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ABSTRACT

This paper presents “BachBot”: an end-to-end automatic
composition system for composing and completing mu-
sic in the style of Bach’s chorales using a deep long
short-term memory (LSTM) generative model. We pro-
pose a new sequential encoding scheme for polyphonic
music and a model for both composition and harmoniza-
tion which can be efficiently sampled without expensive
Markov Chain Monte Carlo (MCMC). Analysis of the
trained model provides evidence of neurons specializing
without prior knowledge or explicit supervision to detect
common music-theoretic concepts such as tonics, chords,
and cadences. To assess BachBot’s success, we conducted
one of the largest musical discrimination tests on 2336 par-
ticipants. Among the results, the proportion of responses
correctly differentiating BachBot from Bach was only 1%
better than random guessing.

1. INTRODUCTION

Recent advances have enabled computational modeling to
provide novel insights into a range of musical phenomena.
One use case is automatic stylistic composition: the algo-
rithmic generation of music in a style similar to a particular
composer or repertoire. This study explores that goal, re-
stricting its attention to generative probabilistic sequence
models which are learned from data. This model is desir-
able because it can be applied to a variety of tasks, includ-
ing: harmonizing a melody (by conditioning the model on
the melody) and automatic composition (by sampling a se-
quence from the model).

The aim is to build a system capable of generating mu-
sic in the style of Bach chorales such that an average lis-
tener cannot distinguish it from original Bach. While the
method we develop is capable of modeling any multi-part
music, we limit the scope of this work to Bach’s chorales
because: they provide a relatively large corpus, by a single
composer, are well understood by music theorists, and are
routinely used in the teaching of music theory.
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1.1 Related Work

Two well-known difficulties in automatic composition are
1) learning the long-term dependencies required for plau-
sible phrasing structure and motif distribution [31], and 2)
evaluating the model’s performance rigorously [34]. Ad-
dressing the first difficulty, more recent work has reported
improvements in learning long-term dependencies by us-
ing LSTM [14, 13, 18]. Eck and Schmidhuber [14] used
LSTM to model blues music and found that LSTM can in-
deed learn long-term aspects of musical structure such as
repeated motifs without explicit modelling.

Evaluating model performance has proven to be more
problematic. In recent work, researchers have begun con-
ducting larger-scale human evaluations. Quick [35] evalu-
ated her rule-based system’s outputs on 237 human partici-
pants from Amazon’s MTurk. Perhaps most relevant to the
present study is Collins et al. [6]: a Markov chain expert
system for automatic composition. The authors evaluated
on 25 participants with a mean of 8.56 years of formal mu-
sic training and found that only 20% of participants (5 out
of 25) performed significantly better than chance. While
these prior results are strong, both of these systems relied
upon a large amount of expert domain knowledge encoded
into the models. In contrast, BachBot leverages minimal
prior knowledge and is evaluated on a significantly larger
participant pool.

Bach chorales have been a popular corpus for previous
work on automatic composition. Early deterministic sys-
tems included rule-based symbolic methods [7, 8, 12, 36],
grammatical inference [9], and constraint logic program-
ming [39]. Probabilistic models learned from data include
the effective Boltzmann machine [3] as well as various
connectionist models [37, 38, 24, 31, 15, 27].

Allan and Williams [1] used hidden Markov models
to generate Bach chorale harmonizations and is one of
the first studies to evaluate model performance quantita-
tively using cross-entropy on held-out data. They intro-
duce the JSB Chorales dataset which has since become
a standard benchmark routinely used to evaluate the per-
formance of generative models on polyphonic music mod-
elling [4, 33, 2, 21, 41]. However, JSB Chorales quan-
tizes time to eighth notes, distorting 2816 notes (2.85% of
the corpus). In contrast, BachBot eliminates this problem
with 2× the time resolution (distorting no notes). Unfor-
tunately, the higher resolution time quantization of Bach-
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Bot’s data as well as BachBot’s sequential encoding format
make direct comparison of cross-entropies against studies
using this dataset difficult. On this dataset, the current
state-of-the-art (as measured by cross-entropy validation
loss) by Goel and Vohra [20] uses a deep belief network
(DBN) which uses a LSTM to propagate temporal dynam-
ics. While BachBot also utilizes a LSTM for capturing
long range dependencies, BachBot uses a softmax distri-
bution rather than a DBN to parameterize the probability
distribution and hence does not require Monte Carlo sam-
pling at each time step of training and inference.

A recent approach developed concurrent to BachBot
was by Hadjeres and Pachet [23]. Their approach also uses
an encoding which accounts for note articulations and fer-
matas and is similarly capable of harmonization under ar-
bitrary constraints (e.g. a given Alto and Tenor part). How-
ever, their model utilizes LSTMs to summarize both past
and future context within ±16 time steps, limiting context
to a temporally local region and inhibiting the learning of
long-term structures such as motifs. Since future context
is not always available, to generate samples the authors
first randomly initialize a predetermined number of time
steps followed by multiple iterations of MCMC. In con-
trast, BachBot’s ancestral sampling method requires only
a single forward pass and does not require the number of
timestamps in the sample to be known in advance. The
authors also evaluate their model using an online discrimi-
nation test, but on a smaller participant pool of 1272.

2. THE BACHBOT SYSTEM

2.1 Corpus Construction and Preprocessing

We took the full set of Bach chorales in MusicXML format
as provided by Cuthbert and Ariza [10]. Following prior
work [31, 14, 16, 17] preprocessing transposed all scores to
C-major / A-minor and quantized time into sixteenth notes.
Time quantization at this resolution does not distort any
notes in the corpus.

2.2 Sequential Encoding of Polyphonic Music Scores

We encode the scores into sequences of tokens amenable
for sequential processing by recurrent neural networks
(RNNs). We limit the symbolic representation to pitch
and rhythm. This is consistent with previous work [4, 33]
and the practice of music theoretic pedagogy. Unlike some
prior work [15, 14, 1], we avoid explicitly encoding music-
theoretic concepts such as motifs, phrases, and chords /
inversions, instead tasking the model to learn musically
meaningful features with minimal prior knowledge (see
section 3.4).

Our encoding represents polyphonic scores with
sixteenth-note frames, encoding duration implicitly by the
number of frames processed. Such an encoding requires
the network to leverage memory to account for longer du-
rations notes, a counting and timing task which LSTM is
known to be capable of [19]. Consecutive frames are sep-
arated by a unique delimiter (||| in fig. 1).

Within each frame, we represent individual notes rather
than entire chords, reducing the vocabulary size from
O(1284) down to O(128). Prior work modeling charac-
ters versus words in language modeling tasks suggests that
this has negligible impact [22]. Each frame consists of
four (Soprano, Alto, Tenor, and Bass) 〈Pitch,Tie〉 tu-
ples where Pitch ∈ {0, 1, · · · , 127} represents the MIDI
pitch of a note and Tie ∈ {True,False} distinguishes
whether a note is tied with a note at the same pitch from the
previous frame or is articulated at the current timestep. We
order notes within a frame in descending MIDI pitch and
neglects crossing voices; potential consequences of doing
so are discussed in section 3.2.

For each score, a unique START symbol and END sym-
bol are added. This enables initialization of the trained
model prior to ancestral sampling of a token sequence by
providing a START token and also allows us to determine
when a sampled composition ends. In addition, our encod-
ing also includes fermatas (represented by (.)), which
Bach used to denote ends of phrases. Significantly, we
found that adding this additional notation to the input re-
sulted in more realistic phrase lengths in generated output.

2.3 Model Architecture, Training, and Sampling

We use a RNN with LSTM memory cells and the following
hyperparameters:

1. num layers – the number of memory cell layers

2. rnn size – the number of hidden units per mem-
ory cell (i.e. hidden state dimension)

3. wordvec – dimension of vector embeddings

4. seq length – number of frames before truncating
back-propagation through time (BPTT) gradient

5. dropout – the dropout probability

Our model first embeds the inputs xt into a wordvec-
dimensional vector-space, compressing the dimensionality
down from |V | ≈ 140 to wordvec dimensions. Next,
num layers layers of memory cells followed by batch
normalization [28] and dropout [26] with dropout proba-
bility dropout are stacked. The outputs y(num layers)

t are
followed by a fully-connected layer mapping to |V | = 108
units, which are passed through a softmax to yield a pre-
dictive distribution P (xt+1|ht−1,xt): the probability dis-
tribution over the next token xt+1 given the current token
xt and the previous RNN memory cell state ht−1.

Models were trained using the Adam optimizer [29]
with a minibatch size of 50 and an initial learning rate
of 2 × 10−3 decayed by 0.5 every 5 epochs. The back-
propagation through time gradients were clipped at ±5.0
[32] and truncated after seq length frames.

We minimize cross-entropy loss between the predicted
distributions P (xt+1|xt,ht−1) and the actual target dis-
tribution δxt+1 . During training, the correct token xt+1 is
treated as the model output even if the most likely predic-
tion argmaxP (xt+1|ht,xt) differs. Williams and Zipser
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(a) Three musical chords in traditional
music notation. The red arrows indicate
the order in which notes are sequentially
encoded.

START
(65, False)
(59, False)
(55, False)
(43, False)
|||
(64, False)

(59, True)
(55, True)
(43, True)
|||
(.)
(64, False)
(60, False)

(55, False)
(48, False)
|||
END

(b) A corresponding sequential encoding of the three chords in an eighth-note time-
quantization (for illustration, broken over three columns). Each line within a column
corresponds to an individual token in the encoded sequence. ||| delimit frames and
(.) indicate a fermata is present within the corresponding frame.

Figure 1: Example encoding of three musical chords ending with a fermata (“pause”) chord.

[40] refers to this as teacher forcing, which is performed
to aid convergence because the model’s predictions may
not be reliable early in training. During inference, we per-
form ancestral sampling and reuse the actual token x̂t sam-
pled from P (xt|ht−1,xt−1) to compute P (xt+1|ht,xt)
for sampling x̂t+1. Unlike MCMC, which requires run-
ning multiple iterations to obtain a single sample, ancestral
sampling requires only a single forward pass.

2.4 Harmonization with Greedy 1-best Search

Chorale harmonization involves providing accompaniment
parts to an existing melody. This is a musical task with eco-
logical validity undertaken by many composers including
Bach himself. Many of Bach’s chorales are harmoniza-
tions by Bach of pre-existing melodies (not by Bach) and
certain melodies (by Bach or otherwise) form the basis of
multiple chorales with different harmonizations.

We extend this harmonization task to the completion of
chorales for a wider number and type of given parts. Let
x(1:T ) be a sequence of tokens representing an encoded
musical score, α ⊂ {1, 2, . . . , T} a multi-index, and sup-
pose x̂α correspond to some fixed token values to be har-
monized (e.g. a provided Soprano line).

We are interested in solving the following optimization:

x∗(1:T ) = argmax
x(1:T )

P (x(1:T )|xα = x̂α) (1)

First, any proposed solution x̃1:T must satisfy x̃α = x̂α,
so the decision variables are x̃(1:T )\α. Hinton and Se-
jnowski [25] refer to this constraint as “clamping” the gen-
erative model. We propose a simple greedy strategy for
choosing x̃(1:T )\α:

x̃t =

{
x̂t if t ∈ α
argmaxxt

P (xt|x̃1:t−1) otherwise
(2)

where the tilde on the previous tokens x̃1:t−1 indicate that
they are equal to the actual previous argmax choices. This
corresponds to a greedy 1-best search at each time t with-
out any accounting of future constraints (e.g. xτ if τ > t
and τ ∈ α). This is sub-optimal, and we leave more so-
phisticated search strategies such as beam search [30] for
future work.

3. EXPERIMENTS

3.1 Sequence Modelling

With the BachBot model, we performed a grid search
through the parameter grid in table 1 and found
num layers = 3, rnn size = 256, wordvec = 32,
seq length = 128 dropout = 0.3 achieves the low-
est cross-entropy loss of 0.477 bits on a 10% held-out val-
idation corpus.

Parameter Values Searched

num layers {1, 2, 3, 4}
rnn size {128, 256, 384, 512}
wordvec {16, 32, 64}

seq length {64, 128, 256}
dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

Table 1: The grid of hyperparameters searched over while
optimizing RNN structure

3.2 Harmonization

S A T B AT ATB
TER 0.532 0.442 0.235 0.241 0.686 0.718
FER 0.532 0.442 0.235 0.241 0.787 0.878

0.0
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0.2
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0.7
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0.9
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Harmonization model error rates
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Figure 2: Token error rates (TER) and frame error rates
(FER) for various harmonization tasks

For the parts to harmonize (i.e. x(1:T )\α), we consid-
ered the following test cases:

1. One part: Soprano (S), Alto (A), Tenor (T), or Bass
(B).
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2. The inner parts (AT). Completion of the inner
parts corresponds to a musically-valid exercise com-
mon in Baroque composition (including some Bach
chorales) where only the outer voices are specified
(with or without figured bass to indicate the chord
types).

3. All parts except Soprano (ATB): the most common
form of harmonization exercise.

It is widely accepted that these tasks successively increase
in terms of difficulty [11].

We deleted the different subsets of parts from a valida-
tion corpus and used eq. (2) to fill in the missing parts. Our
model’s error rates for predicting individual tokens (token
error rate, TER, % of errors in individual token predic-
tions) as well as all tokens within frames (frame error rate,
FER, % of errors in frame predictions where any token pre-
diction errors within a frame counts as a frame error) are
reported in fig. 2.

Surprisingly, error rates were higher for S/A than for
T/B. One possible explanation for this result is our design
decision in section 2.2 to order notes within a frame in
SATB order. As a result, the model must predict the So-
prano part for each frame without any knowledge of the
other parts. When predicting the Bass part, however, it has
already seen all of the other parts and can leverage this
harmonic context. To assess this idea, we propose as fu-
ture work an investigation of different part orderings in the
encoding.

3.3 Musical Discrimination Test

To measure BachBot’s success in this task, we devel-
oped a publicly accessible musical discrimination test at
bachbot.com. Unlike prior studies which leverage paid
services like Amazon MTurk for human feedback [35],
we offered no such incentive and promoted the study only
through social media.

Participants were first surveyed for their age group and
prior music experience (fig. 3a). Next, they are presented
five discrimination tasks which presented two audio tracks
(an original Bach composition and a synthetic composition
by BachBot) and ask them to identify the Bach original.
Each audio track contains an entire composition from start
to end. The music score for the audio was not provided.
Participants were granted an unlimited amount of time and
allowed to replay each track an arbitrary number of times.
Participants could only see the next question after submit-
ting the current one and were not allowed to modify their
responses after submitting.

The five questions comprised of three harmonizations
(S/A/T/B, one AT, one ATB), and two original composi-
tions. To construct the questions, harmonizations were
paired along with the original Bach chorales the fixed parts
were taken from. No such direct comparison is possible
for the SATB case, so these synthetic compositions were
paired with a randomly selected Bach chorale in a some-
what different comparative listening task. Harmonizations

under18 18to25 26to45 46to60 over60

novice 34 181 244 66 16

intermediate 36 387 565 85 18

advanced 17 176 233 23 5

expert 5 34 81 21 9

0

250

500

750

1000

C
ou

nt

Participant demographics

Music experience
novice
intermediate
advanced
expert

(a) Demographics of respondents; self-reported music experience
defined as follows — Novice: casual listener, Intermediate: plays
an instrument, Advanced: formally studied music composition,
Expert: music teacher/researcher.

S A T B AT ATB SATB

Proportion 0.82 0.58 0.49 0.39 0.73 0.65 0.51
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Performance by question type

(b) Proportion of responses correctly discriminating BachBot
from Bach for different question types. The SATB column shows
that BachBot’s generated compositions can be differentiated from
Bach only 1% better than random guessing.

S A T B AT ATB SATB
novice 0.7 0.6 0.42 0.44 0.62 0.65 0.46
intermediate 0.85 0.57 0.53 0.28 0.78 0.66 0.52
advanced 0.85 0.69 0.43 0.56 0.74 0.61 0.52
expert 0.92 0.44 0.57 0.6 0.79 0.72 0.61
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0.8

1.0
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Performance by question type and music experience

Music experience
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advanced
expert

(c) Figure 3b segmented by self-reported music experience. As
expected, more experienced listeners generally produced more
correct responses, though not for the ‘B’ condition.

Figure 3: Results collected from a web-based musical dis-
crimination test.
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Figure 4: Activation profiles suggesting that neurons have specialized to become detectors of musically relevant features.
Layer 1, neuron 64: strongly correlates with the use of dominant seventh chords in the main, tonic key (C major, originally
D major). These are the main non-triadic harmony, are strongly key defining, and have a important function in the harmonic
closure of phrases in this style. Layer 1, neuron 151: fires with the equivalent dominant seventh chord for the two cadences
in the relative minor (a minor, originally b minor) that end phrases 2 and 4. These are the only two appearances in the
chorale of the pitch G# which is foreign to C major, and strongly key defining in a minor.

were synthesized by extracting part(s) from a randomly se-
lected Bach chorale and filling in the remaining parts of the
composition using the method previously described in sec-
tion 2.4. Original compositions (questions labelled SATB)
were generated by providing a START symbol followed by
ancestral sampling as previously described in section 2.3
until an END symbol is reached. The final audio provided
in the questions were obtained by rendering the composi-
tions using the Piano instrument from the Fluid R3 GM
SoundFont.

We only considered the first response per IP address of
participants who had played both choices in every question
at least once and completed all five questions. This totaled
2336 participants at the time of writing, making our study
one of the largest subjective listening evaluation of an au-
tomatic composition system to date.

Figure 3b shows the performance of BachBot on vari-
ous question types. The SATB column shows that, for the
novel synthetic compositions, participants on average suc-
cessfully discriminated Bach from BachBot only 51%: av-
erage human listeners could only perform 1% better than
random guessing. To assess statistical significance, we
choose significance level α = 0.05 and conducted a one-
tailed binomial test (446 successes in 874 trials) to find that
the probability of a discrimination rate higher than 51%
has p-value 0.282 > α. Thus, we conclude that there
does not exist sufficient evidence that the discrimination
rate between Bach and BachBot is significantly different
(at α = 0.05) than the rate achieved by random guessing

random guessing .

The weaker performance of BachBot’s outputs on most
harmonization questions (fig. 3b other than SATB) com-
pared to automatic composition questions (SATB) is coun-
terintuitive: one would expect the provided parts to aid the
model in creating more Bach-like music. This result may
be explained by the shortcomings of our greedy 1-best har-
monization method (discussed above) and/or by the pos-
sible benefit of consistent origins, with all-Bach and all-
BachBot being preferred over hybrid solutions.

Across the S/A/T/B and AT/ATB conditions, the results
vary significantly. The ease of discrimination appears to
correlate with the position in the texture from highest (S,
easiest) to lowest (B, hardest). This may be due to the S
part’s importance in carrying the melody in chorale style,
or (more likely) due once again to the BachBot’s lower er-
ror rates for completing bass parts as compared with other
parts (fig. 2), which in turn is probably due to the sequen-
tial encoding (fig. 1) of bass notes last within each frame,
giving it a harmonic context to work with. Another possi-
bility is that most listeners focus more on the top melody,
neglecting the bass part and any potential deviations there.
In any case, the relatively poor performance of expert lis-
teners for the B-only condition (see fig. 3c) is noteworthy,
and not explained by any aspect of the process.
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3.4 Do Neurons Specialize to Music-Theoretic
Concepts?

Research in convolutional networks has shown that neu-
rons within computer vision models specialize to detect
high-level visual features [42]. Similarly, convolutional
networks trained on audio spectrograms have been shown
to possess neurons which detect high-level aural features
[5]. Following these results, one might expect the Bach-
Bot model to possess neurons which detect features within
symbolic music which have music theoretic relevance.

To investigate this further, one could look at the acti-
vations over time of individual neurons within the LSTM
memory cells to see if neuron activity correlates with rec-
ognized musical processes. An informal analysis sug-
gests that while some neurons are ambiguous to interpreta-
tion, other neurons correlate significantly with recognized
music-theoretic objects, particularly chords (see fig. 4).
To our knowledge, this is the first reported evidence for
an LSTM optimized for automatic composition learning
music-theoretic concepts without explicit prior informa-
tion. This invites a follow-up study testing the statistical
significance of these observations.

4. DISCUSSION

The data generated by bachbot.com shows that subjects
distinguished BachBot from Bach only 51% of the time,
suggesting that BachBot successfully composes and com-
pletes music that cannot be distinguished from Bach sig-
nificantly above the chance level. Additionally, BachBot’s
design involves no explicit encoding of musical parame-
ters beyond the notation, so the results reflects its ability to
acquire music knowledge independently from data.

As discussed, the higher time resolution of our custom
encoding scheme enabled the model to learn about Bach’s
use of sixteenth notes, which is not possible for models
trained on JSB Chorales. Unfortunately, this improved en-
coding means that we are unable to compare quantitative
performance metrics such as log likelihood against other
literature values reported for polyphonic modeling on the
JSB Chorales [1] dataset.

Using this sequential encoding scheme, we train a deep
LSTM sequential prediction model and discover that it
learns music theoretic concepts without prior knowledge or
explicit supervision. We then propose a method to utilize
the sequential prediction model for harmonization tasks.
We acknowledge that our method is not ideal and discuss
better alternatives in future work. Our harmonization re-
sults reveal that this issue is significant and should be a
priority for any follow-up work.

Finally, we leveraged our model to generate harmoniza-
tions as well as novel compositions and used the generated
music in a web-based music discrimination test. Our re-
sults here confirm the success of our project.

While many opportunities for extension are highlighted,
we conclude that our stated research aims have been
reached. In other words, generating stylistically successful
Bach chorales is now a more closed (as a result of Bach-

Bot) than open problem.

5. CONCLUSION

In this paper, we:

• introduce a sequential encoding scheme for music
which achieves time-resolution 2× that of the com-
monly used JSB Chorales [1] dataset.

• performed the largest (to the best of our knowledge
at time of publication) musical discrimination test
of an automatic composition system, which demon-
strated that high quality data can be collected from
voluntary internet surveys.

• demonstrate that a deep LSTM sequential prediction
model trained on our encoding scheme is capable of
composing music that can be distinguished only 1%
better than random guessing, a statistically insignif-
icant difference

• provide the first evidence that neurons in the LSTM
model appear to model common music-theoretic
concepts without prior knowledge or supervision.

In addition, we have open sourced the code for Bach-
Bot 1 as well as our music discrimination test frame-
work 2 . The Magenta project of Google Brain has re-
cently implemented the BachBot model for their poly-
phonic RNN model 3 .
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