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Abstract

Many efforts have been devoted to training generative latent variable models with
autoregressive decoders, such as recurrent neural networks (RNN). Stochastic
recurrent models have been successful in capturing the variability observed in
natural sequential data such as speech. We unify successful ideas from recently
proposed architectures into a stochastic recurrent model: each step in the sequence
is associated with a latent variable that is used to condition the recurrent dynamics
for future steps. Training is performed with amortized variational inference where
the approximate posterior is augmented with a RNN that runs backward through
the sequence. In addition to maximizing the variational lower bound, we ease
training of the latent variables by adding an auxiliary cost which forces them to
reconstruct the state of the backward recurrent network. This provides the latent
variables with a task-independent objective that enhances the performance of the
overall model. We found this strategy to perform better than alternative approaches
such as KL annealing. Although being conceptually simple, our model achieves
state-of-the-art results on standard speech benchmarks such as TIMIT and Blizzard
and competitive performance on sequential MNIST. Finally, we apply our model to
language modeling on the IMDB dataset where the auxiliary cost helps in learning
interpretable latent variables.

1 Introduction

Due to their ability to capture long-term dependencies, autoregressive models such as recurrent neural
networks (RNN) have become generative models of choice for dealing with sequential data. By
leveraging weight sharing across timesteps, they can model variable length sequences within a fixed
parameter space. RNN dynamics involve a hidden state that is updated at each timestep to summarize
all the information seen previously in the sequence. Given the hidden state at the current timestep,
the network predicts the desired output, which in many cases corresponds to the next input in the
sequence. Due to the deterministic evolution of the hidden state, RNNs capture the entropy in the
observed sequences by shaping conditional output distributions for each step, which are usually
of simple parametric form, i.e. unimodal or mixtures of unimodal. This may be insufficient for
highly structured natural sequences, where there is correlation between output variables at the same
step, i.e. simultaneities (Boulanger-Lewandowski et al., 2012), and complex dependencies between
variables at different timesteps, i.e. long-term dependencies. For these reasons, recent efforts achieve
highly multi-modal output distributions by augmenting the RNN with stochastic latent variables
trained by amortised variational inference, or variational auto-encoding framework (VAE) (Kingma
and Welling, 2014; Fraccaro et al., 2016; Kingma and Welling, 2014). The VAE framework allows
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efficient approximate inference by parametrizing the approximate posterior and generative model
with neural networks trainable end-to-end by backpropagation.

Another motivation for including stochastic latent variables in autoregressive models is to infer,
from the observed variables in the sequence (e.g. pixels or sound-waves), higher-level abstractions
(e.g. objects or speakers). Disentangling in such way the factors of variations is appealing as it
would increase high-level control during generation, ease semi-supervised and transfer learning, and
enhance interpretability of the trained model (Kingma et al., 2014; Hu et al., 2017).

Stochastic recurrent models proposed in the literature vary in the way they use the stochastic variables
to perform output prediction and in how they parametrize the posterior approximation for variational
inference. In this paper, we propose a stochastic recurrent generative model that incorporates in a
single framework successful techniques from earlier models. We associate a latent variable with each
timestep in the generation process. Similar to Fraccaro et al. (2016), we use a (deterministic) RNN
that runs backwards through the sequence to form our approximate posterior, allowing it to capture
the future of the sequence. However, akin to Chung et al. (2015); Bayer and Osendorfer (2014), the
latent variables are used to condition the recurrent dynamics for future steps, thus injecting high-
level decisions about the upcoming elements of the output sequence. Our architectural choices are
motivated by interpreting the latent variables as encoding a “plan” for the future of the sequence. The
latent plan is injected into the recurrent dynamics in order to shape the distribution of future hidden
states. We show that mixing stochastic forward pass, conditional prior and backward recognition
network helps building effective stochastic recurrent models.

The recent surge in generative models suggests that extracting meaningful latent representations is
difficult when using a powerful autoregressive decoder, i.e. the latter captures well enough most of
the entropy in the data distribution (Bowman et al., 2015; Kingma et al., 2016; Chen et al., 2017;
Gulrajani et al., 2017). We show that by using an auxiliary, task-agnostic loss, we ease the training of
the latent variables which, in turn, helps achieving higher performance for the tasks at hand. The
latent variables in our model are forced to contain useful information by predicting the state of the
backward encoder, i.e. by predicting the future information in the sequence.

Our work provides the following contributions:

• We unify several successful architectural choices into one generative stochastic model for
sequences: backward posterior, conditional prior and latent variables that condition the
hidden dynamics of the network. Our model achieves state-of-the-art in modeling acoustic
signals from speech.

• We propose a simple way of improving model performance by providing the latent variables
with an auxiliary task-agnostic objective. In the explored tasks, the auxiliary cost yielded
better performance than other strategies such as KL annealing. Finally, we show that the
auxiliary signal helps the model to learn interpretable representations in a language modeling
task.

2 Background

We operate in the well-known VAE framework (Kingma and Ba, 2014; Burda et al., 2015; Rezende
and Mohamed, 2015), a neural network based approach for training generative latent variable models.
Let x be an observation of a random variable, taking values in X . We assume that the generation of x
involves a latent variable z, taking values in Z , by means of a joint density pθ(x, z), parametrized by
θ. Given a set of observed datapoints D = {x1, . . . , xn}, the goal of maximum likelihood estimation
(MLE) is to estimate the parameters θ that maximize the marginal log-likelihood L(θ;D):

θ∗ = argmaxθ L(θ;D) =
n∑
i=1

log

∫
z

pθ(x
i, z) dz . (1)

Optimizing the marginal log-likelihood is usually intractable, due to the integration over the latent
variables. A common approach is to maximize a variational lower bound on the marginal log-
likelihood. The evidence lower bound (ELBO) is obtained by introducing an approximate posterior
qφ(z|x) yielding:

log pθ(x) ≥ E
qφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
= log p(x)−DKL

(
qφ(z|x) ‖ p(z|x)

)
= F(x; θ, φ), (2)
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Figure 1: Computation graph for generative models of sequences that use latent variables:
STORN (Bayer and Osendorfer, 2014), VRNN (Chung et al., 2015), SRNN (Fraccaro et al., 2016)
and our model. In this picture, we consider that the task of the generative model consists in predicting
the next observation in the sequence, given previous ones. Diamonds represent deterministic states, zt
and xt are respectively the latent variables and the sequence input at step t. Dashed lines represent the
computation that is part of the inference model. Double lines indicate auxiliary predictions implied
by the proposed auxiliary cost. Differently from VRNN and SRNN, in STORN and our model the
latent variable zt participates to the prediction of the next step xt+1.

where KL denotes the Kullback-Leibler divergence. The ELBO is particularly appealing because
the bound is tight when the approximate posterior matches the true posterior, i.e. it reduces to the
marginal log-likelihood. The ELBO can also be rewritten as a minimum description length loss
function (Honkela and Valpola, 2004):

F(x; θ, φ) = E
qφ(z|x)

[
log pθ(x|z)

]
−DKL

(
qφ(z|x) ‖ pθ(z)

)
, (3)

where the second term measures the degree of dependence between x and z, i.e. if
DKL

(
qφ(z|x) ‖ pθ(z)

)
is zero then z is independent of x. Usually, the parameters of the gener-

ative model pθ(x|z), the prior pθ(z) and the inference model qφ(z|x) are computed using neural
networks. In this case, the ELBO can be maximized by gradient ascent on a Monte Carlo approx-
imation of the expectation. For particularly simple parametric forms of qφ(z|x), e.g. multivariate
diagonal Gaussian or, more generally, for reparamatrizable distributions (Kingma and Welling, 2014),
one can backpropagate through the sampling process z ∼ qφ(z|x) by applying the reparametrization
trick, which simulates sampling from qφ(z|x) by first sampling from a fixed distribution u, ε ∼ u(ε),
and then by applying deterministic transformation z = fφ(x, ε). This makes the approach appealing
in comparison to other approximate inference approaches.

In order to have a better generative model overall, many efforts have been put in augmenting
the capacity of the approximate posteriors (Rezende and Mohamed, 2015; Kingma et al., 2016;
Louizos and Welling, 2017), the prior distribution (Chen et al., 2017; Serban et al., 2017a) and the
decoder (Gulrajani et al., 2017; Oord et al., 2016). By having more powerful decoders pθ(x|z),
one could model more complex distributions over X . This idea has been explored while applying
VAEs to sequences x = (x1, . . . , xT ), where the decoding distribution pθ(x|z) is modeled by an
autoregressive model such as an RNN, pθ(x|z) =

∏
t pθ(xt|z, x1:t−1) (Bayer and Osendorfer, 2014;

Chung et al., 2015; Fraccaro et al., 2016). In these models, z typically decomposes as a sequence of
latent variables, z = (z1, . . . , zT ), yielding pθ(x|z) =

∏
t pθ(xt|z1:t−1, x1:t−1). We operate in this

setting and, in the following section, we present our choices for parametrizing the generative model,
the prior and the inference model.

3 Proposed Approach

In Figure 1, we illustrate the dependencies in the inference and the generative parts of our model,
compared to existing models. From a broad perspective, we use a backward recurrent network for the
approximate posterior (akin to SRNN (Fraccaro et al., 2016)), we condition the recurrent state of
the forward auto-regressive model with the stochastic variables and use a conditional prior (akin to
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VRNN (Chung et al., 2015) and STORN (Bayer and Osendorfer, 2014)). In order to make better use
of the latent variables, we use auxiliary costs (double arrows) to force the latent variables to encode
information about the future. In the following, we describe each of these components.

3.1 Generative Model

Decoder Given a sequence of observations x = (x1, . . . , xT ), and desired set of labels or predic-
tions y = (y1, . . . , yT ), we assume that there exists a corresponding set of stochastic latent variables
z = (z1, . . . , zT ). In the following, without loss of generality, we suppose that the set of predictions
corresponds to a shifted version of the input sequence, i.e. the model tries to predict the next observa-
tion given the previous ones, a common setting in language and speech modeling (Fraccaro et al.,
2016; Chung et al., 2015). The generative model couples observations and latent variables by using
an autoregressive model, i.e. by exploiting an LSTM architecture (Hochreiter and Schmidhuber,
1997), that runs through the sequence:

ht =
−→
f (xt, ht−1, zt). (4)

The parameters of the conditional probability distribution on the next observation pθ(xt+1|x1:t, z1:t)
are computed by a multi-layered feed-forward network that conditions on ht, f (o)(ht). In the case of
continuous-valued observations, f (o) may output the µ, log σ parameters of a Gaussian distribution,
or the categorical proportions in the case of one-hot predictions. Note that, even if f (o) is a simple
unimodal distribution, the marginal distribution pθ(xt+1|x1:t) may be highly multimodal, due to the
integration over the sequence of latent variables z. Note that f (o) does not condition on zt, i.e. zt
is not directly used in the computation of the output conditional probabilities. We observed better
performance by avoiding the latent variables from directly producing the next output.

Prior The parameters of the prior distribution pθ(zt|x1:t, z1:t−1) over each latent variable are
obtained by using a non-linear transformation of the previous hidden state of the forward network. A
common choice in the VAE framework is to use Gaussian latent variables. Therefore, f (p) produces
the parameters of a diagonal multivariate Gaussian distribution:

pθ(zt|x1:t, z1:t−1) = N (zt;µ
(p)
t , σ

(p)
t ) where [µ

(p)
t , log σ

(p)
t ] = f (p)(ht−1). (5)

This type of conditional prior has proven to be useful in previous work (Chung et al., 2015).

3.2 Inference Model

The inference model is responsible for approximating the true posterior over the latent variables
p(z1, . . . , zT |x) in order to provide a tractable lower-bound on the log-likelihood. Our posterior
approximation uses an LSTM processing the sequence x backwards:

bt =
←−
f (xt+1, bt+1). (6)

Each state bt contains information about the future of the sequence and can be used to shape the
approximate posterior for the latent zt. As the forward LSTM uses zt to condition future predictions,
the latent variable can directly inform the recurrent dynamics about the future states, acting as a
“plan” of the future in the sequence. This information is channeled into the posterior distribution
by a feed-forward neural network f (q) taking as input both the previous forward state ht−1 and the
backward state bt:

qφ(zt|x) = N (zt;µ
(q)
t , σ

(q)
t ) where [µ

(q)
t , log σ

(q)
t ] = f (q)(ht−1, bt). (7)

By injecting stochasticity in the hidden state of the forward recurrent model, the true posterior
distribution for a given variable zt depends on all the variables zt+1:T after zt through dependence on
ht+1:T . In order to formulate an efficient posterior approximation, we drop the dependence on zt+1:T .
This is at the cost of introducing intrinsic bias in the posterior approximation, e.g. we may exclude the
true posterior from the space of functions modelled by our function approximator. This is in contrast
with SRNN (Fraccaro et al., 2016), in which the posterior distribution factorizes in a tractable manner
at the cost of not including the latent variables in the forward autoregressive dynamics, i.e. the latent
variables don’t condition the hidden state, but only help in shaping a multi-modal distribution for the
current prediction.
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3.3 Auxiliary Cost

In various domains, such as text and images, it has been empirically observed that it is difficult to
make use of latent variables when coupled with a strong autoregressive decoder (Bowman et al.,
2015; Gulrajani et al., 2017; Chen et al., 2017). The difficulty in learning meaningful latent variables,
in many cases of interest, is related to the fact that the abstractions underlying observed data may be
encoded with a much smaller number of bits than the observed variables themselves. For example,
there are multiple ways of picturing a particular “cat” (e.g. different poses, colors or lightning)
without varying the more abstract properties of the concept “cat”. In these cases, the maximum-
likelihood training objective may not be sensitive to how well abstractions are encoded, causing
the latent variables to “shut off”, i.e. the local correlations at the pixel level may be too strong
and bias the learning process towards finding parameter solutions for which the latent variables are
unused. In these cases, the posterior approximation tends to provide a too weak or noisy signal, due
to the variance induced by the stochastic gradient approximation. As a result, the decoder may learn
to ignore z and instead to rely solely on the autoregressive properties of x, causing x and z to be
independent, i.e. the KL term in Eq. 2 vanishes.

Recent solutions to this problem generally propose to reduce the capacity of the autoregressive
decoder (Bowman et al., 2015; Bachman, 2016; Chen et al., 2017; Semeniuta et al., 2017). The
constraints on the decoder capacity inherently bias the learning towards finding parameter solutions
for which z and x are dependent. One of the shortcomings with this approach is that, in general, it
may be hard to achieve the desired solutions by architecture search. Instead, we investigate whether
it is useful to keep the expressiveness of the autoregressive decoder but force the latent variables to
encode useful information by adding an auxiliary training signal for the latent variables alone. In
practice, our results show that this auxiliary cost, albeit simple, helps achieving better performance
on the objective of interest.

Specifically, we consider training an additional conditional generative model of the backward states
b = {b1, . . . , bT } given the forward states pξ(b|h) =

∫
z
pξ(b, z|h)dz ≥ Eqξ(z|b,h)[log pξ(b|z) +

log pξ(z|h) − log qξ(z|b, h)]. This additional model is also trained through amortized variational
inference. However, we share its prior pξ(z|h) and approximate posterior qξ(z|b, h) with those of
the “primary” model (b is a deterministic function of x per Eq. 6 and the approximate posterior
is conditioned on b). In practice, we solely learn additional parameters ξ for the decoding model
pξ(b|z) =

∏
t pξ(bt|zt). The auxiliary reconstruction model trains zt to contain relevant information

about the future of the sequence contained in the hidden state of the backward network bt:

pξ(bt|zt) = N (µ
(a)
t , σ

(a)
t ) where [µ

(a)
t , log σ

(a)
t ] = f (a)(zt), (8)

By means of the auxiliary reconstruction cost, the approximate posterior and prior of the primary
model is trained with an additional signal that may help with escaping apparent local minima
(suboptimal solutions near which training appears to be stuck) due to short term reconstructions
appearing in the lower bound, similarly to what has been recently noted in Karl et al. (2016).

3.4 Learning

The training objective is a regularized version of the lower-bound on the data log-likelihood based on
the variational free-energy, where the regularization is imposed by the auxiliary cost:

L(x; θ, φ, ξ) =
∑
t

E
qφ(zt|x)

[
log pθ(xt+1|x1:t, z1:t) + α log pξ(bt|zt)

]
−DKL

(
qφ(zt|x1:T ) ‖ pθ(zt|x1:t, z1:t−1)

)
.

(9)

We learn the parameters of our model by backpropagation through time (Rumelhart et al., 1988) and
we approximate the expectation with one sample from the posterior qφ(z|x) by using reparametriza-
tion. When optimizing Eq. 9, we disconnect the gradients of the auxiliary prediction from affecting
the backward network, i.e. we don’t use the gradients∇φ log pξ(bt|zt) to update the parameters of
the backward network: intuitively, the backward network should be agnostic about the auxiliary
task assigned to the latent variables. It also performed better empirically. As the approximate
posterior is trained only with the gradient flowing through the ELBO, the backward states b may be
receiving a weak training signal early in training, which may hamper the usefulness of the auxiliary
generative cost, i.e. all the backward states may be concentrated around the zero vector. Therefore,
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we additionally train the backward network to predict the output variables in reverse (see Figure 1):

L(x; θ, φ, ξ) =
∑
t

E
qφ(zt|x)

[
log pθ(xt+1|x1:t, z1:t) + α log pξ(bt|zt)

]
+ β log pξ(xt|bt)

−DKL

(
qφ(zt|x1:T ) ‖ pθ(zt|x1:t, z1:t−1)

)
.

(10)

3.5 Connection to previous models

Our model is similar to several previous stochastic recurrent models: similarly to STORN (Bayer
and Osendorfer, 2014) and VRNN (Chung et al., 2015) the latent variables are provided as input to
the autoregressive decoder. Differently from STORN, we use the conditional prior parametrization
proposed in Chung et al. (2015). However, the generation process in the VRNN differs from our
approach. In VRNN, zt are directly used, along with ht−1, to produce the next output xt. We found
that the model performed better if we relieved the latent variables from producing the next output.
VRNN has a “myopic” posterior in the sense that the latent variables are not informed about the
whole future in the sequence. SRNN (Fraccaro et al., 2016) addresses the issue by running a posterior
backward in the sequence and thus providing future context for the current prediction. However, the
autoregressive decoder is not informed about the future of the sequence through the latent variables.
Several efforts have been made in order to bias the learning process towards parameter solutions for
which the latent variables are used (Bowman et al., 2015; Karl et al., 2016; Kingma et al., 2016; Chen
et al., 2017; Zhao et al., 2017). Bowman et al. (2015) tackle the problem in a language modeling
setting by dropping words from the input at random in order to weaken the autoregressive decoder
and by annealing the KL divergence term during training. We achieve similar latent interpolations by
using our auxiliary cost. Similarly, Chen et al. (2017) propose to restrict the receptive field of the
pixel-level decoder for image generation tasks. Kingma et al. (2016) propose to reserve some free bits
of KL divergence. In parallel to our work, the idea of using a task-agnostic loss for the latent variables
alone has also been considered in (Zhao et al., 2017). The authors force the latent variables to predict
a bag-of-words representation of a dialog utterance. Instead, we work in a sequential setting, in which
we have a latent variable for each timestep in the sequence.

4 Experiments

In this section, we evaluate our proposed model on diverse modeling tasks (speech, images and
text). We show that our model can achieve state-of-the-art results on two speech modeling datasets:
Blizzard (King and Karaiskos, 2013) and TIMIT raw audio datasets (also used in Chung et al. (2015))1.
Our approach also gives competitive results on sequential generation on MNIST (Salakhutdinov and
Murray, 2008). For text, we show that the the auxiliary cost helps the latent variables to capture
information about latent structure of language (e.g. sequence length, sentiment). In all experiments,
we used the ADAM optimizer (Kingma and Ba, 2014).

4.1 Speech Modeling and Sequential MNIST

Blizzard and TIMIT We test our model in two speech modeling datasets. Blizzard consists in
300 hours of English, spoken by a single female speaker. TIMIT has been widely used in speech
recognition and consists in 6300 English sentences read by 630 speakers. We train the model directly
on raw sequences represented as a sequence of 200 real-valued amplitudes normalized using the
global mean and standard deviation of the training set. We adopt the same train, validation and test
split as in Chung et al. (2015). For Blizzard, we report the average log-likelihood for half-second
sequences (Fraccaro et al., 2016), while for TIMIT we report the average log-likelihood for the
sequences in the test set.

In this setting, our models use a fully factorized multivariate Gaussian distribution as the output
distribution for each timestep. In order to keep our model comparable with the state-of-the-art,
we keep the number of parameters comparable to those of SRNN (Fraccaro et al., 2016). Our
forward/backward networks are LSTMs with 2048 recurrent units for Blizzard and 1024 recurrent
units for TIMIT. The dimensionality of the Gaussian latent variables is 256. The prior f (p), inference
f (q) and auxiliary networks f (a) have a single hidden layer, with 1024 units for Blizzard and 512

1Our code is available at https://github.com/anirudh9119/zforcing_nips17
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Model Blizzard TIMIT
RNN-Gauss 3539 -1900
RNN-GMM 7413 26643
VRNN-I-Gauss ≥ 8933 ≥ 28340
VRNN-Gauss ≥ 9223 ≥ 28805
VRNN-GMM ≥ 9392 ≥ 28982
SRNN (smooth+resq) ≥ 11991 ≥ 60550

Ours ≥ 14435 ≥ 68132
Ours + kla ≥ 14226 ≥ 68903

Ours + aux ≥ 15430 ≥ 69530
Ours + kla, aux ≥ 15024 ≥ 70469

Models MNIST
DBN 2hl (Germain et al., 2015) ≈ 84.55
NADE (Uria et al., 2016) 88.33
EoNADE-5 2hl (Raiko et al., 2014) 84.68
DLGM 8 (Salimans et al., 2014) ≈ 85.51
DARN 1hl (Gregor et al., 2015) ≈ 84.13
DRAW (Gregor et al., 2015) ≤ 80.97
PixelVAE (Gulrajani et al., 2016) ≈ 79.02H

P-Forcing(3-layer) (Goyal et al., 2016) 79.58H

PixelRNN(1-layer) (Oord et al., 2016) 80.75
PixelRNN(7-layer) (Oord et al., 2016) 79.20H

MatNets (Bachman, 2016) 78.50H

Ours(1 layer) ≤ 80.60
Ours + aux(1 layer) ≤ 80.09

Table 1: On the left, we report the average log-likelihood per sequence on the test sets for Blizzard
and TIMIT datasets. “kla” and “aux” denote respectively KL annealing and the use of the proposed
auxiliary costs. On the right, we report the test set negative log-likelihood for sequential MNIST,
where H denotes lower performance of our model with respect to the baselines. For MNIST, we
observed that KL annealing hurts overall performance.

units for TIMIT, and use leaky rectified nonlinearities with leakiness 1
3 and clipped at ±3 (Fraccaro

et al., 2016). For Blizzard, we use a learning rate of 0.0003 and batch size of 128, for TIMIT they are
0.001 and 32 respectively. Previous work reliably anneal the KL term in the ELBO via a temperature
weight during training (KL annealing) (Fraccaro et al., 2016; Chung et al., 2015). We report the
results obtained by our model by training both with KL annealing and without. When KL annealing
is used, the temperature was linearly annealed from 0.2 to 1 after each update with increments of
0.00005 (Fraccaro et al., 2016).

We show our results in Table 1 (left), along with results that were obtained by models of comparable
size to SRNN. Similar to (Fraccaro et al., 2016; Chung et al., 2015), we report the conservative
evidence lower bound on the log-likelihood. In Blizzard, the KL annealing strategy (Ours + kla) is
effective in the first training iterations, but eventually converges to a slightly lower log-likelihood
than the model trained without KL annealing (Ours). We explored different annealing strategies but
we didn’t observe any improvements in performance. Models trained with the proposed auxiliary
cost outperform models trained with KL annealing strategy in both datasets. In TIMIT, it appears that
there is a slightly synergistic effect between KL annealing and auxiliary cost. Even if not explicitly
reported in the table, similar performance gains were observed on the training sets.

Sequential MNIST The task consists in pixel-by-pixel generation of binarized MNIST digits. We
use the standard binarized MNIST dataset used in Larochelle and Murray (2011). Both forward
and backward networks are LSTMs with one layer of 1024 hidden units. We use a learning rate
of 0.001 and batch size of 32. We report the results in Table 1 (right). In this setting, we observed
that KL annealing hurt performance of the model. Although being architecturally flat, our model is
competitive with respect to strong baselines, e.g. DRAW (Gregor et al., 2015), and is outperformed by
deeper version of autoregressive models with latent variables, i.e. PixelVAE (gated) (Gulrajani et al.,
2016), and deep autoregressive models such as PixelRNN (Oord et al., 2016) and MatNets (Bachman,
2016).

4.2 Language modeling

A well-known result in language modeling tasks is that the generative model tends to fit the observed
data without storing information in the latent variables, i.e. the KL divergence term in the ELBO
becomes zero (Bowman et al., 2015; Zhao et al., 2017; Serban et al., 2017b). We test our proposed
stochastic recurrent model trained with the auxiliary cost on a medium-sized IMDB text corpus
containing 350K movie reviews (Diao et al., 2014). Following the setting described in Hu et al.
(2017), we keep only sentences with less than 16 words and fixed the vocabulary size to 16K words.
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Figure 2: Evolution of the KL divergence term (measured in nats) in the ELBO with and without
auxiliary cost during training for Blizzard (left) and TIMIT (right). We plot curves for models
that performed best after hyper-parameter (KL annealing and auxiliary cost weights) selection on
the validation set. The auxiliary cost puts pressure on the latent variables resulting in higher KL
divergence. Models trained with the auxiliary cost (Ours + aux) exhibit a more stable evolution of
the KL divergence. Models trained with auxiliary cost alone achieve better performance than using
KL annealing alone (Ours + kla) and similar, or better performance for Blizzard, compared to both
using KL annealing and auxiliary cost (Ours + kla, aux).

Model α, β KL Valid Test
ELBO IWAE ELBO IWAE

Ours 0 0.12 53.93 52.40 54.67 53.11
Ours + aux 0.0025 3.03 55.71 52.54 56.57 53.37
Ours + aux 0.005 9.82 65.03 58.13 65.84 58.83

Table 2: IMDB language modeling results for models trained by maximizing the standard evidence
lower-bound. We report word perplexity as evaluated by both the ELBO and the IWAE bound and
KL divergence between approximate posterior and prior distribution, for different values of auxiliary
cost hyperparameters α, β. The gap in perplexity between the ELBO and IWAE (evaluated with 25
samples) increases with greater KL divergence values.

We split the dataset into train/valid/test sets following these ratios respectively: 85%, 5%, 10%.
Special delimiter tokens were added at the beginning and end of each sentence but we only learned to
generate the end of sentence token. We use a single layered LSTM with 500 hidden recurrent units,
fix the dimensionality of word embeddings to 300 and use 64 dimensional latent variables. All the
f (·) networks are single-layered with 500 hidden units and leaky relu activations. We used a learning
rate of 0.001 and a batch size of 32.

Results are shown in Table 2. As expected, it is hard to obtain better perplexity than a baseline model
when latent variables are used in language models. We found that using the IWAE (Importance
Weighted Autoencoder) (Burda et al., 2015) bound gave great improvements in perplexity. This
observation highlights the fact that, in the text domain, the ELBO may be severely underestimating the
likelihood of the model: the approximate posterior may loosely match the true posterior and the IWAE
bound can correct for this mismatch by tightening the posterior approximation, i.e. the IWAE bound
can be interpreted as the standard VAE lower bound with an implicit posterior distribution (Bachman
and Precup, 2015). On the basis of this observation, we attempted training our models with the IWAE
bound, but observed no noticeable improvement on validation perplexity.

We analyze whether the latent variables capture characteristics of language by interpolating in the
latent space (Bowman et al., 2015). Given a sentence, we first infer the latent variables at each step
by running the approximate posterior and then concatenate them in order to form a contiguous latent
encoding for the input sentence. Then, we perform linear interpolation in the latent space between
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this movie is so terrible . never watch ever

a Argmax Sampling

0.0 it ’s a movie that does n’t work ! this film is more of a “ classic ”
0.1 it ’s a movie that does n’t work ! i give it a 5 out of 10
0.2 it ’s a movie that does n’t work ! i felt that the movie did n’t have any
0.3 it ’s a very powerful piece of film ! i do n’t know what the film was about
0.4 it ’s a very powerful story about it ! the acting is good and the acting is very good
0.5 it ’s a very powerful story about a movie about life the acting is great and the acting is good too
0.6 it ’s a very dark part of the film , eh ? i give it a 7 out of 10 , kids
0.7 it ’s a very dark movie with a great ending ! ! the acting is pretty good and the story is great
0.8 it ’s a very dark movie with a great message here ! the best thing i ’ve seen before is in the film
0.9 it ’s a very dark one , but a great one ! funny movie , with some great performances
1.0 it ’s a very dark movie , but a great one ! but the acting is good and the story is really

interesting

this movie is great . i want to watch it again !

(1 / 10) violence : yes .

a Argmax Sampling

0.0 greetings again from the darkness . greetings again from the darkness .
0.1 “ oh , and no . “ let ’s screenplay it .
0.2 “ oh , and it is . rating : **** out of 5 .
0.3 well ... i do n’t know . i do n’t know what the film was about
0.4 so far , it ’s watchable . ( pg-13 ) violence , no .
0.5 so many of the characters are likable . just give this movie a chance .
0.6 so many of the characters were likable . so far , but not for children
0.7 so many of the characters have been there . so many actors were excellent as well .
0.8 so many of them have fun with it . there are a lot of things to describe .
0.9 so many of the characters go to the house ! so where ’s the title about the movie ?
1.0 so many of the characters go to the house ! as much though it ’s going to be funny !

there was a lot of fun in this movie !

Table 3: Results of linear interpolation in the latent space. The left column reports greedy argmax
decoding obtained by selecting, at each step of the decoding, the word with maximum probability
under the model distribution, while the right column reports random samples from the model. a is the
interpolation parameter. In general, latent variables seem to capture the length of the sentences.

the latent encodings of two sentences. At each step of the interpolation, the latent encoding is run
through the decoder network to generate a sentence. We show the results in Table 3.

5 Conclusion
In this paper, we proposed a recurrent stochastic generative model that builds upon recent architectures
that use latent variables to condition the recurrent dynamics of the network. We augmented the
inference network with a recurrent network that runs backward through the input sequence and added
a new auxiliary cost that forces the latent variables to reconstruct the state of that backward network,
thus explicitly encoding a summary of future observations. The model achieves state-of-the-art results
on standard speech benchmarks such as TIMIT and Blizzard. The proposed auxiliary cost, albeit
simple, appears to promote the use of latent variables more effectively compared to other similar
strategies such as KL annealing. In future work, it would be interesting to use a multitask learning
setting, e.g. sentiment analysis as in (Hu et al., 2017). Also, it would be interesting to incorporate the
proposed approach with more powerful autogressive models, e.g. PixelRNN/PixelCNN (Oord et al.,
2016).
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