝐺, the dimension of random
noise variable z is 100 and the dimension of sentence embed-
ding in generator network 𝑑𝑝 is 256. For the discriminator
network 𝐷, we set the size of video-level tensor m𝑣 in video
discriminator 𝐷0 as 512×1×3×3 and the size of frame-level
tensor m𝑓𝑖 in frame discriminator 𝐷1 is as 512× 3× 3.

Implementation Details.We mainly implement our pro-
posed method based on Theano [1], which is one of widely
adopted deep learning frameworks. Following the standard
settings in [18], we train our TGANs-C models on all datasets
by utilizing Adam optimizer with a mini-batch size of 64. All
weights were initialized from a zero-centered Normal distri-
bution with standard deviation 0.02 and the slope of the leak
was set to 0.2 in the LeakyReLU. We set the learning rate
and momentum as 0.0002 and 0.9, respectively.

Evaluation Metric. For the quantitative evaluation of
video generation, we adopt Generative Adversarial Metric
(GAM) [8] which can directly compare two generative ad-
versarial models by having them engage in a “battle” a-
gainst each other. Given two generative adversarial models

𝑀1 = {( ̃︀𝐺1, ̃︀𝐷1)} and 𝑀2 = {( ̃︀𝐺2, ̃︀𝐷2)}, two kinds of ra-
tios between the discriminative scores of the two models are

measured as:

𝑟𝑡𝑒𝑠𝑡 =
𝜖
(︁ ̃︀𝐷1 (x𝑡𝑒𝑠𝑡)

)︁
𝜖
(︁ ̃︀𝐷2 (x𝑡𝑒𝑠𝑡)

)︁ and 𝑟𝑠𝑎𝑚𝑝𝑙𝑒 =
𝜖
(︁ ̃︀𝐷1

(︁ ̃︀𝐺2 (z)
)︁)︁

𝜖
(︁ ̃︀𝐷2

(︁ ̃︀𝐺1 (z)
)︁)︁ , (12)

where 𝜖 (∙) denotes the classification error rate and x𝑡𝑒𝑠𝑡

is the testing set. The test ratio 𝑟𝑡𝑒𝑠𝑡 shows which model
generalizes better on test data and the sample ratio 𝑟𝑠𝑎𝑚𝑝𝑙𝑒

reveals which model can fool the other model more easily.
Finally, the GAM evaluation metric judges the winner as:

winner =

⎧⎨⎩
𝑀1 if 𝑟𝑠𝑎𝑚𝑝𝑙𝑒 < 1 and 𝑟𝑡𝑒𝑠𝑡 ≃ 1
𝑀2 if 𝑟𝑠𝑎𝑚𝑝𝑙𝑒 > 1 and 𝑟𝑡𝑒𝑠𝑡 ≃ 1

Tie otherwise

. (13)

4.3 Compared Approaches

To empirically verify the merit of our TGANs-C, we compared
the following state-of-the-art methods.

(1) Synchronized Deep Recurrent Attentive Writer (Sync-
DRAW) [13]: Sync-DRAW is a VAEs-based model for video
generation conditioning on captions which utilizes Recurrent
VAEs to model spatio-temporal relationship and a separate
attention mechanism to capture local saliency.

(2) Generative Adversarial Network for Video (VGAN)
[25]: The original VGAN attempts to leverage the spatio-
temporal convolutional architecture to design a GANs-based
generative model for video generation in an unconditioned
manner. Here we additionally incorporate the matching-aware
loss into the discriminator network of basic VGAN and enable
this baseline to generate videos conditioning on captions.

(3) Generative Adversarial Network with Character-Level
Sentence encoder (GAN-CLS) [19]: GAN-CLS is originally de-
signed for image synthesis from text descriptions by utilizing
DC-GAN and a hybrid character-level convolutional-recurrent
neural network for text encoding. We directly extend this
architecture by replacing 2D convolutions with 3D spatio-
temporal convolutions for text-conditional video synthesis.

(4) Temporal GANs conditioning on Captions (TGANs-C)
is our proposal in this paper which includes two runs in differ-
ent schemes: TGANs-C with temporal coherence constraint
loss (TGANs-C-C) and TGANs-C with temporal coherence
adversarial loss (TGANs-C-A). Two slightly different set-
tings of TGANs-C are named as TGANs-C1 and TGANs-C2.
The former is trained with only video-level matching-aware
loss, while the latter is more similar to TGANs-C that only
excludes the temporal coherence loss.

4.4 Optimization Analysis

Different from the traditional discriminative models which
have a particularly well-behaved gradient, our TGANs-C is
optimized with a complex two-player minimax game. Hence,
we depict the evolution of the generator network 𝐺 at the
training stage to illustrate the convergence of our TGANs-C.
Concretely, we randomly sample one random noise variable
z and caption 𝒮 before training, and then leverage them
to produce synthetic videos via the generator networks 𝐺
of TGANs-C-A at different iterations on TBMG. As shown
in Figure 4, the quality of synthetic videos does improve



Input sentence:  digit 3 is moving up and down. 

TGANs-C1:

TGANs-C2:

TGANs-C-C:

TGANs-C-A:

TGANs-C1:

TGANs-C2:

TGANs-C-C:

TGANs-C-A:

Input sentence:  digit 1 is left and right and digit 9 is up and down. 

(a) Single-Digit Bouncing MNIST GIFs

(b) Two-Digit Bouncing MNIST GIFs

Figure 5: Examples of generated videos by our four TGANs-C runs on (a) Single-Digit Bouncing MNIST GIFs and
(b) Two-digit Bouncing MNIST GIFs.

Input sentence:  digit 2 is left and right and digit 8 is up and down. 
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Figure 4: Evolution of synthetic results of the generator

network 𝐺 with the increase of the iteration on TBMG

dataset. Both of the input random noise variable z and
caption 𝒮 are fixed. Each row denotes one synthetic video
and the results are shown every 1,000 iterations.

as the iterations increase. Specifically, after 9,000 iterations,
the generater network 𝐺 consistently synthesizes plausible
videos by reproducing the visual appearances and temporal
dynamics of handwritten digits conditioning on the caption.

4.5 Qualitative Evaluation

We then visually examine the quality of the results and
compare among our four internal TGANs-C runs on SBMG
and TBMG datasets. The examples of generated videos are
shown in Figure 5. Given the input sentence of “digit 3 is
moving up and down” in Figure 5(a), all the four runs can
interpret the temporal track of forming single-digit bouncing
videos. TGANs-C1 which only judges real or fake on video

level and aligns video with the caption performs the worst
among all the models and the predicted frames tend to be
blurry. By additionally distinguishing frame-level realness
and optimizing frame-caption matching, TGANs-C2 is ca-
pable of producing videos in which each frame is clear but
the shape of the digit sometimes changes over time. Com-
pared to TGANs-C2, TGANs-C-C emphasizes the coherence
across adjacent frames by further regularizing the similarity
in between. As a result, the frames generated by TGANs-C-C
are more consistent than TGANs-C2 particularly of the digit
in the frames, but on the other hand, the temporal coher-
ence constraint exploited in TGANs-C-C is in a brute-force
manner, making the generated videos monotonous and not
that real. TGANs-C-A, in comparison, is benefited from the
mechanism of adversarially modeling temporal connections.
The chance that a video is gradually formed as real is better.

Figure 5(b) shows the generated videos by our four TGANs-
C runs conditioning on the caption of “digit 1 is left and
right and digit 9 is up and down.” Similar to the observations
on single-digit bouncing videos, the four runs could also
model the temporal dynamics of two-digit bouncing scenarios.
When taking temporal smoothness into account, the quality
of the videos generated by TGANs-C-C and TGANs-C-A is
enhanced, as compared to the videos produced by TGANs-C1

and TGANs-C2. In addition, TGANs-C-A generates more
realistic videos than TGANs-C-C, verifying the effectiveness
of learning temporal coherence in an adversarial fashion.

Next, we compare with the three baselines on MSVD
dataset. In view that TGANs-C-A consistently performs the
best in our internal comparisons, we refer to this run as
TGANs-C in the following evaluations. The comparisons of
generated videos by different approaches are shown in Figure



Input sentence:  a person is cutting beef. 

Sync-DRAW:

VGAN:

GAN-CLS:

TGANs-C:

Input sentence:  a chef is stirring a soup. 

Sync-DRAW:

VGAN:

GAN-CLS:

TGANs-C:

Figure 6: Examples of generated videos by different approaches on MSVD dataset.

6. We can easily observe that the videos generated by our
TGANs-C have higher quality compared to the other models.
The created frames by Sync-DRAW are very blurry since
VAEs are biased towards generating smooth frames and the
method does not present all the objects in the frames. The ap-
proach of VGAN generates the frames which tend to be fairly
sharp. However, the background of the frames is stationary as
VGAN enforces a static background and moving foreground,
making it vulnerable to produce videos with background
movement. Compared to GAN-CLS which only involves video-
level matching-aware discriminator, our TGANs-C takes the
advantages of additionally exploring frame-level matching-
aware discriminator and temporal coherence across frames,
and thus generates more realistic videos.

4.6 Human Evaluation

To better understand how satisfactory are the videos gen-
erated from different methods, we also conducted a human
study to compare our TGANs-C against three approaches,
i.e., Sync-DRAW, VGAN and GAN-CLS. A total number
of 30 evaluators (15 females and 15 males) from different
education backgrounds, including computer science (8), man-
agement (4), business (4), linguistics (4), physical education
(1), international trade (1) and engineering (8), are invit-
ed and a subset of 500 sentences is randomly selected from
testing set of MSVD dataset for the subjective evaluation.

We show all the evaluators the four videos generated by
each approach plus the given caption and ask them to rank
all the videos from 1 to 4 (good to bad) with respect to the
three criteria: 1) Reality: how realistic are these generated
videos? 2) Relevance: whether the videos are relevant to the
given caption? 3) Coherence: judge the temporal connection
and readability of the videos. To make the annotation as
objective as possible, the four generated videos conditioning
on each sentence are assigned to three evaluators and the final

Table 1: The user study on three criteria: 1) Reality -

how realistic are these generated videos? 2) Relevance -

whether the videos are relevant to the given caption? 3)
Coherence - judge the temporal connection and readabil-

ity of the videos. The average ranking (lower is better)

on each criterion of all the generated videos by each ap-
proach is reported.

Methods Reality Relevance Coherence

Sync-DRAW 3.95 3.93 3.90

VGAN 2.21 2.29 2.23
GAN-CLS 2.08 1.97 2.01

TGANs-C 1.76 1.81 1.86

ranking is averaged on the three annotations. Furthermore,
we average the ranking on each criterion of all the generated
videos by each method and obtain three metrics. Table 1 lists
the results of the user study on MSVD dataset. Overall, our
TGANs-C is clearly the winner across all the three criteria.

4.7 Quantitative Evaluation

To further quantitatively verify the effectiveness of our pro-
posed model, we compare our TGANs-C with two generative
adversarial baselines (i.e., VGAN and GAN-CLS) in terms of
GAM evaluation metric on MSVD dataset. As the method
of Sync-DRAW produces videos by VAEs-based architecture
rather than generative adversarial scheme, it is excluded in
this comparison. The quantitative results are summarized
in Table 2. Overall, considering the “battle” between our
TGANs-C and the other two baselines, the sample ratios
𝑟𝑠𝑎𝑚𝑝𝑙𝑒 are both less than one, indicating that TGANs-C
can produce more authentic synthetic videos and fool the
other two models more easily. The results basically verify the
advantages of exploiting frame-level realness, frame-caption
matching and the temporal coherence across adjacent frames
for video generation. Moreover, when comparing between
the two 3D-based baselines, GAN-CLS beats VGAN easily.



Table 2: Model Evaluation with GAM metric on MSVD.

Battler rtest rsample Winner

GAN-CLS vs VGAN 1.08 0.89 GAN-CLS

TGANs-C vs VGAN 1.09 0.39 TGANs-C

TGANs-C vs GAN-CLS 0.96 0.53 TGANs-C

This somewhat reveals the weakness of VGAN, where the
architecture is devised with the brute-force assumption that
the background is stationary and only foreground moves,
making it hard to mimic the real-word videos with dynam-
ic background. Another important observation is that for
the “battle” between each two runs, the test ratio 𝑟𝑡𝑒𝑠𝑡 is
consistently approximately equal to one. This assures that
none of the discriminator networks 𝐷 in these runs is over-
fitted more than the other, i.e., the corresponding sample
ratios 𝑟𝑠𝑎𝑚𝑝𝑙𝑒 are applicable and not biased for evaluating
generative adversarial models.

5 CONCLUSIONS

Synthesizing images or videos will be crucial for the next
generation of multimedia systems. In this paper, we have
presented the Temporal GANs conditioning on Captions
(TGANs-C) architecture, succeeded in generating videos that
correspond to a given input caption. Our model expands on
adversarial learning paradigm from three aspects. First, we
extend 2D generator network to 3D for explicitly modeling
spatio-temporal connections in videos. Second, in addition
to naive discriminator network which only judges fake or
real, ours further evaluate whether the generated videos or
frames match the conditioning caption. Finally, to guarantee
the adjacent frames coherently formed over time, the motion
information between consecutive real or generated frames is
taken into account in the discriminator network. Extensive
quantitative and qualitative experiments conducted on three
datasets validate our proposal and analysis. Moreover, our
approach creates videos with better quality by a user study
from 30 human subjects.

Future works will focus, first of all, on improving visual
discriminability of our model, i.e., synthesize higher reso-
lution videos. A promising route to explore will be that of
decomposing the problem into several stages, where the shape
or basic color based on the given caption is sketched in the
primary stages and the advanced stages rectify the details of
videos. Second, how to generate videos conditioning on open-
vocabulary caption is expected. Last but not least, extending
our framework to audio domain should be also interesting.
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