
acmqueue | january-february 2017 1

research for practiceRFP

T
his installment of Research for Practice covers
two exciting topics in distributed systems and
programming methodology. First, Peter Alvaro
takes us on a tour of recent techniques for
debugging some of the largest and most complex

systems in the world: modern distributed systems and
service-oriented architectures. The techniques Peter
surveys can shed light on order amid the chaos of
distributed call graphs. Second, Sumit Gulwani illustrates
how to program without explicitly writing programs,
instead synthesizing programs from examples! The
techniques Sumit presents allow systems to “learn” a
program representation from illustrative examples,
allowing nonprogrammer users to create increasingly
nontrivial functions such as spreadsheet macros. Both
of these selections are well in line with RfP’s goal of
accessible, practical research; in fact, both contributors
have successfully transferred their own research in each
area to production, at Netflix and as part of Microsoft
Excel. Readers may also find a use case!

As always, our goal in this column is to allow our
readers to become experts in the latest topics in computer

Expert-curated
Guides to
the Best of
CS Research

1 of 14
TEXT
ONLY

Tracing and Debugging
Distributed Systems;
Programming by Examples

RFP

Research for Practice
combines the resources

of the ACM Digital
Library, the largest

collection of computer
science research in
the world, with the

expertise of the ACM
membership. In every

RfP column two experts
share a short curated

selection of papers on a
concentrated, practically

oriented topic.

acmqueue | january-february 2017 2

research for practiceRFP

science research in a weekend afternoon’s worth of
reading. To facilitate this process, we have provided open
access to the ACM Digital Library for the relevant citations
from these selections so you can enjoy these research
results in full. Please enjoy! —Peter Bailis

OK, BUT WHY? TRACING AND DEBUGGING
DISTRIBUTED SYSTEMS

BY PETER ALVARO

L
arge-scale distributed systems can be a nightmare
to debug. Individually, unlikely events (e.g., a server
crashing or a process taking too long to respond
to a request) are commonplace at the massive
scale at which many Internet enterprises operate.

State-of-the-art monitoring systems can help measure
the frequency of these anomalies but do little to identify
their root causes. Pervasive logging may record events
of interest at appropriate granularity, but correlating
events across the logs of large numbers of machines is
prohibitively difficult.

Distributed tracing systems overcome many of
these limitations, making it easier to derive high-level
explanations of end-to-end interactions spanning many
nodes in distributed computations. But there is no free
lunch. Broadly speaking, large-scale tracing systems
impose on adopters both an instrumentation burden
(the effort that goes into tweaking existing code to add
instrumentation points or to propagate metadata, or
both) and an overhead burden (the runtime cost of trace

2 of 14

acmqueue | january-february 2017 3

research for practiceRFP

capture and propagation). The collection of papers chosen
here illustrates some strategies for ameliorating these
burdens, as well as some creative applications for high-
level explanations.

Tracing with context propagation
Sigelman, B. H., Barroso, L. S., Burrows, M., Stephenson, P.,
Plakal, M., Beaver, D., Jaspan, S., Shanbhag, C. 2010. Dapper, a
large-scale distributed systems tracing infrastructure;
http://research.google.com/pubs/pub36356.html

Dapper represents some of the “early” industrial work on
context-based tracing. It minimizes the instrumentation
burden by relying on Google’s relatively homogenous
infrastructure, in which all code relies on a common RPC
(remote procedure call) library, threading library, and so
on. It minimizes the overhead burden by selecting only a
small sample of requests at ingress and propagating trace
metadata alongside requests in order to ensure that if a
request is sampled, all of the interactions that contributed
to its response are sampled as well.

Dapper’s data model (a tree of nested spans capturing
causal and temporal relationships among services
participating in a call graph) and basic architecture have
become the de facto standard for trace collection in
industry. Zipkin (created at Twitter) was the first open-
source “clone” of Dapper; Zipkin and its derivatives
(including the recently announced Amazon Web Services
X-Ray) are in widespread use today.

3 of 14

http://research.google.com/pubs/pub36356.html

acmqueue | january-february 2017 4

research for practiceRFP

Mace, J., Roelke, R., Fonseca, R. 2015. Pivot Tracing: dynamic
causal monitoring for distributed systems. Proceedings of
the 25th Symposium on Operating Systems Principles: 378-
393. http://cs.brown.edu/~rfonseca/pubs/mace15pivot.pdf

Dapper was by no means the first system design to
advocate in-line context propagation. The idea goes
back at least as far as Xtrace, which was pioneered by
Rodrigo Fonseca at UC Berkeley. Fonseca (now at Brown
University) is still doing impressive work in this space.
Pivot Tracing presents the database take on low-overhead
dynamic tracing, modeling events as tuples, identifying
code locations that represent sources of data, and turning
dynamic instrumentation into a query planning and
optimization problem. Pivot Tracing reuses Dapper/Xtrace-
style context propagation to allow efficient correlation of
events according to causality. Query the streams!

Trace Inference
Chow, M., Meisner, D., Flinn, J., Peek, D., Wenisch, T. F. 2014.
The mystery machine: end-to-end performance analysis
of large-scale Internet services. Proceedings of the 11th
Usenix Conference on Operating Systems Design and
Implementation: 217-231. https://www.usenix.org/system/files/
conference/osdi14/osdi14-paper-chow.pdf

What about enterprises that can’t (or just don’t want to)
overcome the instrumentation and overhead burdens
of tracing? Could they reconstruct causal relationships
after the fact, from unstructured system logs? The

4 of 14

acmqueue | january-february 2017 5

research for practiceRFP

mystery machine describes a system that begins by
liberally formulating hypotheses about how events across
a distributed system could be correlated (e.g., Is one a
cause of the other? Are they mutually exclusive? Do they
participate in a pipelined computation?) and then mines
logs for evidence that contradicts existing hypotheses
(e.g., a log in which two events A and B are concurrent
immediately refutes a hypothesis that A and B are mutually
exclusive). Over time, the set of hypotheses converges into
models of system interactions that can be used to answer
many of the same questions.

New frontiers
Alvaro, P., Andrus, K., Sanden, C., Rosenthal, C., Basiri, A.,
Hochstein, L. 2016. Automating failure-testing research at
Internet scale. Proceedings of the Seventh ACM Symposium
on Cloud Computing: 17-28. https://people.ucsc.edu/~palvaro/
socc16.pdf

The raison d’etre of the systems just described is
understanding the causes of end-to-end latency as
perceived by users. Tracking down tail latencies is just
the tip of the iceberg—armed with detailed “explanations”
of how a large-scale distributed system produces
its outcomes, we can do so much more. My research
group at UC Santa Cruz has been exploring the use of
explanations of “good” or expected system outcomes to
drive fault-injection infrastructures in order to root out
bugs in ostensibly fault-tolerant code. The basic idea is
that if we can explain how a distributed system functions

5 of 14

acmqueue | january-february 2017 6

research for practiceRFP

in the failure-free case, and how it provides redundancy
to overcome faults, we can better understand its
weaknesses.

This approach, called LDFI (lineage-driven fault injection),
originally relied on idealized, fine-grained data provenance
to explain distributed executions (see our previous paper,
“Lineage-driven Fault Injection,” by Peter Alvaro, Joshua
Rosen, and Joseph M. Hellerstein, presented at SIGMOD
2015). This more recent paper describes how the LDFI
approach was adapted to “snap in” to the microservice
architecture at Netflix and to build rich models of system
redundancy from Zipkin-style call-graph traces.

Conclusion
Despite the fact that distributed systems are a mature
research area in academia and are ubiquitous in industry,
the art of debugging distributed systems is still in its
infancy. It is clear that conventional debuggers—and
along with them, conventional best practices for deriving
explanations of computations—must be replaced, but it is
too soon to say which approaches will come to dominate.
Industry has led in the design and particularly in the
popularization of large-scale tracing systems in reaction
to a practical need: understanding the causes of user-
perceived latency for online services. As these systems
become common infrastructure, we will find that this use
case is only the tip of the iceberg. The ability to ask and
answer rich “why” questions about distributed executions
will continue to engender new research that improves the
consistency, predictability, and fault tolerance of massive-
scale systems.

6 of 14

acmqueue | january-february 2017 7

research for practiceRFP

PROGRAMMING BY EXAMPLES

BY SUMIT GULWANI

PBE
(programming by examples) is the
task of synthesizing or searching
for a program from an underlying
program space that satisfies a
given set of input-output

	 examples.
A key challenge in PBE is to develop an efficient search

algorithm that can discover a program that is consistent
with the examples. Various search techniques have been
developed, including deductive methods, use of constraint
(SAT/SMT) solvers, smart heuristics for enumerative
search, and stochastic search. Another key challenge in
PBE is to deal with the ambiguity in intent specification
since there are many programs that satisfy the given
examples but not the user’s intent. Ranking techniques
are used to predict an intended program from within the
set of programs consistent with the examples. Interaction
techniques are used in a refinement loop to converge to an
intended program.

PBE has varied applications. It allows end users, 99
percent of whom are nonprogrammers, to create small
scripts for automating repetitive tasks from examples.
It facilitates software development activities, including
program refactoring, superoptimization, and test-driven
development. The following sample of recently published
work addresses applications from different domains while
employing different kinds of search and disambiguation
algorithms.

7 of 14

acmqueue | january-february 2017 8

research for practiceRFP

Data Manipulation using Back propagation
Gulwani, S. 2011. Automating string processing in
spreadsheets using input-output examples. Proceedings
of the 38th annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming languages: 317-330. https://www.
microsoft.com/en-us/research/publication/automating-string-
processing-spreadsheets-using-input-output-examples/

The first paper describes a technology for automating
string transformations such as converting “FirstName
LastName” to “LastName, FirstName”. This technology
was released as the Flash Fill feature in Microsoft Excel.
The paper motivates the design of an expressive DSL
(domain-specific language) that is also restricted enough
to allow for efficient search. The inspiration came from
studying spreadsheet help forums, wherein end users
solicited help for string transformations, while describing
their intent using examples. The paper describes a
domain-specific search algorithm that achieves realtime
efficiency, breaking from the previous community tradition
of reducing the search problem to querying an off-the-
shelf general-purpose constraint solver. The latter, while
allowing quicker prototyping, lacks the effectiveness of a
custom solution.

The paper also gives first-class treatment to dealing
with ambiguity, instead of requiring a larger number of
examples, thus improving usability and trust. The search
algorithm returns a huge set of programs (represented
succinctly) that satisfy the examples, and a ranking
function that prefers small programs with few constants is
used to guess an intended program.

8 of 14

https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://youtu.be/w-k9WjRJvIY

acmqueue | january-february 2017 9

research for practiceRFP

The success of Flash Fill inspired a wave of interest
in both academia and industry for developing PBE
technologies for other domains, including number/date
transformations, tabular data extraction from log files/
web pages/JSON documents, and reformatting tables.
With data scientists spending 80 percent of their time
transforming and cleaning data to prepare it for analytics,
PBE is set to revolutionize this space by enabling easier
and faster data manipulation.

Polozov, O., Gulwani, S. 2015. FlashMeta: a framework
for inductive program synthesis. Proceedings of the ACM
SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications: 107-
126. https://www.microsoft.com/en-us/research/publication/
flashmeta-framework-inductive-program-synthesis/

Developing and maintaining an industrial-quality PBE
technology is an intellectual and engineering challenge,
requiring one to two person-years. The second paper
observes that many PBE algorithms are natural fallouts
of a generic meta-algorithm and logical properties of
operators in the underlying DSL. The meta-algorithm is
based on back propagation of example-based constraints
over the underlying DSL, reducing the search problem over
program expressions to simpler problems over program
subexpressions. The meta-algorithm can be implemented
once and for all. The operator properties relate to its
inverse semantics and can be reused across multiple DSLs.

This allows for construction of a synthesizer generator

9 of 14

http://dblp.uni-trier.de/pers/hd/p/Polozov:Oleksandr
https://www.microsoft.com/en-us/research/publication/flashmeta-framework-inductive-program-synthesis/
https://www.microsoft.com/en-us/research/publication/flashmeta-framework-inductive-program-synthesis/

acmqueue | january-february 2017 10

research for practiceRFP

that takes a DSL and semantic properties of operators in
the DSL and generates a domain-specific synthesizer. With
such a generator, PBE technologies become modular and
maintainable, facilitating their integration in industrial
products. This framework has been used to develop many
PBE tools that are deployed in several industrial products,
including Microsoft Operations Management Suite,
PowerShell 3.0, and the Cortana digital assistant.

Drawings using Prodirect Manipulation
Hempel, B., Chugh, R. 2016. Semi-automated SVG
programming via direct manipulation. Proceedings of the
29th Annual Symposium on User Interface Software and
Technology: 379-390. https://arxiv.org/abs/1608.02829

PBE can bring together the complementary strengths of
direct GUI (graphic user interface) manipulation (mouse-
and menu-based) and programmatic manipulation of digital
artifacts such as spreadsheets, images, and animations.
While direct manipulation enables easy manipulation of
a concrete object, programmatic manipulation allows for
much more freedom and reusability (but requires skill). This
paper bridges this gap by proposing an elegant combined
approach, called prodirect manipulation, that enables
creation and modification of programs using GUI-based
manipulation of example objects for the domain of SVG
(scalable vector graphics).

The user draws shapes, relates their attributes, and
groups and edits them using the GUI, and the drawing is
kept synchronized with an underlying program. The various

10 of 14

http://dblp.uni-trier.de/pers/hd/h/Hempel:Brian

acmqueue | january-february 2017 11

research for practiceRFP

GUI-based actions translate to constraints over the
example drawing. Constraint solvers are used to generate
candidate modifications to the underlying program so that
the resultant program execution generates a drawing
satisfying those constraints. Smart heuristics are used
to select an intended modification from among the many
solutions. A skilled user can edit the resulting program
during any step to refine the automatically generated
modification or to implement some new functionality.

Superoptimization using Enumerative Search
Phothilimthana, P. M., Thakur, A., Bodík, R., Dhurjati, D.
2016. Scaling up superoptimization. Proceedings of the
21st International Conference on Architectural Support for
Programming Languages and Operating Systems: 297-310.
https://people.eecs.berkeley.edu/~mangpo/www/papers/lens-
asplos16.pdf

PBE can be used to solve the general problem of program
synthesis from an arbitrary specification, given an oracle
that can produce counterexamples where the synthesized
artifact does not match the intended behavior. This
paper uses this reduction, also referred to as CEGIS
(counterexample-guided inductive synthesis), to advance
the state of the art in superoptimization, which is the
problem of finding an optimal sequence of instructions for
a given code fragment.

The heart of the paper is a novel PBE algorithm based
on enumerative search that considers programs in the
underlying state space in order of increasing size. The
algorithm leverages an elegant memoization strategy,

11 of 14

http://dblp.uni-trier.de/pers/hd/p/Phothilimthana:Phitchaya_Mangpo
http://dblp.uni-trier.de/pers/hd/t/Thakur:Aditya
http://dblp.uni-trier.de/pers/hd/d/Dhurjati:Dinakar

acmqueue | january-february 2017 12

research for practiceRFP

wherein it computes the set of programs of bounded
size that satisfy a given collection of examples and
incrementally refines this set with more examples in the
next iteration. The programs are represented succinctly
using their behavior on the example states. The algorithm
also leverages a powerful meet-in-the-middle pruning
technique based on bidirectional search, where the
candidate programs are enumerated forward from input
states, as well as backward from output states.

The paper further studies the strengths and
weaknesses of different search techniques, including
enumerative, stochastic, and solver based, and shows that
a cooperative search that combines these is the best.

The Future
PBE can be regarded as a form of machine learning, where
the problem is to learn from very few examples and
over a rich space of programmatic functions. While past
developments in PBE have leveraged logical methods,
can recent advances in deep learning push the frontier
forward? Another exciting direction to watch out for is
development of natural-language-based programming
interfaces. Multimodal programming environments that
would combine example- and natural-language-based
intent specification shall unfold a new era of programming
by the masses.

Acknowledgments
Thanks to Ravi Chugh, Phitchaya Mangpo Phothilimthana,
and Alex Polozov for providing useful feedback on this
article.

12 of 14

acmqueue | january-february 2017 13

research for practiceRFP

Peter Bailis is an assistant professor of computer science at
Stanford University. His research in the Future Data Systems
group (futuredata.stanford.edu/) focuses on the design and
implementation of next-generation data-intensive systems.
He received a Ph.D. from UC Berkeley in 2015 and an A.B. from
Harvard in 2011, both in computer science.

Peter Alvaro is an assistant professor of computer science
at the UC Santa Cruz, where he leads the Disorderly Labs
research group (disorderlylabs.github.io). His research focuses
on using data-centric languages and analysis techniques to
build and reason about distributed systems in order to make
them scalable, predictable, and robust to the failures and
nondeterminism endemic to large-scale distribution. Alvaro
earned his Ph.D. at UC Berkeley, where he studied with Joseph
M. Hellerstein.

Sumit Gulwani leads a research and engineering team at
Microsoft that develops program synthesis technologies for
data wrangling and incorporates them into real products. His
programming-by-example work led to the Flash Fill feature
in Microsoft Excel used by hundreds of millions of people.
Gulwani has coauthored around 50 patent applications,
published 110 papers in top-tier conferences/journals across
multiple computer science areas, and delivered 30 keynotes/
invited talks at various forums. He was awarded the ACM
SIGPLAN Robin Milner Young Researcher Award in 2014 for
his pioneering contributions to end-user programming and
intelligent tutoring systems. He obtained his Ph.D. from UC
Berkeley and was awarded the ACM SIGPLAN Outstanding

13 of 14

http://futuredata.stanford.edu/

acmqueue | january-february 2017 14

research for practiceRFP

Doctoral Dissertation Award. He obtained his bachelor’s
degree from IIT Kanpur in 2000 and was awarded the
President’s Gold Medal.
Copyright © 2017 held by owner/author. Publication rights licensed to ACM.

14 of 14

CONTENTS2

