
DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms
for Asynchronous Distributed Optimization

Lin Xiao lin.xiao@microsoft.com
Microsoft Research AI
Redmond, WA 98052, USA

Adams Wei Yu weiyu@cs.cmu.edu
Machine Learning Department, Carnegie Mellon University
Pittsburgh, PA 15213, USA

Qihang Lin qihang-lin@uiowa.edu
Tippie College of Business, The University of Iowa
Iowa City, IA 52245, USA

Weizhu Chen wzchen@microsoft.com
Microsoft AI and Research
Redmond, WA 98052, USA

October 13, 2017

Abstract
Machine learning with big data often involves large optimization models. For distributed optimiza-
tion over a cluster ofmachines, frequent communication and synchronization of allmodel parameters
(optimization variables) can be very costly. A promising solution is to use parameter servers to store
different subsets of the model parameters, and update them asynchronously at different machines
using local datasets. In this paper, we focus on distributed optimization of large linear models with
convex loss functions, and propose a family of randomized primal-dual block coordinate algorithms
that are especially suitable for asynchronous distributed implementation with parameter servers. In
particular, we work with the saddle-point formulation of such problems which allows simultaneous
data and model partitioning, and exploit its structure by doubly stochastic coordinate optimization
with variance reduction (DSCOVR). Compared with other first-order distributed algorithms, we
show that DSCOVR may require less amount of overall computation and communication, and less
or no synchronization. We discuss the implementation details of the DSCOVR algorithms, and
present numerical experiments on an industrial distributed computing system.
Keywords: asynchronous distributed optimization, parameter servers, randomized algorithms,
saddle-point problems, primal-dual coordinate algorithms, empirical risk minimization

1. Introduction

Algorithms and systems for distributed optimization are critical for solving large-scale machine
learning problems, especially when the dataset cannot fit into the memory or storage of a single
machine. In this paper, we consider distributed optimization problems of the form

minimize
w∈Rd

1
m

m∑
i=1

fi(Xiw) + g(w), (1)

where Xi ∈ RNi×d is the local data stored at the ith machine, fi : RNi → R is a convex cost function
associated with the linear mapping Xiw, and g(w) is a convex regularization function. In addition,

1

we assume that g is separable, i.e., for some integer n > 0, we can write

g(w) =
n∑

k=1
gk(wk) , (2)

where gk : Rdk → R, and wk ∈ Rdk for k = 1, . . . , n are non-overlapping subvectors of w ∈ Rd

with ∑n
k=1 dk = d (they form a partition of w). Many popular regularization functions in machine

learning are separable, for example, g(w) = (λ/2)‖w‖22 or g(w) = λ‖w‖1 for some λ > 0.
An important special case of (1) is distributed empirical risk minimization (ERM) of linear

predictors. Let (x1, y1), . . . , (xN, yN) be N training examples, where each xj ∈ Rd is a feature vector
and yj ∈ R is its label. The ERM problem is formulated as

minimize
w∈Rd

1
N

N∑
j=1

φ j

(
xTj w

)
+ g(w), (3)

where each φ j : R → R is a loss function measuring the mismatch between the linear prediction
xTj w and the label yj . Popular loss functions in machine learning include, e.g., for regression, the
squared loss φ j(t) = (1/2)(t − yj)2, and for classification, the logistic loss φ j(t) = log(1+ exp(−yj t))
where yj ∈ {±1}. In the distributed optimization setting, the N examples are divided into m subsets,
each stored on a different machine. For i = 1, . . . ,m, let Ii denote the subset of

{
1, . . . , N

}
stored at

machine i and let Ni = |Ii | (they satisfy ∑m
i=1 Ni = N). Then the ERM problem (3) can be written

in the form of (1) by letting Xi consist of xTj with j ∈ Ii as its rows and defining fi : RNi → R as

fi(uIi) =
m
N

∑
j∈Ii

φ j(u j), (4)

where uIi ∈ RNi is a subvector of u ∈ RN , consisting of u j with j ∈ Ii.
The nature of distributed algorithms and their convergence properties largely depend on the

model of the communication network that connects the m computing machines. A popular setting in
the literature is tomodel the communication network as a graph, and each node can only communicate
(in one step)with their neighbors connected by an edge, either synchronously or asynchronously (e.g.,
Bertsekas and Tsitsiklis, 1989; Nedić and Ozdaglar, 2009). The convergence rates of distributed
algorithms in this setting often depend on characteristics of the graph, such as its diameter and the
eigenvalues of the graph Laplacian (e.g. Xiao and Boyd, 2006; Duchi et al., 2012; Nedić et al., 2016;
Scaman et al., 2017). This is often called the decentralized setting.

Another model for the communication network is centralized, where all the machines participate
synchronous, collective communication, e.g., broadcasting a vector to all m machines, or computing
the sum of m vectors, each from a different machine (AllReduce). These collective communication
protocols hide the underlying implementation details, which often involve operations on graphs.
They are adopted by many popular distributed computing standards and packages, such as MPI
(MPI Forum, 2012), MapReduce (Dean and Ghemawat, 2008) and Aparche Spark (Zaharia et al.,
2016), and are widely used in machine learning practice (e.g., Lin et al., 2014; Meng et al., 2016).
In particular, collective communications are very useful for addressing data parallelism, i.e., by
allowing different machines to work in parallel to improve the same model w ∈ Rd using their local
dataset. A disadvantage of collective communications is their synchronization cost: faster machines
or machines with less computing tasks have to become idle while waiting for other machines to
finish their tasks in order to participate a collective communication.

2

One effective approach for reducing synchronization cost is to exploit model parallelism (here
“model” refers to w ∈ Rd, including all optimization variables). The idea is to allow different
machines work in parallel with different versions of the full model or different parts of a common
model, with little or no synchronization. The model partitioning approach can be very effective for
solving problems with large models (large dimension d). Dedicated parameter servers can be set
up to store and maintain different subsets of the model parameters, such as the wk’s in (2), and be
responsible for coordinating their updates at different workers (Li et al., 2014; Xing et al., 2015).
This requires flexible point-to-point communication.

In this paper, we develop a family of randomized algorithms that exploit simultaneous data and
model parallelism. Correspondingly, we adopt a centralized communication model that support
both synchronous collective communication and asynchronous point-to-point communication. In
particular, it allows any pair of machines to send/receive a message in a single step, and multiple
point-to-point communications may happen in parallel in an event-driven, asynchronous manner.
Such a communication model is well supported by the MPI standard. To evaluate the performance
of distributed algorithms in this setting, we consider the following three measures.

• Computation complexity: total amount of computation, measured by the number of passes
over all datasets Xi for i = 1, . . . ,m, which can happen in parallel on different machines.

• Communication complexity: the total amount of communication required, measured by the
equivalent number of vectors in Rd sent or received across all machines.

• Synchronous communication: measured by the total number of vectors in Rd that requires
synchronous collective communication involving all m machines. We single it out from the
overall communication complexity as a (partial) measure of the synchronization cost.

In Section 2, we introduce the framework of our randomized algorithms, Doubly Stochastic
Coordinate Optimization with Variance Reduction (DSCOVR), and summarize our theoretical
results on the three measures achieved by DSCOVR. Compared with other first-order methods for
distributed optimization, we show that DSCOVR may require less amount of overall computation
and communication, and less or no synchronization. Then we present the details of several DSCOVR
variants and their convergence analysis in Sections 3-6. We discuss the implementation of different
DSCOVR algorithms in Section 7, and present results of our numerical experiments in Section 8.

2. The DSCOVR Framework and Main Results

First, we derive a saddle-point formulation of the convex optimization problem (1). Let f ∗i be the
convex conjugate of fi, i.e., f ∗i (αi) = supui ∈RNi

{
αTi ui − fi(ui)

}
, and define

L(w, α) ≡
1
m

m∑
i=1

αTi Xiw −
1
m

m∑
i=1

f ∗i (αi) + g(w) , (5)

where α = [α1; . . . ;αm] ∈ RN . Since both the fi’s and g are convex, L(w, α) is convex in w and
concave in α. We also define a pair of primal and dual functions:

P(w) = max
α∈RN

L(w, α) =
1
m

m∑
i=1

fi(Xiw) + g(w) , (6)

D(α) = min
w∈Rd

L(w, α) = −
1
m

m∑
i=1

f ∗i (αi) − g
∗

(
−

1
m

m∑
i=1
(Xi)

Tαi

)
, (7)

3

...

...

...

...

.

w1 wk wn

α1

αi

αm

Xik Xi:

X:k

Figure 1: Partition of primal variable w, dual variable α, and the data matrix X .

where P(w) is exactly the objective function in (1)1 and g∗ is the convex conjugate of g. We assume
that L has a saddle point (w?, α?), that is,

L(w?, α) ≤ L(w?, α?) ≤ L(w, α?) , ∀(w, α) ∈ Rd × RN .

In this case, we have w? = arg min P(w) and α? = arg min D(α), and P(w?) = D(α?).
The DSCOVR framework is based on solving the convex-concave saddle-point problem

min
w∈Rd

max
α∈RN

L(w, α). (8)

Since we assume that g has a separable structure as in (2), we rewrite the saddle-point problem as

min
w∈Rd

max
α∈RN

{
1
m

m∑
i=1

n∑
k=1

αTi Xikwk −
1
m

m∑
i=1

f ∗i (αi) +
n∑

k=1
gk(wk)

}
, (9)

where Xik ∈ RNi×dk for k = 1, . . . , n are column partitions of Xi. For convenience, we define
the following notations. First, let X = [X1; . . . ; Xm] ∈ RN×d be the overall data matrix, by
stacking the Xi’s vertically. Conforming to the separation of g, we also partition X into block
columns X:k ∈ RN×dk for k = 1, . . . , n, where each X:k = [X1k ; . . . ; Xmk] (stacked vertically). For
consistency, we also use Xi: to denote Xi from now on. See Figure 1 for an illustration.

We exploit the doubly separable structure in (9) by a doubly stochastic coordinate update
algorithm outlined in Algorithm 1. Let p = {p1, . . . , pm} and q = {q1, . . . , qn} be two probability
distributions. During each iteration t, we randomly pick an index j ∈ {1, . . . ,m} with probability pj ,
and independently pick an index l ∈ {1, . . . , n} with probability ql. Then we compute two vectors
u(t+1)
j ∈ RN j and v

(t+1)
l

∈ Rdl (details to be discussed later), and use them to update the block
coordinates αj and wl while leaving other block coordinates unchanged. The update formulas
in (10) and (11) use the proximal mappings of the (scaled) functions f ∗j and gl respectively. We

1. More technically, we need to assume that each fi is convex and lower semi-continuous so that f ∗∗i = fi (see, e.g.,
Rockafellar, 1970, Section 12). It automatically holds if fi is convex and differentiable, which we will assume later.

4

Algorithm 1 DSCOVR framework
input: initial points w(0), α(0), and step sizes σi for i = 1, . . . ,m and τk for k = 1, . . . , n.
1: for t = 0, 1, 2, . . . , do
2: pick j ∈ {1, . . . ,m} and l ∈ {1, . . . , n} randomly with distributions p and q respectively.
3: compute variance-reduced stochastic gradients u(t+1)

j and v
(t+1)
l

.
4: update primal and dual block coordinates:

α
(t+1)
i =

{
proxσj f

∗
j

(
α
(t)
j + σju

(t+1)
j

)
if i = j,

α
(t)
i , if i , j,

(10)

w
(t+1)
k

=

{
proxτlgl

(
w
(t)
l
− τlv

(t+1)
l

)
if k = l,

w
(t)
k
, if k , l .

(11)

5: end for

recall that the proximal mapping for any convex function φ : Rd → R ∪ {∞} is defined as

proxφ(v)
4
= arg min

u∈Rd

{
φ(u) +

1
2
‖u − v‖2

}
.

There are several different ways to compute the vectors u(t+1)
j and v(t+1)

l
in Step 3 of Algorithm 1.

They should be the partial gradients or stochastic gradients of the bilinear coupling term in L(w, α)
with respect to αj and wl respectively. Let

K(w, α) = αT Xw =
m∑
i=1

n∑
k=1

αTi Xikwk,

which is the bilinear term in L(w, α) without the factor 1/m. We can use the following partial
gradients in Step 3:

ū(t+1)
j =

∂K(w(t), α(t))
∂αj

=
n∑

k=1
Xjkw

(t)
k
,

v̄
(t+1)
l
=

1
m
∂K(w(t), α(t))

∂wl
=

1
m

m∑
i=1
(Xil)

Tα
(t)
i .

(12)

We note that the factor 1/m does not appear in the first equation because it multiplies both K(w, α)
and f ∗j (αj) in (9) and hence does not appear in updating αj . Another choice is to use

u(t+1)
j =

1
ql

Xjlw
(t)
l
,

v
(t+1)
l
=

1
pj

1
m
(Xjl)

Tα
(t)
j ,

(13)

which are unbiased stochastic partial gradients, because

El

[
u(t+1)
j

]
=

n∑
k=1

qk
1
qk

Xjkw
(t)
k
=

n∑
k=1

Xjkw
(t)
k
= ū(t+1)

j ,

Ej

[
v
(t+1)
l

]
=

m∑
i=1

pi
1
pi

1
m
(Xil)

Tα
(t)
i =

1
m

m∑
i=1
(Xil)

Tα
(t)
i = v̄

(t+1)
l

,

5

w1 w1wn wn

α1

αm

Figure 2: Simultaneous data and model parallelism. At any given time, each machine is busy
updating one parameter block and its own dual variable. Whenever some machine is
done, it is assigned to work on a random block that is not being updated.

where Ej and El are expectations with respect to the random indices j and l respectively.
It can be shown that, Algorithm 1 converges to a saddle point of L(w, α) with either choice (12)

or (13) in Step 3, and with suitable step sizes σi and τk . It is expected that using the stochastic
gradients in (13) leads to a slower convergence rate than applying (12). However, using (13) has the
advantage of much less computation during each iteration. Specifically, it employs only one block
matrix-vector multiplication for both updates, instead of n and m block multiplications done in (12).

More importantly, the choice in (13) is suitable for parallel and distributed computing. To see
this, let (j(t), l(t)) denote the pair of random indices drawn at iteration t (we omit the superscript (t)
to simplify notation whenever there is no confusion from the context). Suppose for a sequence
of consecutive iterations t, . . . , t + s, there is no common index among j(t), . . . , j(t+s), nor among
l(t), . . . , l(t+s), then these s + 1 iterations can be done in parallel and they produce the same updates
as being done sequentially. Suppose there are s + 1 processors or machines, then each can carry out
one iteration, which includes the updates in (13) as well as (10) and (11). These s + 1 iterations
are independent of each other, and in fact can be done in any order, because each only involve one
primal block wl(t) and one dual block αj(t) , for both input and output (variables on the right and left
sides of the assignments respectively). In contrast, the input for the updates in (12) depend on all
primal and dual blocks at the previous iteration, thus cannot be done in parallel.

In practice, suppose we have m machines for solving problem (9), and each holds the data matrix
Xi: in memory and maintains the dual block αi, for i = 1, . . . ,m. We assume that the number of
model partitions n is larger than m, and the n model blocks {w1, . . . ,wn} are stored at one or more
parameter servers. In the beginning, we can randomly pick m model blocks (sampling without
replacement) from {w1, . . . ,wn}, and assign each machine to update one of them. If machine i is
assigned to update block k, then both αi and wk are updated, using only the matrix Xik ; moreover, it
needs to communicate only the block wk with the parameter server that are responsible to maintain
it. Whenever one machine finishes its update, a scheduler can randomly pick another parameter
block that is not currently updated by other machines, and assign it to the free machine. Therefore
all machines can work in parallel, in an asynchronous, event-driven manner. Here an event is
the completion of a block update at any machine, as illustrated in Figure 2. We will discuss the
implementation details in Section 7.

6

The idea of using doubly stochastic updates for distributed optimization in not new. It has
been studied by Yun et al. (2014) for solving the matrix completion problem, and by Matsushima
et al. (2014) for solving the saddle-point formulation of the ERM problem. Despite their nice
features for parallelization, these algorithms inherit the O(1/

√
t) (or O(1/t) with strong convexity)

sublinear convergence rate of the classical stochastic gradient method. They translate into high
communication and computation cost for distributed optimization. In this paper, we propose new
variants of doubly stochastic update algorithms by using variance-reduced stochastic gradients
(Step 3 of Algorithm 1). More specifically, we borrow the variance-reduction techniques from SVRG
(Johnson and Zhang, 2013) and SAGA (Defazio et al., 2014) to develop the DSCOVR algorithms,
which enjoy fast linear rates of convergence. In the rest of this section, we summarize our theoretical
results characterizing the three measures for DSCOVR: computation complexity, communication
complexity, and synchronization cost. We compare them with distributed implementation of batch
first-order algorithms.

2.1 Summary of Main Results

Throughout this paper, we use ‖ · ‖ to denote the standard Euclidean norm for vectors. For matrices,
‖ · ‖ denotes the operator (spectral) norm and ‖ · ‖F denotes the Frobenius norm. We make the
following assumption regarding the optimization problem (1).

Assumption 1 Each fi is convex and differentiable, and its gradient is (1/γi)-Lipschitz continuous,
i.e.,

‖∇ fi(u) − ∇ fi(v)‖ ≤
1
γi
‖u − v‖, ∀ u, v ∈ RNi, i = 1, . . . ,m. (14)

In addition, the regularization function g is λ-strongly convex, i.e.,

g(w′) ≥ g(w) + ξT (w′ − w) +
λ

2
‖w′ − w‖2, ∀ ξ ∈ ∂g(w), w′,w ∈ Rd .

Under Assumption 1, each f ∗i is γi-strongly convex (see, e.g., Hiriart-Urruty and Lemaréchal, 2001,
Theorem 4.2.2), and L(w, α) defined in (5) has a unique saddle point (w?, α?).

The condition (14) is often referred to as fi being 1/γi-smooth. To simplify discussion, here we
assume γi = γ for i = 1, . . . ,m. Under these assumptions, each composite function fi(Xiw) has a
smoothness parameter ‖Xi ‖

2/γ (upper bound on the largest eigenvalue of its Hessian). Their average
(1/m)∑m

i=1 fi(Xiw) has a smooth parameter ‖X ‖2/(mγ), which no larger than the average of the
individual smooth parameters (1/m)∑m

i=1 ‖Xi ‖
2/γ. We define a condition number for problem (1)

as the ratio between this smooth parameter and the convexity parameter λ of g:

κbat =
‖X ‖2

mλγ
≤

1
m

m∑
i=1

‖Xi:‖
2

λγ
≤
‖X ‖2max
λγ

, (15)

where ‖X ‖max = maxi{‖Xi:‖}. This condition number is a key factor to characterize the iteration
complexity of batch first-order methods for solving problem (1), i.e., minimizing P(w). Specifically,
to find a w such that P(w)−P(w?) ≤ ε , the proximal gradient method requiresO ((1 + κbat) log(1/ε))
iterations, and their accelerated variants require O

((
1 + √κbat

)
log(1/ε)

)
iterations (e.g., Nesterov,

2004; Beck and Teboulle, 2009; Nesterov, 2013). Primal-dual first order methods for solving the
saddle-point problem (8) share the same complexity (Chambolle and Pock, 2011, 2015).

7

Algorithms Computation complexity Communication complexity
(number of passes over data) (number of vectors in Rd)

batch first-order methods (1 + κbat) log(1/ε) m(1 + κbat) log(1/ε)

DSCOVR (1 + κrand/m) log(1/ε) (m + κrand) log(1/ε)

accelerated batch first-order methods
(
1 + √κbat

)
log(1/ε) m

(
1 + √κbat

)
log(1/ε)

accelerated DSCOVR
(
1 +

√
κrand/m

)
log(1/ε)

(
m +
√

m ·κrand
)

log(1/ε)

Table 1: Computation and communication complexities of batch first-order methods and DSCOVR
(for both SVRG and SAGA variants). We omit the O(·) notation in all entries and an extra
log(1 + κrand/m) factor for accelerated DSCOVR algorithms.

A fundamental baseline for evaluating any distributed optimization algorithms is the distributed
implementation of batch first-order methods. Let’s consider solving problem (1) using the proximal
gradient method. During every iteration t, each machine receives a copy of w(t) ∈ Rd from a
master machine (through Broadcast), and computes the local gradient z(t)i = XT

i ∇ fi(Xiw
(t)) ∈ Rd.

Then a collective communication is invoked to compute the batch gradient z(t) = (1/m)∑m
i=1 z(t)i at

the master (Reduce). The master then takes a proximal gradient step, using z(t) and the proximal
mapping of g, to compute the next iterate w(t+1) and broadcast it to every machine for the next
iteration. We can also use the AllReduce operation in MPI to obtain z(t) at each machine without
a master. In either case, the total number of passes over the data is twice the number of iterations
(due to matrix-vector multiplications using both Xi and XT

i), and the number of vectors in Rd

sent/received across all machines is 2m times the number of iterations (see Table 1). Moreover, all
communications are collective and synchronous.

Since DSCOVR is a family of randomized algorithms for solving the saddle-point problem (8),
we would like to find (w, α) such that ‖w(t) − w?‖2 + (1/m)‖α(t) − α?‖2 ≤ ε holds in expectation
and with high probability. We list the communication and computation complexities of DSCOVR in
Table 1, comparing them with batch first-order methods. Similar guarantees also hold for reducing
the duality gap P(w(t)) − D(α(t)), where P and D are defined in (6) and (7) respectively.

The key quantity characterizing the complexities of DSCOVR is the condition number κrand,
which can be defined in several different ways. If we pick the data block i and model block k with
uniform distribution, i.e., pi = 1/m for i = 1, . . . ,m and qk = 1/n for k = 1, . . . , n, then

κrand =
n‖X ‖2m×n

λγ
, where ‖X ‖m×n = max

i,k
‖Xik ‖. (16)

Comparing the definition of κbat in (15), we have κbat ≤ κrand because

1
m
‖X ‖2 ≤

1
m

m∑
i=1
‖Xi ‖

2 ≤
1
m

m∑
i=1

n∑
k=1
‖Xik ‖

2 ≤ n‖X ‖2m×n.

With Xi: = [Xi1 · · · Xim] ∈ RNi×d and X:k = [X1k ; . . . ; Xmk] ∈ RN×dk , we can also define

κ′rand =
‖X ‖2max,F

λγ
, where ‖X ‖max,F = max

i,k

{
‖Xi:‖F, ‖X:k ‖F

}
. (17)

8

Algorithms Synchronous Communication Asynchronous Communication
(number of vectors in Rd) (equiv. number of vectors in Rd)

DSCOVR-SVRG m log(1/ε) κrand log(1/ε)
DSCOVR-SAGA m (m + κrand) log(1/ε)

accelerated DSCOVR-SVRG m log(1/ε)
(
1 + √m ·κrand

)
log(1/ε)

accelerated DSCOVR-SAGA m
(
1 + √m ·κrand

)
log(1/ε)

Table 2: Breakdown of communication complexities into synchronous and asynchronous commu-
nications for two different types of DSCOVR algorithms. We omit the O(·) notation and
an extra log(1 + κrand/m) factor for accelerated DSCOVR algorithms.

In this case, we also have κbat ≤ κ
′
rand because ‖X ‖max ≤ ‖X ‖max,F . Finally, if we pick the pair (i, k)

with non-uniform distribution pi = ‖Xi:‖
2
F/‖X ‖

2
F and qk = ‖X:k ‖

2
F/‖X ‖

2
F , then we can define

κ′′rand =
‖X ‖2F
mλγ

. (18)

Again we have κbat ≤ κ
′′
rand because ‖X ‖ ≤ ‖X ‖F . We may replace κrand in Tables 1 and 2 by either

κ′rand or κ
′′
rand, depending on the probability distributions p and q and different proof techniques.

From Table 1, we observe similar type of speed-ups in computation complexity, as obtained by
variance reduction techniques over the batch first-order algorithms for convex optimization (e.g.,
Le Roux et al., 2012; Johnson and Zhang, 2013; Defazio et al., 2014; Xiao and Zhang, 2014; Lan
and Zhou, 2015; Allen-Zhu, 2017), as well as for convex-concave saddle-point problems (Zhang
and Xiao, 2017; Balamurugan and Bach, 2016). Basically, DSCOVR algorithms have potential
improvement over batch first-order methods by a factor of m (for non-accelerated algorithms) or

√
m

(for accelerated algorithms), but with a worse condition number. In the worst case, the ratio between
κrand and κbat may be of order m or larger, thus canceling the potential improvements.

More interestingly, DSCOVR also has similar improvements in terms of communication com-
plexity over batch first-order methods. In Table 2, we decompose the communication complexity
of DSCOVR into synchronous and asynchronous communication. The decomposition turns out to
be different depending on the variance reduction techniques employed: SVRG (Johnson and Zhang,
2013) versus SAGA (Defazio et al., 2014). We note that DSCOVR-SAGA essentially requires
only asynchronous communication, because the synchronous communication of m vectors are only
necessary for initialization with non-zero starting point.

The comparisons in Table 1 and 2 give us good understanding of the complexities of different
algorithms. However, these complexities are not accurate measures of their performance in practice.
For example, collective communication of m vectors in Rd can often be done in parallel over a
spanning tree of the underlying communication network, thus only cost log(m) times (insted of m
times) compared with sending only one vector. Also, for point-to-point communication, sending one
vector in Rd altogether can be much faster than sending n smaller vectors of total length d separately.
A fair comparison in term of wall-clock time on a real-world distributed computing system requires
customized, efficient implementation of different algorithms. We will shed some light on timing
comparisons with numerical experiments in Section 8.

9

2.2 Related Work

There is an extensive literature on distributed optimization. Many algorithms developed for machine
learning adopt the centralized communication setting, due to the wide availability of supporting
standards and platforms such as MPI, MapReduce and Spark (as discussed in the introduction).
They include parallel implementations of the batch first-order and second-order methods (e.g., Lin
et al., 2014; Chen et al., 2014; Lee et al., 2017), ADMM (Boyd et al., 2011), and distributed dual
coordinate ascent (Yang, 2013; Jaggi et al., 2014; Ma et al., 2015).

For minimizing the average function (1/m)∑m
i=1 fi(w), in the centralized setting and with only

first-order oracles (i.e., gradients of fi’s or their conjugates), it has been shown that distributed
implementation of accelerated gradient methods achieves the optimal convergence rate and commu-
nication complexity (Arjevani and Shamir, 2015; Scaman et al., 2017). The problem (1) we consider
has the extra structure of composition with a linear transformation by the local data, which allows
us to exploit simultaneous data and model parallelism using randomized algorithms and obtain
improved communication and computation complexity.

Most work on asynchronous distributed algorithms exploit model parallelism in order to reduce
the synchronization cost, especially in the setting with parameter servers (e.g., Li et al., 2014; Xing
et al., 2015; Aytekin et al., 2016). Besides, delay caused by the asynchrony can be incorporated to the
step size to gain practical improvement on convergence (e.g., Agarwal and Duchi, 2011; McMahan
and Streeter, 2014; Sra et al., 2016), though the theoretical sublinear rates remain. There are also
many recent work on asynchronous parallel stochastic gradient and coordinate-descent algorithms
for convex optimization (e.g., Recht et al., 2011; Liu et al., 2014; Shi et al., 2015; Reddi et al.,
2015; Richtárik and Takáč, 2016; Peng et al., 2016). When the workloads or computing power of
different machines or processors are nonuniform, they may significantly increase iteration efficiency
(number of iterations done in unit time), but often at the cost of requiring more iterations than their
synchronous counterparts (due to delays and stale updates). So there is a subtle balance between
iteration efficiency and iteration complexity (e.g., Hannah and Yin, 2017). Our discussions in
Section 2.1 show that DSCOVR is capable of improving both aspects.

For solving bilinear saddle-point problems with a finite-sum structure, Zhang and Xiao (2017)
proposed a randomized algorithm that works with dual coordinate update but full primal update. Yu
et al. (2015) proposed a doubly stochastic algorithm that works with both primal and dual coordinate
updates based on equation (12). Both of them achieved accelerated linear convergence rates, but
neither can be readily applied to distributed computing. In addition, Balamurugan and Bach (2016)
proposed stochastic variance-reduction methods (also based on SVRG and SAGA) for solving more
general convex-concave saddle point problems. For the special case with bilinear coupling, they
obtained similar computation complexity as DSCOVR. However, their methods require full model
updates at each iteration (even though working with only one sub-block of data), thus are not suitable
for distributed computing.

With additional assumptions and structure, such as similarity between the local cost functions at
different machines or using second-order information, it is possible to obtain better communication
complexity for distributed optimization; see, e.g., Shamir et al. (2014); Zhang and Xiao (2015);
Reddi et al. (2016). However, these algorithms rely on much more computation at each machine for
solving a local sub-problem at each iteration. With additional memory and preprocessing at each
machine, Lee et al. (2015) showed that SVRG can be adapted for distributed optimization to obtain
low communication complexity.

10

Algorithm 2 DSCOVR-SVRG
input: initial points w̄(0), ᾱ(0), number of stages S and number of iterations per stage M .
1: for s = 0, 1, 2, . . . , S − 1 do
2: ū(s) = Xw̄(s) and v̄(s) = 1

m XT ᾱ(s)

3: w(0) = w̄(s) and α(0) = ᾱ(s)
4: for t = 0, 1, 2, . . . , M − 1 do
5: pick j ∈ {1, . . . ,m} and l ∈ {1, . . . , n} randomly with distributions p and q respectively.

6: compute variance-reduced stochastic gradients:

u(t+1)
j = ū(s)j +

1
ql

Xjl

(
w
(t)
l
− w̄

(s)
l

)
, (19)

v
(t+1)
l

= v̄
(s)
l
+

1
pj

1
m
(Xjl)

T (
α
(t)
j − ᾱ

(s)
j

)
. (20)

7: update primal and dual block coordinates:

α
(t+1)
i =

{
proxσj f

∗
j

(
α
(t)
j + σju

(t+1)
j

)
if i = j,

α
(t)
i , if i , j,

w
(t+1)
k

=

{
proxτlgl

(
w
(t)
l
− τlv

(t+1)
l

)
if k = l,

w
(t)
k
, if k , l .

8: end for

9: w̄(s+1) = w(M) and ᾱ(s+1) = α(M).
10: end for

output: w̄(S) and ᾱ(S).

3. The DSCOVR-SVRG Algorithm

From this section to Section 6, we present several realizations of DSCOVR using different variance
reduction techniques and acceleration schemes, and analyze their convergence properties. These
algorithms are presented and analyzed as sequential randomized algorithms. We will discuss how
to implement them for asynchronous distributed computing in Section 7.

Algorithm 2 is a DSCOVR algorithm that uses the technique of SVRG (Johnson and Zhang,
2013) for variance reduction. The iterations are divided into stages and each stage has a inner loop.
Each stage is initialized by a pair of vectors w̄(s) ∈ Rd and ᾱ(s) ∈ RN , which come from either
initialization (if s = 0) or the last iterate of the previous stage (if s > 0). At the beginning of each
stage, we compute the batch gradients

ū(s) =
∂

∂ᾱ(s)

(
(ᾱ(s))T Xw̄(s)

)
= Xw̄(s), v̄(s) =

∂

∂w̄(s)

(
1
m
(ᾱ(s))T Xw̄(s)

)
=

1
m

XT ᾱ(s).

The vectors ū(s) and v̄(s) share the same partitions as α(t) and w(t), respectively. Inside each stage s,
the variance-reduced stochastic gradients are computed in (19) and (20). It is easy to check that they

11

are unbiased. More specifically, taking expectation of u(t+1)
j with respect to the random index l gives

El

[
u(t+1)
j

]
= ū(s)j +

n∑
k=1

qk
1
qk

Xjk

(
w
(t)
k
− w̄

(s)
k

)
= ū(s)j + Xj:w

(t) − Xj:w̄
(s) = Xj:w

(t),

and taking expectation of v(t+1)
l

with respect to the random index j gives

Ej

[
v
(t+1)
l

]
= v̄
(s)
l
+

m∑
i=1

pi
1
pi

1
m
(Xil)

T (
α
(t)
i − ᾱ

(s)
i

)
= v̄
(s)
l
+

1
m
(X:l)

T
(
α(t) − ᾱ(s)

)
=

1
m
(X:l)

Tα(t).

In order to measure the distance of any pair of primal and dual variables to the saddle point, we
define a weighted squared Euclidean norm on Rd+N . Specifically, for any pair (w, α) where w ∈ Rd

and α = [α1, . . . , αm] ∈ RN with αi ∈ RNi , we define

Ω(w, α) = λ‖w‖2 +
1
m

m∑
i=1

γi ‖αi ‖
2. (21)

If γi = γ for all i = 1, . . . ,m, then Ω(w, α) = λ‖w‖2 +
γ
m ‖α‖

2. We have the following theorem
concerning the convergence rate of Algorithm 2.

Theorem 1 Suppose Assumption 1 holds, and let (w?, α?) be the unique saddle point of L(w, α).
Let Γ be a constant that satisfies

Γ ≥ max
i,k

{
1
pi

(
1 +

9‖Xik ‖
2

2qkλγi

)
,

1
qk

(
1 +

9n‖Xik ‖
2

2mpiλγi

)}
. (22)

In Algorithm 2, if we choose the step sizes as

σi =
1

2γi(piΓ − 1)
, i = 1, . . . ,m, (23)

τk =
1

2λ(qkΓ − 1)
, k = 1, . . . , n, (24)

and the number of iterations during each stage satisfies M ≥ log(3)Γ, then for any s > 0,

E
[
Ω

(
w̄(s) − w?, ᾱ(s) − α?

)]
≤

(
2
3

)s
Ω

(
w̄(0) − w?, ᾱ(0) − α?

)
. (25)

The proof of Theorem 1 is given in Appendix A. Here we discuss how to choose the parameter Γ
to satisfy (22). For simplicity, we assume γi = γ for all i = 1, . . . ,m.

• If we let ‖X ‖m×n = maxi,k{‖Xik ‖} and sample with the uniform distribution across both rows
and columns, i.e., pi = 1/m for i = 1, . . . ,m and qk = 1/n for k = 1, . . . , n, then we can set

Γ = max{m, n}
(
1 +

9n‖X ‖2m×n
2λγ

)
= max{m, n}

(
1 +

9
2
κrand

)
,

where κrand = n‖X ‖2m×n
/
(λγ) as defined in (16).

12

• An alternative condition for Γ to satisfy is (shown in Section A.1 in the Appendix)

Γ ≥ max
i,k

{
1
pi

(
1 +

9‖X:k ‖
2
F

2qkmλγi

)
,

1
qk

(
1 +

9‖Xi:‖
2
F

2pimλγi

)}
. (26)

Again using uniform sampling, we can set

Γ = max{m, n}

(
1 +

9‖X ‖2max,F

2λγ

)
= max{m, n}

(
1 +

9
2
κ′rand

)
,

where ‖X ‖max,F = maxi,k{‖Xi:‖F, ‖X:k ‖F } and κ′rand = ‖X ‖
2
max,F

/
(λγ) as defined in (17).

• Using the condition (26), if we choose the probabilities to be proportional to the squared
Frobenius norms of the data partitions, i.e.,

pi =
‖Xi:‖

2
F

‖X ‖2F
, qk =

‖X:k ‖
2
F

‖X ‖2F
, (27)

then we can choose

Γ =
1

mini,k{pi, qk}

(
1 +

9‖X ‖2F
2mλγ

)
=

1
mini,k{pi, qk}

(
1 +

9
2
κ′′rand

)
,

where κ′′rand = ‖X ‖
2
F

/
(mλγ). Moreover, we can set the step sizes as (see Appendix A.1)

σi =
mλ

9‖X ‖2F
, τk =

mγi
9‖X ‖2F

.

• For the ERM problem (3), we assume that each loss function φ j , for j = 1, . . . , N , is 1/ν-
smooth. According to (4), the smooth parameter for each fi is γi = γ = (N/m)ν. Let R be
the largest Euclidean norm among all rows of X (or we can normalize each row to have the
same norm R), then we have ‖X ‖2F ≤ NR2 and

κ′′rand =
‖X ‖2F
mλγ

≤
NR2

mλγ
=

R2

λν
. (28)

The upper bound R2/(λν) is a condition number used for characterizing the iteration com-
plexity of many randomized algorithms for ERM (e.g., Shalev-Shwartz and Zhang, 2013; Le
Roux et al., 2012; Johnson and Zhang, 2013; Defazio et al., 2014; Zhang and Xiao, 2017). In
this case, using the non-uniform sampling in (27), we can set the step sizes to be

σi =
λ

9R2
m
N
, τk =

γ

9R2
m
N
=

ν

9R2 . (29)

Next we estimate the overall computation complexity of DSCOVR-SVRG in order to achieve
E
[
Ω(w̄(s) −w?, ᾱ(s) −α?)

]
≤ ε . From (25), the number of stages required is log

(
Ω(0)/ε

) /
log(3/2),

where Ω(0) = Ω(w̄(0) − w?, ᾱ(0) − α?). The number of inner iterations within each stage is M =
log(3)Γ. At the beginning of of each stage, computing the batch gradients ū(s) and v̄(s) requires

13

going through the whole data set X , whose computational cost is equivalent to m×n inner iterations.
Therefore, the overall complexity of Algorithm 2, measured by total number of inner iterations, is

O
((

mn + Γ
)

log
(
Ω(0)

ε

))
.

To simplify discussion, we further assume m ≤ n, which is always the case for distributed imple-
mentation (see Figure 2 and Section 7). In this case, we can let Γ = n(1 + (9/2)κrand). Thus the
above iteration complexity becomes

O
(
n(1 + m + κrand) log(1/ε)

)
. (30)

Since the iteration complexity in (30) counts the number of blocks Xik being processed, the number
of passes over the whole dataset X can be obtained by dividing it by mn, i.e.,

O
((

1 +
κrand

m

)
log(1/ε)

)
. (31)

This is the computation complexity of DSCOVR listed in Table 1. We can replace κrand by κ′rand or
κ′′rand depending on different proof techniques and sampling probabilities as discussed above. We
will address the communication complexity for DSCOVR-SVRG, including its decomposition into
synchronous and asynchronous ones, after describing its implementation details in Section 7.

In addition to convergence to the saddle point, our next result shows that the primal-dual
optimality gap also enjoys the same convergence rate, under slightly different conditions.

Theorem 2 Suppose Assumption 1 holds, and let P(w) and D(α) be the primal and dual functions
defined in (6) and (7), respectively. Let Λ and Γ be two constants that satisfy

Λ ≥ ‖Xik ‖
2
F , i = 1, . . . ,m, k = 1, . . . , n,

and
Γ ≥ max

i,k

{
1
pi

(
1 +

18Λ
qkλγi

)
,

1
qk

(
1 +

18nΛ
pimλγi

)}
.

In Algorithm 2, if we choose the step sizes as

σi =
1

γi(piΓ − 1)
, i = 1, . . . ,m, (32)

τk =
1

λ(qkΓ − 1)
, k = 1, . . . , n, (33)

and the number of iterations during each stage satisfies M ≥ log(3)Γ, then

E
[
P(w̄(s)) − D(ᾱ(s))

]
≤

(
2
3

)s
2Γ

(
P(w̄(0)) − D(ᾱ(0))

)
. (34)

The proof of Theorem 2 is given in Appendix B. In terms of iteration complexity or total number
of passes to reach E

[
P(w̄(s)) − D(ᾱ(s))

]
≤ ε , we need to add an extra factor of log(1 + κrand) to (30)

or (31), due to the factor Γ on the right-hand side of (34).

14

Algorithm 3 DSCOVR-SAGA
input: initial points w(0), α(0), and number of iterations M .
1: ū(0) = Xw(0) and v̄(0) = 1

m XTα(0)

2: U(0)
ik
= Xikw

(0)
k
, V (0)

ik
= 1

m (α
(0)
i)

T Xik , for all i = 1, . . . ,m and k = 1, . . . ,K .

3: for t = 0, 1, 2, . . . , M − 1 do
4: pick j ∈ {1, . . . ,m} and l ∈ {1, . . . , n} randomly with distributions p and q respectively.

5: compute variance-reduced stochastic gradients:

u(t+1)
j = ū(t)j −

1
ql

U(t)
jl
+

1
ql

Xjlw
(t)
l
, (35)

v
(t+1)
l

= v̄
(t)
l
−

1
pj
(V (t)

jl
)T +

1
pj

1
m
(Xjl)

Tα
(t)
j . (36)

6: update primal and dual block coordinates:

α
(t+1)
i =

{
proxσjΦ

∗
j

(
α
(t)
j + σju

(t+1)
j

)
if i = j .

α
(t)
i , if i , j,

w
(t+1)
k

=

{
proxτlgl

(
w
(t)
l
− τlv

(t+1)
l

)
if k = l,

w
(t)
k
, if i , j .

7: update averaged stochastic gradients:

ū(t+1)
i =

{
ū(t)j −U(t)

jl
+ Xjlw

(t)
l

if i = j,

ū(t)i if i , j,

v̄
(t+1)
k

=

{
v̄
(t)
l
− (V (t)

jl
)T + 1

m (Xjl)
Tα
(t)
j if k = l,

v̄
(t)
k

if k , l,

8: update the table of historical stochastic gradients:

U(t+1)
ik

=

{
Xjlw

(t)
l

if i = j and k = l,
U(t)
ik

otherwise.

V (t+1)
ik

=

{ 1
m

(
(Xjl)

Tα
(t)
j

)T if i = j and k = l,

V (t)
ik

otherwise.

9: end for

output: w(M) and α(M).

4. The DSCOVR-SAGA Algorithm

Algorithm 3 is a DSCOVR algorithm that uses the techniques of SAGA (Defazio et al., 2014) for
variance reduction. This is a single stage algorithm with iterations indexed by t. In order to compute
the variance-reduced stochastic gradients u(t+1)

j and v(t+1)
l

at each iteration, we also need to maintain
and update two vectors ū(t) ∈ RN and v̄(t) ∈ Rd, and two matrices U(t) ∈ RN×n and V (t) ∈ Rm×d.

15

The vector ū(t) shares the same partition as α(t) into m blocks, and v̄(t) share the same partitions as
w(t) into n blocks. The matrix U(t) is partitioned into m × n blocks, with each block U(t)

ik
∈ RNi×1.

The matrix V (t) is also partitioned into m × n blocks, with each block V (t)
ik
∈ R1×dk . According to

the updates in Steps 7 and 8 of Algorithm 3, we have

ū(t)i =
n∑

k=1
U(t)
ik
, i = 1, . . . ,m, (37)

v̄
(t)
k
=

m∑
i=1

(
V (t)
ik

)T
, k = 1, . . . , n. (38)

Based on the above constructions, we can show that u(t+1)
j is an unbiased stochastic gradient of

(α(t))T Xw(t) with respect to αj , and v
(t+1)
l

is an unbiased stochastic gradient of (1/m)
(
(α(t))T Xw(t)

)
with respect to wl. More specifically, according to (35), we have

El

[
u(t+1)
j

]
= ū(t)j −

n∑
k=1

qk

(
1
qk

U(t)
jk

)
+

n∑
k=1

qk

(
1
qk

Xjkw
(t)
k

)
= ū(t)j −

n∑
k=1

U(t)
jk
+

n∑
k=1

Xjkw
(t)
k

= ū(t)j − ū(t)j + Xj:w
(t)

= Xj:w
(t) =

∂

∂αj

((
α(t)

)T Xw(t)
)
, (39)

where the third equality is due to (37). Similarly, according to (36), we have

Ej

[
v
(t+1)
l

]
= v̄

(t)
l
−

m∑
i=1

pi

(
1
pi
(V (t)

il
)T

)
+

m∑
i=1

pi

(
1

pim
(Xil)

Tα
(t)
i

)
= v̄

(t)
l
−

m∑
i=1

V (t)
il
+

1
m

m∑
i=1
(Xil)

Tα
(t)
i

= v̄
(t)
l
− v̄
(t)
l
+

1
m
(X:l)

Tα(t)

=
1
m
(X:l)

Tα(t) =
∂

∂wl

(
1
m

(
α(t)

)T Xw(t)
)
, (40)

where the third equality is due to (38).
Regarding the convergence of DSCOVR-SAGA, we have the following theorem, which is proved

in Appendix C.

Theorem 3 Suppose Assumption 1 holds, and let (w?, α?) be the unique saddle point of L(w, α).
Let Γ be a constant that satisfies

Γ ≥ max
i,k

{
1
pi

(
1 +

9‖Xik ‖
2

2qkλγi

)
,

1
qk

(
1 +

9n‖Xik ‖
2

2pimλγi

)
,

1
piqk

}
. (41)

If we choose the step sizes as

σi =
1

2γi(piΓ − 1)
, i = 1, . . . ,m, (42)

τk =
1

2λ(qkΓ − 1)
, k = 1, . . . , n, (43)

16

Algorithm 4 Accelerated DSCOVR
input: initial points w̃(0), α̃(0), and parameter δ > 0.
1: for r = 0, 1, 2, . . . , do
2: find an approximate saddle point of (46) using one of the following two options:

• option 1: run Algorithm 2 with S = 2 log(2(1+δ))
log(3/2) and M = log(3)Γδ to obtain

(w̃(r+1), α̃(r+1)) = DSCOVR-SVRG(w̃(r), α̃(r), S, M).

• option 2: run Algorithm 3 with M = 6 log
(

8(1+δ)
3

)
Γδ to obtain

(w̃(r+1), α̃(r+1)) = DSCOVR-SAGA(w̃(r), α̃(r), M).

3: end for

Then the iterations of Algorithm 3 satisfy, for t = 1, 2, . . .,

E
[
Ω

(
w(t) − w?, α(t) − α?

)]
≤

(
1 −

1
3Γ

) t 4
3
Ω

(
w(0) − w?, α(0) − α?

)
. (44)

The condition on Γ in (41) is very similar to the one in (22), except that here we have an
additional term 1/(piqk) when taking the maximum over i and k. This results in an extra mn term
in estimating Γ under uniform sampling. Assuming m ≤ n (true for distributed implementation), we
can let

Γ = n
(
1 +

9
2
κrand

)
+ mn.

According to (44), in order to achieve E
[
Ω(w(t) − w?, α(t) − α?)

]
≤ ε , DSCOVR-SAGA needs

O (Γ log(1/ε)) iterations. Using the above expression for Γ, the iteration complexity is

O
(
n(1 + m + κrand) log(1/ε)

)
, (45)

which is the same as (30) for DSCOVR-SVRG. This also leads to the same computational complexity
measured by the number of passes over the whole dataset, which is given in (31). Again we can
replace κrand by κ′rand or κ′′rand as discussed in Section 3. We will discuss the communication
complexity of DSCOVR-SAGA in Section 7, after describing its implementation details.

5. Accelerated DSCOVR Algorithms

In this section, we develop an accelerated DSCOVR algorithm by following the “catalyst” frame-
work (Lin et al., 2015; Frostig et al., 2015). More specifically, we adopt the same procedure by
Balamurugan and Bach (2016) for solving convex-concave saddle-point problems.

Algorithm 4 proceeds in rounds indexed by r = 0, 1, 2, Given the initial points w̃(0) ∈ Rd

and α̃(0) ∈ RN , each round r computes two new vectors w̃(r+1) and α̃(r+1) using either the DSCOVR-
SVRG or DSCOVR-SAGA algorithm for solving a regulated saddle-point problem, similar to the
classical proximal point algorithm (Rockafellar, 1976).

17

Let δ > 0 be a parameter which we will determine later. Consider the following perturbed
saddle-point function for round r:

L(r)δ (w, a) = L(w, α) +
δλ

2
‖w − w̃(r)‖2 −

δ

2m

m∑
i=1

γi ‖αi − α̃
(r)
i ‖

2. (46)

Under Assumption 1, the function L(r)δ (w, a) is (1+δ)λ-strongly convex inw and (1+δ)γi/m-strongly
concave in αi. Let Γδ be a constant that satisfies

Γδ ≥ max
i,k

{
1
pi

(
1 +

9‖Xik ‖
2

2qkλγi(1 + δ)2

)
,

1
qk

(
1 +

9n‖Xik ‖
2

2pimλγi(1 + δ)2

)
,

1
piqk

}
,

where the right-hand side is obtained from (41) by replacing λ and γi with (1 + δ)λ and (1 + δ)γi
respectively. The constant Γδ is used in Algorithm 4 to determine the number of inner iterations
to run with each round, as well as for setting the step sizes. The following theorem is proved in
Appendix D.

Theorem 4 Suppose Assumption 1 holds, and let (w?, α?) be the saddle-point of L(w, α). With
either options in Algorithm 4, if we choose the step sizes (inside Algorithm 2 or Algorithm 3) as

σi =
1

2(1 + δ)γi(piΓδ − 1)
, i = 1, . . . ,m, (47)

τk =
1

2(1 + δ)λ(qkΓδ − 1)
, k = 1, . . . , n. (48)

Then for all r ≥ 1,

E
[
Ω

(
w̃(r) − w?, α̃(r) − α?

)]
≤

(
1 −

1
2(1 + δ)

)2r
Ω

(
w̃(0) − w?, α̃(0) − α?

)
.

According to Theorem 4, in order to have E
[
Ω

(
w̃(r) − w?, α̃(r) − α?

)]
≤ ε , we need the number

of rounds r to satisfy

r ≥ (1 + δ) log
(
Ω

(
w̃(0) − w?, α̃(0) − α?

)
ε

)
.

Following the discussions in Sections 3 and 4, when using uniform sampling and assuming m ≤ n,
we can have

Γδ = n
(
1 +

9κrand

2(1 + δ)2

)
+ mn. (49)

Then the total number of block coordinate updates in Algorithm 4 is

O
(
(1 + δ)Γδ log(1 + δ) log(1/ε)

)
,

where the log(1+ δ) factor comes from the number of stages S in option 1 and number of steps M in
option 2. We hide the log(1 + δ) factor with the Õ notation and plug (49) into the expression above
to obtain

Õ
(
n
(
(1 + δ)(1 + m) +

κrand
(1 + δ)

)
log

(
1
ε

))
.

Now we can choose δ depending on the relative size of κrand and m:

18

• If κrand > 1 + m, we can minimizing the above expression by choosing δ =
√
κrand
1+m − 1, so that

the overall iteration complexity becomes Õ
(
n
√

mκrand log(1/ε)
)
.

• If κrand ≤ m + 1, then no acceleration is necessary and we can choose δ = 0 to proceed with a
single round. In this case, the iteration complexity is O(mn) as seen from (49).

Therefore, in either case, the total number of block iterations by Algorithm 4 can be written as

Õ
(
mn + n

√
mκrand log(1/ε)

)
. (50)

As discussed before, the total number of passes over the whole dataset is obtained by dividing by mn:

Õ
(
1 +

√
κrand/m log(1/ε)

)
.

This is the computational complexity of accelerated DSCOVR listed in Table 1.

5.1 Proximal Mapping for Accelerated DSCOVR

When applying Algorithm 2 or 3 to approximate the saddle-point of (46), we need to replace the
proximalmappings of gk(·) and f ∗i (·) by those of gk(·)+(δλ/2)‖·−w̃

(r)
k
‖2 and f ∗i (·)+(δγi/2)‖·−α̃

(r)
i ‖

2,
respectively. More precisely, we replace w(t+1)

k
= proxτkgk

(
w
(t)
k
− τkv

(t+1)
k

)
by

w
(t+1)
k
= arg min

wk ∈Rdk

{
gk(wk) +

δλ

2

wk − w̃

(r)
k

2
+

1
2τk

wk −

(
w
(t)
k
− τkv

(t+1)
k

)

2
}

= prox τk
1+τk δλ gk

(
1

1 + τkδλ

(
w
(t)
k
− τkv

(t+1)
k

)
+

τkδλ

1 + τkδλ
w̃
(r)
k

)
, (51)

and replace α(t+1)
i = proxσi f

∗
i

(
α
(t)
i + σiu

(t+1)
i

)
by

α
(t+1)
i = arg min

αi ∈RNi

{
f ∗i (αi) +

δγi
2

αi − α̃(r)i

2
+

1
2σi

αi − (
α
(t)
i + σiu

(t+1)
i

)

2
}

= prox σi
1+σi δγi

f ∗i

(
1

1 + σiδγi

(
α
(t)
i + σiu

(t+1)
i

)
+

σiδγi
1 + σiδγi

α̃
(r)
i

)
. (52)

We also examine the number of inner iterations determined by Γδ and how to set the step sizes.
If we choose δ =

√
κrand
1+m − 1, then Γδ in (49) becomes

Γδ = n
(
1 +

9κrand

2(1 + δ)2

)
+ mn = n

(
1 +

9κrand
2κrand/(m + 1)

)
+ mn = 5.5(m + 1)n.

Therefore a small constant number of passes is sufficient within each round. Using the uniform
sampling, the step sizes can be estimated as follows:

σi =
1

2(1 + δ)γi(piΓδ − 1)
≈

1
2
√
κrand/mγi(5.5n − 1)

≈
1

11γin
√
κrand/m

, (53)

τk =
1

2(1 + δ)λ(qkΓδ − 1)
≈

1
2
√
κrand/mλ(5.5m − 1)

≈
1

11λ√m · κrand
. (54)

As shown by our numerical experiments in Section 8, the step sizes can be set much larger in practice.

19

6. Conjugate-Free DSCOVR Algorithms

A major disadvantage of primal-dual algorithms for solving problem (1) is the requirement of
computing the proximal mapping of the conjugate function f ∗i , which may not admit closed-formed
solution or efficient computation. This is especially the case for logistic regression, one of the most
popular loss functions used in classification.

Lan and Zhou (2015) developed “conjugate-free” variants of primal-dual algorithms that avoid
computing the proximal mapping of the conjugate functions. The main idea is to replace the
Euclidean distance in the dual proximal mapping with a Bregman divergence defined over the
conjugate function itself. This technique has been used byWang and Xiao (2017) to solve structured
ERM problems with primal-dual first order methods. Here we use this approach to derive conjugate-
free DSCOVR algorithms. In particular, we replace the proximal mapping for the dual update

α
(t+1)
i = proxσi f

∗
i

(
α
(t)
i + σiu

(t+1)
i

)
= arg min

αi ∈Rni

{
f ∗i (αi) −

〈
αi, u(t+1)

i

〉
+

1
2σi

αi − α(t)i

2
}
,

by

α
(t+1)
i = arg min

αi ∈Rni

{
f ∗i (αi) −

〈
αi, u(t+1)

i

〉
+

1
σi
Bi

(
αi, α

(t)
i

)}
, (55)

where Bi(αi, α(t)i) = f ∗i (αi) −
〈
∇ f ∗i (α

(t)
i), αi − α

(t)
i

〉
. The solution to (55) is given by

α
(t+1)
i = ∇ fi

(
β
(t+1)
i

)
,

where β(t+1)
i can be computed recursively by

β
(t+1)
i =

β
(t)
i + σiu

(t+1)
i

1 + σi
, t ≥ 0,

with initial condition β(0)i = ∇ f ∗i (α
(0)
i) (see Lan and Zhou, 2015, Lemma 1). Therefore, in order to

update the dual variables αi, we do not need to compute the proximal mapping for the conjugate
function f ∗i ; instead, taking the gradient of fi at some easy-to-compute points is sufficient. This
conjugate-free update can be applied in Algorithms 1, 2 and 3.

For the accelerated DSCOVR algorithms, we repalce (52) by

α
(t+1)
i = arg min

αi ∈Rni

{
f ∗i (αi) −

〈
αi, u(t+1)

i

〉
+

1
σi
Bi

(
αi, α

(t)
i

)
+ δγBi

(
αi, α̃

(t+1)
i

)}
.

The solution to the above minimization problem can also be written as

α
(t+1)
i = ∇ fi

(
β
(t+1)
i

)
,

where β(t+1)
i can be computed recursively as

β
(t+1)
i =

β
(t)
t + σiu

(t+1)
i + σiδγβ̃i

1 + σi + σiδγ
, t ≥ 0,

with the initialization β(0)i = ∇ f ∗i
(
α
(0)
i

)
and β̃i = ∇ f ∗i

(
α̃
(r)
i

)
.

The convergence rates and computational complexities of the conjugate-free DSCOVR algo-
rithms are very similar to the ones given in Sections 3–5. We omit details here, but refer the readers
to Lan and Zhou (2015) and Wang and Xiao (2017) for related results.

20

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��

���������� ������������

scheduler

server 1 server j server h

worker 1 worker i worker m

1

1

2

2

33

w̄
(s)

• resets Sfree = {1, . . . , n}

• sends “sync” message to

all servers and workers at

beginning of each stage

w
(t)

k
, k ∈S1 w

(t)

k
, k ∈Sj w

(t)

k
, k ∈Sh

X1:, ū
(s)

1

ᾱ
(s)

1
, α

(t)

1

w̄
(s), v̄(s)

Xi:, ū
(s)

i

ᾱ
(s)

i
, α

(t)

i

w̄
(s), v̄(s)

Xm:, ū
(s)
m

ᾱ
(s)
m , α

(t)
m

w̄
(s), v̄(s)

Figure 3: A distributed system for implementing DSCOVR consists of m workers, h parameter
servers, and one scheduler. The arrows labeled with the numbers 1, 2 and 3 represent
three collective communications at the beginning of each stage in DSCOVR-SVRG.

7. Asynchronous Distributed Implementation

In this section, we show how to implement the DSCOVR algorithms presented in Sections 3–6 in
a distributed computing system. We assume that the system provide both synchronous collective
communication and asynchronous point-to-point communication, which are all supported by the
MPI standard (MPI Forum, 2012). Throughout this section, we assume m < n (see Figure 2).

7.1 Implementation of DSCOVR-SVRG

In order to implement Algorithm 2, the distributed system need to have the following components
(see Figure 3):

• m workers. Each worker i, for i = 1, . . . ,m, stores the following local data and variables :

– data matrix Xi: ∈ RNi×d.

– vectors in RNi : ū(s)i , α(t)i , ᾱ(s)i .

– vectors in Rd: w̄(s), v̄(s).

– extra buffers for computation and communication: u(t+1)
j , v(t+1)

l
, w(t)

l
and w

(t+1)
l

.

21

• h parameter servers. Each server j stores a subset of the blocks
{
w
(t)
k
∈ Rdk : k ∈ Sj

}
, where

S1, . . . ,Sh form a partition of the set {1, . . . , n}.

• one scheduler. It maintains a set of block indices Sfree ⊆ {1, . . . , n}. At any given time, Sfree
contains indices of parameter blocks that are not currently updated by any worker.

The reason for having h > 1 servers is not about insufficient storage for parameters, but rather to
avoid the communication overload between only one server and allm workers (m can be in hundreds).

At the beginning of each stage s, the following three collective communications take place across
the system (illustrated in Figure 3 by arrows with circled labels 1, 2 and 3):

(1) The scheduler sends a “sync” message to all servers and workers, and resetsSfree = {1, . . . , n}.

(2) Upon receiving the “sync” message, the servers aggregate their blocks of parameters together
to form w̄(s) and send it to all workers (e.g., through the AllReduce operation in MPI).

(3) Upon receiving w̄(s), each worker compute ū(s)i = Xi:w̄
(s) and (Xi:)

T ᾱ
(s)
i , then invoke a

collective communication (AllReduce) to compute v̄(s) = (1/m)∑m
i=1(Xi:)

T ᾱ
(s)
i .

The number of vectors in Rd sent and received during the above process is 2m, counting the
communications to form w̄(s) and v̄(s) at m workers (ignoring the short “sync” messages).

After the collective communications at the beginning of each stage, all workers start working
on the inner iterations of Algorithm 2 in parallel in an asynchronous, event-driven manner. Each
worker interacts with the scheduler and the servers in a four-step loop shown in Figure 4. There are
always m iterations taking place concurrently (see also Figure 2), each may at a different phase of
the four-step loop:

(1) Whenever worker i finishes updating a block k ′, it sends the pair (i, k ′) to the scheduler to
request for another block to update. At the beginning of each stage, k ′ is not needed.

(2) When the scheduler receives the pair (i, k ′), it randomly choose a block k from the list of free
blocks Sfree (which are not currently updated by any worker), looks up for the server j which
stores the parameter block w

(t)
k

(i.e., Sj 3 k), and then send the pair (i, k) to server j. In
addition, the scheduler updates the list Sfree by adding k ′ and deleting k.

(3) When server j receives the pair (i, k), it sends the vectorw(t)
k

to worker i, andwaits for receiving
the updated version w

(t+1)
k

from worker i.

(4) After worker i receives w
(t)
k
, it computes the updates α(t)i and w

(t)
k

following steps 6-7 in
Algorithm 2, and then send w

(t+1)
k

back to server j. At last, it assigns the value of k to k ′ and
send the pair (i, k ′) to the scheduler, requesting the next block to work on.

The amount of point-to-point communication required during the above process is 2dk float numbers,
for sending and receiving w

(t)
k

and w
(t+1)
k

(we ignore the small messages for sending and receiving
(i, k ′) and (i, k)). Since the blocks are picked randomly, the average amount of communication
per iteration is 2d/n, or equivalent to 2/n vectors in Rd. According to Theorem 1, each stage of
Algorithm 2 requires log(3)Γ inner iterations; In addition, the discussions above (30) show that we
can take Γ = n(1 + (9/2)κrand). Therefore, the average amount of point-to-point communication
within each stage is O(κrand) vectors in Rd.

22

...

...
scheduler

server j

worker i

worker 1 worker m

S1 Sh

(i, k ′)

(i, k)

w
(t)

k
(, v̄
(t)

k
) w

(t+1)

k
(, v̄
(t+1)

k
)

1

2

3 4

• randomly pick k ∈ Sfree

• find server j storing block k

• send pair (i, k) to server j

• Sfree ←
(

Sfree ∪ {k
′}
)

\ {k}

• receive w
(t)

k
(and v̄

(t)

k
)

• compute α
(t+1)

i
,w
(t+1)

k
(, v̄
(t+1)

k
)

as in Algorithm 2 (or 3)

• send w
(t+1)

k
(, v
(t+1)

k
) to server j

• send k ′← k to scheduler

• receive pair (i, k)

• send w
(t)

k
(and v̄

(t)

k
)

to worker i

• wait to receive

w
(t+1)

k
(and v̄

(t+1)

k
)

Figure 4: Communication and computation processes for one inner iteration of DSCOVR-SVRG
(Algorithm 2). The blue texts in the parentheses are the additional vectors required by
DSCOVR-SAGA (Algorithm 3). There are always m iterations taking place in parallel
asynchronously, each evolving around oneworker. A servermay support multiple (or zero)
iterations if more than one (or none) of its stored parameter blocks are being updated.

Now we are ready to quantify the communication complexity of DSCOVR-SVRG to find an
ε-optimal solution. Our discussions above show that each stage requires collective communication
of 2m vectors in Rd and asynchronous point-to-point communication of equivalently κrand such
vectors. Since there are total O(log(1/ε)) stages, the total communication complexity is

O ((m + κrand) log(1/ε)) .

This gives the communication complexity shown in Table 1, as well as its decomposition in Table 2.

7.2 Implementation of DSCOVR-SAGA

We can implement Algorithm 3 using the same distributed system shown in Figure 3, but with some
modifications described below. First, the storage at different components are different:

• m workers. Each worker i, for i = 1, . . . ,m, stores the following data and variables:

– data matrix Xi: ∈ RNi×d

– vectors in RNi : α(t)i , u(t)i , ū(t)i , and U(t)
ik

for k = 1, . . . , n.

23

– vector in Rd: V (t)i: =
[
V (t)
i1 · · ·V

(t)
in

]T (which is the ith row of V (t), with V (t)
ik
∈ R1×dk).

– buffers for communication and update of w(t)
k

and v̄
(t)
k

(both stored at some server).

• h servers. Each server j stores a subset of blocks
{
w
(t)
k
, v̄
(t)
k
∈ Rdk : k ∈ Sj

}
, for j = 1, . . . , n.

• one scheduler. It maintains the set of indices Sfree ⊆ {1, . . . , n}, same as in DSCOVR-SVRG.

Unlike DSCOVR-SVRG, there is no stage-wise “sync” messages. All workers and servers work in
parallel asynchronously all the time, following the four-step loops illustrated in Figure 4 (including
blue colored texts in the parentheses). Within each iteration, the main difference from DSCOVR-
SVRG is that, the server and worker need to exchange two vectors of length dk : w

(t)
k

and v
(t)
k

and
their updates. This doubles the amount of point-to-point communication, and the average amount
of communication per iteration is 4/n vectors of length d. Using the iteration complexity in (45),
the total amount of communication required (measured by number of vectors of length d) is

O ((m + κrand) log(1/ε)) ,

which is the same as for DSCOVR-SVRG. However, its decomposition into synchronous and asyn-
chronous communication is different, as shown in Table 2. If the initial vectors w(0) , 0 or α(0) , 0,
then one round of collective communication is required to propagate the initial conditions to all
servers and workers, which reflect the O(m) synchronous communication in Table 2.

7.3 Implementation of Accelerated DSCOVR

Implementation of the accelerated DSCOVR algorithm is very similar to the non-accelerated ones.
The main differences lie in the two proximal mappings presented in Section 5.1. In particular, the
primal update in (51) needs the extra variable w̃

(r)
k
, which should be stored at a parameter server

together with w
(t)
k
. We modify the four-step loops shown in Figures 4 as follows:

• Each parameter server j stores the extra block parameters
{
w̃
(r)
k
, k ∈ Sj

}
. During step (3),

w̃
(r)
k

is send together with w
(t)
k

(for SVRG) or (w(t)
k
, v
(t)
k
) (for SAGA) to a worker.

• In step (4), no update of w̃(r)
k

is sent back to the server. Instead, whenever switching rounds,
the scheduler will inform each server to update their w̃(r)

k
to the most recent w(t)

k
.

For the dual proximal mapping in (52), each worker i needs to store an extra vector α̃(r)i , and reset it to
the most recent α(t)i when moving to the next round. There is no need for additional synchronization
or collective communicationwhen switching rounds inAlgorithm 4. The communication complexity
(measured by the number of vectors of length d sent or received) can be obtained by dividing the
iteration complexity in (50) by n, i.e., O

(
(m +

√
mκrand) log(1/ε)

)
, as shown in Table 1.

Finally, in order to implement the conjugate-free DSCOVR algorithms described in Section 6,
each worker i simply need to maintain and update an extra vector β(t)i locally.

8. Experiments

In this section, we present numerical experiments on an industrial distributed computing system. This
system has hundreds of computers connected by high speed Ethernet in a data center. The hardware

24

CPU #cores RAM network operating system
dual Intel® Xeon® processors 16 128 GB 10 Gbps Windows® Server

E5-2650 (v2), 2.6 GHz 1.8 GHz Ethernet adapter (version 2012)

Table 3: Configuration of each machine in the distributed computing system.

and software configurations for each machine are listed in Table 3. We implemented all DSCOVR
algorithms presented in this paper, including the SVRG and SAGA versions, their accelerated
variants, as well as the conjugate-free algorithms. All implementations are written in C++, using
MPI for both collective and point-to-point communications (see Figures 3 and 4 respectively). On
each worker machine, we also use OpenMP (OpenMP Architecture Review Board, 2011) to exploit
the multi-core architecture for parallel computing, including sparse matrix-vector multiplications
and vectorized function evaluations.

Implementing the DSCOVR algorithms requires m+ h+1 machines, among them m are workers
with local datasets, h are parameter servers, and one is a scheduler (see Figure 3). We focus on
solving the ERM problem (3), where the total of N training examples are evenly partitioned and
stored at m workers. We partition the d-dimensional parameters into n subsets of roughly the same
size (differ at most by one), where each subset consists of randomly chosen coordinates (without
replacement). Then we store the n subsets of parameters on h servers, each getting either bn/hc or
dn/he subsets. As described in Section 7, we make the configurations to satisfy n > m > h ≥ 1.

For DSCOVR-SVRG and DSCOVR-SAGA, the step sizes in (29) are very conservative. In the
experiments, we replace the coefficient 1/9 by two tuning parameter ηd and ηp for the dual and
primal step sizes respectively, i.e.,

σi = ηd
λ

R2 ·
m
N
, τk = ηp

ν

R2 . (56)

For the accelerated DSCOVR algorithms, we use κrand = R2/(λν) as shown in (28) for ERM. Then
the step sizes in (53) and (54), with γi = (m/N)ν and a generic constant coefficient η, become

σi =
ηd
nR

√
mλ
ν
·

m
N
, τk =

ηp

R

√
ν

mλ
. (57)

For comparison, we also implemented the following first-order methods for solving problem 1:

• PGD: parallel implementation of the Proximal Gradient Descent method (using synchronous
collective communication over m machines). We use the adaptive line search procedure
proposed in Nesterov (2013), and the exact form used is Algorithm 2 in Lin and Xiao (2015).

• APG: parallel implementation of the Accelerated Proximal Gradient method (Nesterov, 2004,
2013). We use a similar adaptive line search scheme to the one for PGD, and the exact form
used (with strong convexity) is Algorithm 4 in Lin and Xiao (2015).

• ADMM: the Alternating Direction Method of Multipliers. We use the regularized consensus
version in Boyd et al. (2011, Section 7.1.1). For solving the local optimization problems at
each node, we use the SDCA method (Shalev-Shwartz and Zhang, 2013).

• CoCoA+: the adding version of CoCoA in Ma et al. (2015). Following the suggestion in Ma
et al. (2017), we use a randomized coordinate descent algorithm (Nesterov, 2012; Richtárik
and Takáč, 2014) for solving the local optimization problems.

25

Dataset #instances (N) #features (d) #nonzeros
rcv1-train 677,399 47,236 49,556,258
webspam 350,000 16,609,143 1,304,697,446
splice-site 50,000,000 11,725,480 166,167,381,622

Table 4: Statistics of three datasets. Each feature vector is normalized to have unit norm.

These four algorithms all require m workers only. Specifically, we use the AllReduce call in MPI for
the collective communications so that a separate master machine is not necessary.

We conducted experiments on three binary classification datasets obtained from the collection
maintained by Fan and Lin (2011). Table 4 lists their sizes and dimensions. In our experiments, we
used two configurations: one with m = 20 and h = 10 for two relatively small datasets, rcv1-train
and webspam, and the other with m = 100 and h = 20 for the large dataset splice-site.

For rcv1-train, we solve the ERM problem (3) with a smoothed hinge loss defined as

φ j(t) =


0 if yj t ≥ 1,
1
2 − yj t if yj t ≤ 0,
1
2 (1 − yj t)2 otherwise,

and φ∗j(β) =

{
yj β +

1
2 β

2 if − 1 ≤ yj β ≤ 0,
+∞ otherwise.

for j = 1, . . . , N . This loss function is 1-smooth, therefore ν = 1; see discussion above (28). We
use the `2 regularization g(w) = (λ/2)‖w‖2. Figures 5 and 6 show the reduction of the primal
objective gap P(w(t)) − P(w?) by different algorithms, with regularization parameter λ = 10−4 and
λ = 10−6 respectively. All started from the zero initial point. Here the N examples are randomly
shuffled and then divided into m subsets. The labels SVRG and SAGA mean DSCOVR-SVRG and
DSCOVR-SAGA, respectively, and A-SVRG and A-SAGA are their accelerated versions.

Since PGD and APG both use adaptive line search, there is no parameter to tune. For ADMM,
we manually tuned the penalty parameter ρ (see Boyd et al., 2011, Section 7.1.1) to obtain good
performance: ρ = 10−5 in Figure 5 and ρ = 10−6 in Figure 6. For CoCoA+, two passes over the
local datasets using a randomized coordinate descent method are sufficient for solving the local
optimization problem (more passes do not give meaningful improvement). For DSCOVR-SVRG
and SAGA, we used ηp = ηd = 20 to set the step sizes in (56). For DSCOVR-SVRG, each stage goes
through the whole dataset 10 times, i.e., the number of inner iterations in Algorithm 2 is M = 10mn.
For the accelerated DSCOVR algorithms, better performance are obtained with small periods to
update the proximal points and we set it to be every 0.2 passes over the dataset, i.e., 0.2mn inner
iterations. For accelerated DSCOVR-SVRG, we set the stage period (for variance reduction) to be
M = mn, which is actually longer than the period for updating the proximal points.

From Figures 5 and 6, we observe that the two distributed algorithms based on model averaging,
ADMM and CoCoA+, converges relatively fast in the beginning but becomes very slow in the later
stage. Other algorithms demonstrate more consistent linear convergence rates. For λ = 10−4, the
DSCOVR algorithms are very competitive compared with other algorithms. For λ = 10−6, the
non-accelerated DSCOVR algorithms become very slow, even after tuning the step sizes. But the
accelerated DSCOVR algorithms are superior in terms of both number of passes over data and
wall-clock time (with adjusted step size coefficient ηp = 10 and ηd = 40).

For ADMM and CoCoA+, each marker represents the finishing of one iteration. It can be seen
that they are mostly evenly spaced in terms of number of passes over data, but have large variations
in terms of wall-clock time. The variations in time per iteration are due to resource sharing with

26

0 20 40 60 80 100 120 140
number of passes over data

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 1 2 3 4 5
time (seconds)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 5: rcv1-train: smoothed-hinge loss, λ=10−4, randomly shuffled, m=20, n=37, h=10.

0 50 100 150 200 250 300
number of passes over data

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 2 4 6 8 10
time (seconds)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 6: rcv1-train: smoothed-hinge loss, λ=10−6, randomly shuffled, m=20, n=37, h=10.

other jobs running simultaneously on the distributed computing cluster. Even if we have exclusive
use of each machine, sharing communications with other jobs over the Ethernet is unavoidable. This
reflects the more realistic environment in cloud computing.

For the webspam dataset, we solve the ERMproblemwith logistic loss φ j(t) = log(1+exp(−yj t))
where yj ∈ {±1}. The logistic loss is 1/4-smooth, so we have ν = 4. Since the proximal mapping
of its conjugate φ∗j does not have a closed-form solution, we used the conjugate-free DSCOVR
algorithms described in Section 6. Figures 7 and 8 shows the reduction of primal objective gap
by different algorithms, for λ = 10−4 and λ = 10−6 respectively. Here the starting point is no
longer the all-zero vectors. Instead, each machine i first computes a local solution by minimizing
fi(Xiw)+g(w), and then compute their average using an AllReduce operation. Each algorithm starts
from this average point. This averaging scheme has been proven to be very effective to warm start
distributed algorithms for ERM (Zhang et al., 2013). In addition, it can be shown that when starting
from the zero initial point, the first step of CoCoA+ computes exactly such an averaged point.

27

0 50 100 150 200
number of passes over data

10-10

10-9

10-8

10-7

10-6

10-5

10-4
p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 50 100 150 200
time (seconds)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 7: webspam: logistic regression, λ = 10−4, randomly shuffled, m = 20, n = 50, h = 10.

0 100 200 300 400 500 600 700 800
number of passes over data

10-8

10-7

10-6

10-5

10-4

10-3

10-2

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 200 400 600 800 1000 1200 1400
time (seconds)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 8: webspam: logistic regression, λ = 10−6, randomly shuffled, m = 20, n = 50, h = 10.

From Figures 7 and 8, we again observe that CoCoA+ has very fast convergence in the beginning
but converges very slowly towards higher precision. The DSCOVR algorithms, especially the
accelerated variants, are very competitive in terms of both number of iterations and wall-clock time.

In order to investigate the fast initial convergence of CoCoA+ and ADMM, we repeated the
experiments on webspam without random shuffling. More specifically, we sorted the N examples
by their labels, and then partitioned them into m subsets sequentially. That is, most of the machines
have data with only +1 or −1 labels, and only one machine has mixed ±1 examples. The results are
shown in Figures 9 and 10. Now the fast initial convergence of CoCoA+ and ADMM disappeared.
In particular, CoCoA+ converges with very slow linear rate. This shows that statistical properties of
random shuffling of the dataset is the main reason for the fast initial convergence of model-averaging
based algorithms such as CoCoA+ and ADMM (see, e.g., Zhang et al., 2013).

On the other hand, this should not have any impact on PGD and APG, because their iterations
are computed over the whole dataset, which is the same regardless of random shuffling or sorting.
The differences between the plots for PGD and APG in Figures 7 and 9 (also for Figures 8 and 10)
are due to different initial points computed through averaging local solutions, which does depends
on the distribution of data at different machines.

28

0 50 100 150 200 250 300 350 400
number of passes over data

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 100 200 300 400 500 600 700 800
time (seconds)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 9: webspam: logistic regression, λ = 10−4, sorted labels, m = 20, n = 50, h = 10.

0 100 200 300 400 500 600 700 800
number of passes over data

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 200 400 600 800 1000 1200 1400
time (seconds)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 10: webspam: logistic regression, λ = 10−6, sorted labels, m = 20, n = 50, h = 10.

Different ways for splitting the data over the m workers also affect the DSCOVR algorithms. In
particular, the non-acceleratedDSCOVR algorithms become very slow, as shown in Figures 9 and 10.
However, the accelerated DSCOVR algorithms are still very competitive against the adaptive APG.
The accelerated DSCOVR-SAGA algorithm performs best. In fact, the time spent by accelerated
DSCOVR-SAGA should be even less than shown in Figures 9 and 10. Recall that other than the
initialization with non-zero starting point, DSCOVR-SAGA is completely asynchronous and does
not need any collective communication (see Section 7.2). However, in order to record the objective
function for the purpose of plotting its progress, we added collective communication and computation
to evaluate the objective value for every 10 passes over the data. For example, in Figure 10, such
extra collective communications take about 160 seconds (about 15% of total time) for accelerated
DSCOVR-SAGA, which can be further deducted from the horizontal time axis.

Finally, we conducted experiments on the splice-site dataset with 100 workers and 20
parameter servers. The results are shown in Figure 11. Here the dataset is again randomly shuffled
and evenly distributed to the workers. The relative performance of different algorithms are similar
to those for the other datasets.

29

0 50 100 150 200 250 300 350 400
number of passes over data

10-10

10-9

10-8

10-7

10-6

10-5
p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

0 1000 2000 3000 4000 5000
time (seconds)

10-10

10-9

10-8

10-7

10-6

10-5

p
ri

m
a
l
g
a
p

PGD

APG

ADMM

CoCoA+

SVRG

SAGA

A-SVRG

A-SAGA

Figure 11: splice-site: logistic loss, λ = 10−6. randomly shuffled, m = 100, n = 150, h = 20.

9. Conclusions and Discussions

We proposed a class of DSCOVR algorithms for asynchronous distributed optimization of large
linear models with convex loss functions. They avoid dealing with delays and stale updates in
an asynchronous, event-driven environment by exploiting simultaneous data and model parallelism.
Compared with other first-order distributed algorithms, DSCOVRmay require less amount of overall
communication and computation, and especiallymuch less or no synchronization. These conclusions
are well supported by our computational experiments on a distributed computing cluster.

We note that there is still some gap between theory and practice. In our theoretical analysis, we
assume that the primal and dual block indices in different iterations of DSCOVR are i.i.d. random
variables, sampled sequentially with replacement. But the parallel implementations described in
Section 7 impose some constraints on how they are generated. In particular, the parameter block to
be updated next is randomly chosen from the set of blocks that are not being updated by any worker
simultaneously, and the next worker available is event-driven, depending on the loads and processing
power of different workers as well as random communication latency. These constraints violate the
i.i.d. assumption, but our experiments show that they still lead to very competitive performance.
Intuitively some of them can be potentially beneficial, reminiscent of the practical advantage of
sampling without replacement over sampling with replacement in randomized coordinate descent
methods (e.g., Shalev-Shwartz and Zhang, 2013). This is an interesting topic worth future study.

In our experiments, the parallel implementation ofNesterov’s accelerated gradientmethod (APG)
is very competitive on all the datasets we tried and for different regularization parameters used. In
addition to the theoretical justifications in Arjevani and Shamir (2015) and Scaman et al. (2017),
the adaptive line-search scheme turns out to be critical for its good performance in practice. The
accelerated DSCOVR algorithms demonstrated comparable or better performance than APG in the
experiments, but need careful tuning of the constants in their step size formula. On one hand, it
supports our theoretical results thatDSCOVR is capable of outperforming other first-order algorithms
including APG, in terms of both communication and computation complexity (see Section 2.1). On
the other hand, there are more to be done in order to realize the full potential of DSCOVR in practice.
In particular, we plan to follow the ideas in Wang and Xiao (2017) to develop adaptive schemes that
can automatically tune the step size parameters, as well as exploit strong convexity from data.

30

Acknowledgment

Adams Wei Yu is currently supported by NVIDIA PhD Fellowship. The authors would like to thank
Chiyuan Zhang for helpful discussion of the system implementation.

Appendix A. Proof of Theorem 1

We first prove two lemmas concerning the primal and dual proximal updates in Algorithm 2.
Throughout this appendix, Et [·] denotes the conditional expectation taken with respect to the random
indices j and l generated during the tth inner iteration in Algorithm 2, conditioned on all quantities
available at the beginning of the tth iteration, including w(t) and α(t). Whenever necessary, we also
use the notation j(t) and l(t) to denote the random indices generated in the tth iteration.

Lemma 5 For each i = 1, . . . ,m, let u(t+1)
i ∈ RNi be a random variable and define

α̃
(t+1)
i = proxσi f

∗
i

(
α
(t)
i + σiu

(t+1)
i

)
. (58)

We choose an index j randomly from {1, . . . ,m} with probability distribution
{
pj

}m
j=1 and let

α
(t+1)
i =

{
α̃
(t+1)
i if i = j,
α
(t)
i otherwise.

If each u(t+1)
i is independent of j and satisfies Et

[
u(t+1)
i

]
= Xi:w

(t) for i = 1, . . . ,m, then we have
m∑
i=1

(
1
pi

(
1

2σi
+ γi

)
− γi

)
‖α
(t)
i − α

?
i ‖

2

≥
m∑
i=1

1
pi

(
1

2σi
+ γi

)
Et [‖α

(t+1)
i − α?i ‖

2] +
m∑
i=1

1
pi

(
1

2σi
−

1
ai

)
Et [‖α

(t+1)
i − α

(t)
i ‖

2]

−
m∑
i=1

ai
4

Et

[
‖u(t+1)

i − Xi:w
(t)‖2

]
+

〈
w(t) − w?, XT (α? − α(t))

〉
−

m∑
i=1

1
pi

Et

[〈
α
(t+1)
i − α

(t)
i , Xi:(w

(t) − w?)
〉]
, (59)

where (w?, α?) is the saddle point of L(w, α) defined in (5), and the ai’s are arbitrary positive
numbers.

Proof First, consider a fixed index i ∈ {1, . . . ,m}. The definition of α̃(t+1)
i in (58) is equivalent to

α̃
(t+1)
i = arg min

β∈RNi

{
f ∗i (β) −

〈
β, u(t+1)

i

〉
+
‖β − α

(t)
i ‖

2

2σi

}
. (60)

By assumption, f ∗i (β) and
1

2σi
‖β − α

(t)
i ‖

2 are strongly convex with convexity parameters γi and 1
σi

respectively. Therefore, the objective function in (60) is (1
σi
+ γi)-strongly convex, which implies

‖α?i − α
(t)
i ‖

2

2σi
−

〈
α?i , u(t+1)

i

〉
+ f ∗i (α

?
i)

≥
‖α̃
(t+1)
i − α

(t)
i ‖

2

2σi
−

〈
α̃
(t+1)
i , u(t+1)

i

〉
+ f ∗i (α̃

(t+1)
i) +

(
1
σi
+ γi

)
‖α̃
(t+1)
i − α?i ‖

2

2
. (61)

31

In addition, since (w?, α?) is the saddle-point of L(w, α), the function f ∗i (αi) − 〈αi, Xi:w
?〉 is γi-

strongly convex in αi and attains its minimum at α?i . Thus we have

f ∗i
(
α̃
(t+1)
i

)
−

〈
α̃
(t+1)
i , Xi:w

?
〉
≥ f ∗i (α

?
i) −

〈
α?i , Xi:w

?
〉
+
γi
2
‖α̃
(t+1)
i − α?i ‖

2.

Summing up the above two inequalities gives

‖α?i − α
(t)
i ‖

2

2σi
≥
‖α̃
(t+1)
i − α

(t)
i ‖

2

2σi
+

(1
2σi
+ γi

)
‖α̃
(t+1)
i − α?i ‖

2 +
〈
α?i − α̃

(t+1)
i , u(t+1)

i − Xi:w
?
〉

=
‖α̃
(t+1)
i − α

(t)
i ‖

2

2σi
+

(1
2σi
+ γi

)
‖α̃
(t+1)
i − α?i ‖

2 +
〈
α?i − α̃

(t+1)
i , Xi:(w

(t) − w?)
〉

+
〈
α?i − α

(t)
i , u(t+1)

i − Xi:w
(t)

〉
+

〈
α
(t)
i − α̃

(t+1)
i , u(t+1)

i − Xi:w
(t)

〉
≥
‖α̃
(t+1)
i − α

(t)
i ‖

2

2σi
+

(1
2σi
+ γi

)
‖α̃
(t+1)
i − α?i ‖

2 +
〈
α?i − α̃

(t+1)
i , Xi:(w

(t) − w?)
〉

+
〈
α?i − α

(t)
i , u(t+1)

i − Xi:w
(t)

〉
−
‖α
(t)
i − α̃

(t+1)
i ‖2

ai
−

ai ‖u
(t+1)
i − Xi:w

(t)‖2

4
,

where in the last step we used Young’s inequality with ai being an arbitrary positive number.
Taking conditional expectation Et on both sides of the above inequality, and using the assumption
Et [u

(t+1)
i] = Xi:w

(t), we have

‖α?i −α
(t)
i ‖

2

2σi
≥

Et

[
‖α̃
(t+1)
i −α

(t)
i ‖

2]
2σi

+
(1
2σi
+γi

)
Et [‖α̃

(t+1)
i −α?i ‖

2] + Et

[〈
α?i −α̃

(t+1)
i , Xi:(w

(t)−w?)
〉]

−
Et [‖α

(t)
i − α̃

(t+1)
i ‖2]

ai
−

aiEt [‖u
(t+1)
i − Xi:w

(t)‖2]

4
. (62)

Notice that each α̃(t+1)
i depends on the random variable u(t+1)

i and is independent of the random
index j. But α(t+1)

i depends on both u(t+1)
i and j. Using the law of total expectation,

Et [·] = P(j = i)Et [· | j = i] + P(j , i)Et [· | j , i],

we obtain

Et [α
(t+1)
i] = piEt [α̃

(t+1)
i] + (1 − pi)α

(t)
i , (63)

Et [‖α
(t+1)
i − α

(t)
i ‖

2] = piEt [‖α̃
(t+1)
i − α

(t)
i ‖

2], (64)

Et [‖α
(t+1)
i − α?i ‖

2] = piEt [‖α̃
(t+1)
i − α?i ‖

2] + (1 − pi)Et [‖α
(t)
i − α

?
i ‖

2]. (65)

32

Next, using the equalities (63), (64) and (65), we can replace each term in (62) containing α̃(t+1)
i with

terms that contain only α(t)i and α(t+1)
i . By doing so and rearranging terms afterwards, we obtain(

1
pi

(
1

2σi
+ γi

)
− γi

)
‖α
(t)
i − α

?
i ‖

2

≥
1
pi

(
1

2σi
+ γi

)
Et [‖α

(t+1)
i − α?i ‖

2 +
1
pi

(
1

2σi
−

1
ai

)
Et [‖α

(t+1)
i − α

(t)
i ‖

2

−
aiEt [‖u

(t+1)
i − Xi:w

(t)‖2]

4
+

〈
α?i − α

(t)
i , Xi:(w

(t) − w?)
〉

−Et

[〈 1
pi
(α
(t+1)
i − α

(t)
i), Xi:(w

(t) − w?)
〉]
.

Summing up the above inequality for i = 1, . . . ,m gives the desired result in (59).

Lemma 6 For each k = 1, . . . , n, let v(t+1)
k
∈ Rdi be a random variable and define

w̃
(t+1)
k
= proxτkgk

(
w
(t)
k
− τkv

(t+1)
k

)
.

We choose an index l randomly from {1, . . . , n} with probability distribution
{
ql

}n
l=1 and let

w
(t+1)
k
=

{
w̃
(t+1)
k

if k = l,
w
(t)
k

otherwise.

If each v
(t+1)
k

is independent of l and satisfies Et

[
v
(t+1)
k

]
= 1

m (X:k)
Tα(t), then we have

n∑
k=1

(
1
qk

(
1

2τk
+ λ

)
− λ

)
‖w
(t)
k
− w?k ‖

2

≥
n∑

k=1

1
qk

(
1

2τk
+ λ

)
Et [‖w

(t+1)
k
− w?k ‖

2] +
n∑

k=1

1
qk

(
1

2τk
−

1
bk

)
Et [‖w

(t+1)
k
− w

(t)
k
‖2]

−
n∑

k=1

bk
4

Et

[

v(t+1)
k
−

1
m
(X:k)

Tα(t)

2

]
+

1
m

〈
X(w(t) − w?), α(t) − α?

〉
+

n∑
k=1

1
qk

Et

[〈
w
(t+1)
k
− w

(t)
k
,

1
m
(X:k)

T (α(t) − α?)

〉]
, (66)

where (w?, α?) is the saddle point of L(w, α) defined in (5), and the bi’s are arbitrary positive
numbers.

Lemma 6 is similar to Lemma 5 and can be proved using the same techniques. Based on these
two lemmas, we can prove the following proposition.

33

Proposition 7 The t-th iteration within the s-th stage of Algorithm 2 guarantees

m∑
i=1

1
m

[
1
pi

(
1

2σi
+ γi

)
− γi +

n∑
k=1

3τk ‖Xik ‖
2

mpi

]
‖α
(t)
i − α

?
i ‖

2 +
m∑
i=1

n∑
k=1

2τk ‖Xik ‖
2

m2pi
‖ᾱ
(s)
i − α

?
i ‖

2

+
n∑

k=1

[
1
qk

(
1

2τk
+ λ

)
− λ +

m∑
i=1

3σi ‖Xik ‖
2

mqk

]
‖w
(t)
k
− w?k ‖

2 +
m∑
i=1

n∑
k=1

2σi ‖Xik ‖
2

mqk
‖w̄
(s)
k
− w?k ‖

2

≥
m∑
i=1

1
mpi

(
1

2σi
+ γi

)
Et

[
‖α
(t+1)
i − α?i ‖

2] + n∑
k=1

1
qk

(
1

2τk
+ λ

)
Et

[
‖w
(t+1)
k
− w?k ‖

2] . (67)

Proof Multiplying both sides of the inequality (59) by 1
m and adding to the inequality (66) gives

m∑
i=1

1
m

(
1
pi

(
1

2σi
+ γi

)
− γi

)
‖α
(t)
i − α

?
i ‖

2 +
n∑

k=1

(
1
qk

(
1

2τk
+ λ

)
− λ

)
‖w
(t)
k
− w?k ‖

2

≥
m∑
i=1

1
mpi

(
1

2σi
+ γi

)
Et [‖α

(t+1)
i − α?i ‖

2] +
n∑

k=1

1
qk

(
1

2τk
+ λ

)
Et [‖w

(t+1)
k
− w?k ‖

2]

+
m∑
i=1

1
mpi

(
1

2σi
−

1
ai

)
Et [‖α

(t+1)
i − α

(t)
i ‖

2] +
n∑

k=1

1
qk

(
1

2τk
−

1
bk

)
Et [‖w

(t+1)
k
− w

(t)
k
‖2]

−
n∑

k=1

bk
4

Et

[

v(t+1)
k
−

1
m
(X:k)

Tα(t)

2

]
+

n∑
k=1

1
qk

Et

[〈
w
(t+1)
k
− w

(t)
k
,

1
m
(X:k)

T (α(t) − α?)

〉]
−

m∑
i=1

ai
4m

Et [‖u
(t+1)
i − Xi:w

(t)‖2] −
m∑
i=1

1
mpi

Et

[〈
α
(t+1)
i − α

(t)
i , Xi:(w

(t) − w?)
〉]
. (68)

We notice that the terms containing 1
m

〈
X(w(t) − w?), α(t) − α?

〉
from (59) and (66) canceled each

other. Next we bound the last four terms on the right-hand side of (68).
As in Algorithm 2, for each i = 1, . . . ,m, we define a random variable

u(t+1)
i = ū(s)i −

1
ql

Xilw̄
(s)
l
+

1
ql

Xilw
(t)
l
,

which depends on the random index l ∈ {1, . . . , n}. Taking expectation with respect to l yields

Et [u
(t+1)
i] =

n∑
k=1

qk

(
ū(s)i −

1
qk

Xik w̄
(s)
k
+

1
qk

Xikw
(t)
k

)
= Xi:w

(t), i = 1, 2, . . . ,m.

Therefore u(t+1)
i satisfies the assumption in Lemma 5. In order to bound its variance, we notice that

n∑
k=1

qk

(
1
qk

Xik w̄
(s)
k
−

1
qk

Xikw
(t)
k

)
= Xi:w̄

(s) − Xi:w
(t) = ū(s)i − Xi:w

(t).

34

Using the relation between variance and the second moment, we have

Et

[
‖u(t+1)

i − Xi:w
(t)‖2

]
=

n∑
k=1

qk

ū(s)i −

1
qk

Xik w̄
(s)
k
+

1
qk

Xikw
(t)
k
− Xi:w

(t)

2

=
n∑

k=1

1
qk

Xik w̄
(s)
k
− Xikw

(t)
k

2
− ‖ū(s)i − Xi:w

(t)‖2

≤
n∑

k=1

1
qk

Xik(w̄
(s)
k
− w

(t)
k
)

2

≤
n∑

k=1

2‖Xik ‖
2

qk

(
‖w̄
(s)
k
− w?k ‖

2 + ‖w
(t)
k
− w?k ‖

2
)
. (69)

Similarly, for k = 1, . . . , n, we have

Et [v
(t+1)
k
] =

m∑
i=1

pi

(
v̄
(s)
k
−

1
pi

1
m
(Xik)

T ᾱ
(s)
i +

1
pi

1
m
(Xik)

Tα
(t)
i

)
=

1
m
(X:k)

Tα(t).

Therefore v(t+1)
k

satisfies the assumption in Lemma 6. Furthermore, we have

Et

[

v(t+1)
k
−

1
m
(X:k)

Tα(t)

2

]
=

m∑
i=1

pi

v̄(s)k

−
1
pi

1
m
(Xik)

T ᾱ
(s)
i +

1
pi

1
m
(Xik)

Tα
(t)
i −

1
m
(X:k)

Tα(t)

2

=
m∑
i=1

1
pi

 1
m
(Xik)

T ᾱ
(s)
i −

1
m
(Xik)

Tα
(t)
i

2
−

v̄(s)k
−

1
m
(X:k)

Tα(t)

2

≤
m∑
i=1

1
pi

 1
m
(Xik)

T
(
ᾱ
(s)
i − α

(t)
i

)

2

≤
m∑
i=1

2‖Xik ‖
2

pim2

(
‖ᾱ
(s)
i − α

?
i ‖

2 + ‖α
(t)
i − α

?
i ‖

2
)
. (70)

Now we consider the two terms containing inner products in (68). Using the conditional
expectation relation (63), we have

Et

[
−

〈
α
(t+1)
i − α

(t)
i , Xi:(w

(t) − w?)
〉]
= piEt

[
−

〈
α̃
(t+1)
i − α

(t)
i , Xi:(w

(t) − w?)
〉]

≥ piEt

[
−

1
ci
‖α̃
(t+1)
i − α

(t)
i ‖

2 −
ci
4
‖Xi:(w

(t) − w?)‖2
]

= −
pi
ci

Et

[
‖α̃
(t+1)
i − α

(t)
i ‖

2] − cipi
4
‖Xi:(w

(t) − w?)‖2

= −
1
ci

Et

[
‖α
(t+1)
i − α

(t)
i ‖

2] − cipi
4
‖Xi:(w

(t) − w?)‖2, (71)

where we used Young’s inequality with ci being an arbitrary positive number, and the last equality
used (64). We note that for any n vectors z1, . . . , zn ∈ RNi , it holds that

 n∑

k=1
zk

2
≤

n∑
k=1

1
qk
‖zk ‖2.

35

To see this, we let zk, j denote the jth component of zk and use the Cauchy-Schwarz inequality:

 n∑
k=1

zk

2
=

Ni∑
j=1

(
n∑

k=1
zk, j

)2

=
Ni∑
j=1

(
n∑

k=1

zk, j
√

qk

√
qk

)2

≤

Ni∑
j=1

(
n∑

k=1

(
zk, j
√

qk

)2
) (

n∑
k=1

(√
qk

)2
)

=
Ni∑
j=1

(
n∑

k=1

z2
k, j

qk

)
=

n∑
k=1

1
qk

Ni∑
j=1

z2
k, j =

n∑
k=1

1
qk
‖zk ‖2.

Applying this inequality to the vector Xi:(w
(t) − w?) =

∑n
k=1 Xik(w

(t)
k
− w?

k
), we get

‖Xi:(w
(t) − w?)‖2 ≤

n∑
k=1

1
qk
‖Xik(w

(t)
k
− w?k)‖

2.

Therefore we can continue the inequality (71), for each i = 1, . . . ,m, as

Et

[
−

〈
α
(t+1)
i − α

(t)
i , Xi:(w

(t) − w?)
〉]

≥ −
1
ci

Et

[
‖α
(t+1)
i − α

(t)
i ‖

2] − cipi
4

n∑
k=1

1
qk
‖Xik(w

(t)
k
− w?k)‖

2

≥ −
1
ci

Et

[
‖α
(t+1)
i − α

(t)
i ‖

2] − cipi
4

n∑
k=1

1
qk
‖Xik ‖

2‖w
(t)
k
− w?k ‖

2. (72)

Using similarly arguments, we can obtain, for each k = 1, . . . , n and arbitrary hk > 0,

Et

[〈
w
(t+1)
k
− w

(t)
k
,

1
m
(X:k)

T (α(t) − α?)
〉]

≥ −
1
hk

Et

[
‖w
(t+1)
k
− w

(t)
k
‖2

]
−

hkqk
4m2

m∑
i=1

1
pi
‖Xik ‖

2‖α
(t)
i − α

?
i ‖

2. (73)

Applying the bounds in (69), (70), (72) and (73) to (68) and rearranging terms, we have

m∑
i=1

1
m

[
1
pi

(
1

2σi
+ γi

)
− γi +

n∑
k=1

bk ‖Xik ‖
2

2mpi
+

n∑
k=1

hk ‖Xik ‖
2

4mpi

]
‖α
(t)
i − α

?
i ‖

2

+
n∑

k=1

[
1
qk

(
1

2τk
+ λ

)
− λ +

m∑
i=1

ai ‖Xik ‖
2

2mqk
+

m∑
i=1

ci ‖Xik ‖
2

4mqk

]
‖w
(t)
k
− w?k ‖

2

+
m∑
i=1

n∑
k=1

bk ‖Xik ‖
2

2m2pi
‖ᾱ
(s)
i − α

?
i ‖

2 +
m∑
i=1

n∑
k=1

ai ‖Xik ‖
2

2mqk
‖w̄
(s)
k
− w?k ‖

2

≥
m∑
i=1

1
mpi

(
1

2σi
+ γi

)
Et [‖α

(t+1)
i − α?i ‖

2] +
n∑

k=1

1
qk

(
1

2τk
+ λ

)
Et [‖w

(t+1)
k
− w?k ‖

2]

+
m∑
i=1

1
mpi

(
1

2σi
−

1
ai
−

1
ci

)
Et [‖α

(t+1)
i − α

(t)
i ‖

2]

+
n∑

k=1

1
qk

(
1

2τk
−

1
bk
−

1
hk

)
Et [‖w

(t+1)
k
− w

(t)
k
‖2].

36

The desired result (67) is obtained by choosing ai = ci = 4σi and bk = hk = 4τk .

Finally, we are ready to prove Theorem 1. Let θ ∈ (0, 1) be a parameter to be determined later,
and let Γ and η be two constants such that

Γ ≥ max
i,k

{
1
pi

(
1 +

3‖Xik ‖
2

2θqkλγi

)
,

1
qk

(
1 +

3n‖Xik ‖
2

2θmpiλγi

)}
, (74)

η = 1 −
1 − θ
Γ

. (75)

It is easy to check that Γ > 1 and η ∈ (0, 1). By the choices of σi and τk in (23) and (24) respectively,
we have

1
pi

(
1 +

1
2σiγi

)
=

1
qk

(
1 +

1
2τkλ

)
= Γ, (76)

for all i = 1, . . . ,m and k = 1, . . . , n. Comparing the above equality with the definition of Γ in (74),
we have

3‖Xik ‖
2

2θqkλγi
≤

1
2σiγi

and
3n‖Xik ‖

2

2θmpiλγi
≤

1
2τkλ

,

which implies
3σi ‖Xik ‖

2

qk
≤ θλ and

3nτk ‖Xik ‖
2

mpi
≤ θγi,

for all i = 1, . . . ,m and k = 1, . . . , n. Therefore, we have

n∑
k=1

3τk ‖Xik ‖
2

mpi
=

1
n

n∑
k=1

3nτk ‖Xik ‖
2

mpi
≤

1
n

n∑
k=1

θγi = θγi, i = 1, . . . ,m, (77)

m∑
i=1

3σi ‖Xik ‖
2

mqk
=

1
m

m∑
i=1

3σi ‖Xik ‖
2

qk
≤

1
m

m∑
i=1

θλ = θλ, k = 1, . . . , n. (78)

Now we consider the inequality (67), and examine the ratio between the coefficients of ‖α(t)i − α
?
i ‖

2

and Et [‖α
(t+1)
i − α?i ‖

2]. Using (77) and (76), we have

1
pi

(
1

2σi
+ γi

)
− γi +

∑n
k=1

3τk ‖Xik ‖
2

mpi

1
pi

(
1

2σi
+ γi

) ≤ 1 −
(1 − θ)γi

1
pi

(
1

2σi
+ γi

) = 1 −
1 − θ
Γ
= η. (79)

Similarly, the ratio between the coefficients of ‖w(t)
k
−w?

k
‖2 and Et [‖w

(t+1)
k
−w?

k
‖2] can be bounded

using (78) and (76):

1
qk

(
1

2τk + λ
)
− λ +

∑m
i=1

3σi ‖Xik ‖
2

mqk

1
qk

(
1

2τk + λ
) ≤ 1 −

(1 − θ)λ
1
qk

(
1

2τk + λ
) = 1 −

1 − θ
Γ
= η. (80)

37

In addition, the ratio between the coefficients of ‖ᾱ(s)i − α
?
i ‖

2 and Et [‖α
(t+1)
i − α?i ‖

2] and that of
‖w̄
(s)
k
− w?

k
‖2 and Et [‖w

(t+1)
k
− w?

k
‖2] can be bounded as∑k

k=1
2τk ‖Xik ‖

2

mpi

1
pi

(
1

2σi
+ γi

) ≤ (2/3)θγi
1
pi

(
1

2σi
+ γi

) = (2/3)θ
Γ
=

2θ(1 − η)
3(1 − θ)

, (81)

∑m
i=1

3σi ‖Xik ‖
2

mqk

1
qk

(
1

2τk + λ
) ≤ (2/3)θλ

1
qk

(
1

2τk + λ
) = (2/3)θ

Γ
=

2θ(1 − η)
3(1 − θ)

. (82)

Using (76) and the four inequalities (79), (80), (81) and (82), we conclude that the inequality (67)
implies

η
m∑
i=1

Γγi
m
‖α
(t)
i − α

?
i ‖

2 +
2θ(1 − η)
3(1 − θ)

m∑
i=1

Γγi
m
‖ᾱ
(s)
i − α

?
i ‖

2

+η
n∑

k=1
Γλ‖w

(t)
k
− w?k ‖

2 +
2θ(1 − η)
3(1 − θ)

n∑
k=1
Γλ‖w̄

(s)
k
− w?k ‖

2

≥
m∑
i=1

Γγi
m

Et [‖α
(t+1)
i − α?i ‖

2] +
n∑

k=1
ΓλEt [‖w

(t+1)
k
− w?k ‖

2].

Using the definite of Ω(·) in (21), the inequality above is equivalent to

ηΩ
(
w(t) − w?, α(t) − α?

)
+

2θ(1 − η)
3(1 − θ)

Ω
(
w̄(s) − w?, ᾱ(s) − α?

)
≥ Et

[
Ω

(
w(t+1) − w?, α(t+1) − α?

)]
. (83)

To simplify further derivation, we define

∆
(t) = E

[
Ω

(
w(t) − w?, α(t) − α?

)]
,

∆̄
(s) = E

[
Ω

(
w̄(s) − w?, ᾱ(s) − α?

)]
,

where the expectation is taken with respect to all randomness in the sth stage, that is, the random
variables {(j(0), l(0)), (j(1), l(1)), . . . , (j(M−1), l(M−1))}. Then the inequality (83) implies

2θ(1 − η)
3(1 − θ)

∆̄
(s) + η∆(t) ≥ ∆(t+1).

Dividing both sides of the above inequality by ηt+1 gives

2θ(1 − η)
3(1 − θ)

∆̄(s)

ηt+1 +
∆(t)

ηt
≥
∆(t+1)

ηt+1 .

Summing for t = 0, 1, , . . . , M − 1 gives(
1
η
+

1
η2 + · · · +

1
ηM

)
2θ(1 − η)
3(1 − θ)

∆̄
(s) + ∆(0) ≥

∆(T)

ηM
,

38

which further leads to
(1 − ηM)

2θ
3(1 − θ)

∆̄
(s) + ηM∆(0) ≥ ∆(M).

Now choosing θ = 1/3 and using the relation ∆̄(s) = ∆(0) for each stage, we obtain(
1
3
+

2
3
ηM

)
∆
(0) ≥ ∆(M).

Therefore if we choose M large enough such that ηM ≤ 1
2 , then

∆
(M) ≤

2
3
∆
(0), or equivalently, ∆̄(s+1) ≤

2
3
∆̄
(s).

The condition ηM ≤ 1
2 is equivalent to M ≥ log(2)

log(1/η) , which can be guaranteed by

M ≥
log(2)
1 − η

=
log(2)
1 − θ

Γ =
3 log(2)

2
Γ = log(

√
8)Γ.

To further simplify, it suffices to have M ≥ log(3)Γ. Finally, we notice that ∆̄(s+1) ≤ (2/3)∆̄(s)
implies ∆̄(s) ≤ (2/3)s ∆̄(0). which is the desired result in Theorem 1.

A.1 Alternative bounds and step sizes

Alternatively, we can let Γ to satisfy

Γ ≥ max
i,k

{
1
pi

(
1 +

3‖X:k ‖
2
F

2θmqkλγi

)
,

1
qk

(
1 +

3‖Xi:‖
2
F

2θmpiλγi

)}
, (84)

where ‖ · ‖F denotes the Frobenius norm of a matrix. Then by choosing σi and τk that satisfy (76),
we have

3σi ‖X:k ‖
2
F

mqk
≤ θλ and

3τk ‖Xi:‖
2
F

mpi
≤ θγi,

We can bound the left-hand sides in (77) and (78) using Hölder’s inequality, which results in

n∑
k=1

3τk ‖Xik ‖
2

mpi
≤

n∑
k=1

3τk ‖Xik ‖
2
F

mpi
≤

3 maxk{τk}‖Xi:‖
2
F

mpi
≤ θγi, i = 1, . . . ,m, (85)

m∑
i=1

3σi ‖Xik ‖
2

mqk
≤

m∑
i=1

3σi ‖Xik ‖
2
F

mqk
≤

3 maxi{σi}‖X:k ‖
2
F

mqk
≤ θλ, k = 1, . . . , n. (86)

The rest of the proof hold without any change. Setting θ = 1/3 gives the condition on Γ in (26).
In Theorem 1 and the proof above, we choose Γ as a uniform bound over all combinations of

(i, k) in order to obtain a uniform convergence rates on all blocks of the primal and dual variables
w
(t)
k

and α(t)i , so we have a simple conclusion as in (25). In practice, we can use different bounds on
different blocks and choose step sizes to allow them to converge at different rates.

39

For example, we can choose the step sizes σi and τk such that

1
pi

(
1 +

1
2σiγi

)
= max

k

{
1
pi

(
1 +

3‖X:k ‖
2
F

2θmqkλγi

)}
, i = 1, . . . ,m,

1
qk

(
1 +

1
2τkλ

)
= max

i

{
1
qk

(
1 +

3‖Xi:‖
2
F

2θmpiλγi

)}
, k = 1, . . . , n.

Then the inequalities (85) and (86) still hold, and we can still show linear convergence with a similar
rate. In this case, the step sizes are chosen as

σi = min
k

{
θmqkλ

3‖X:k ‖
2
F

}
, i = 1, . . . ,m,

τk = min
i

{
θmpiγi
3‖Xi:‖

2
F

}
, k = 1, . . . , n.

If we choose the probabilities to be proportional to the norms of the data blocks, i.e.,

pi =
‖Xi:‖

2
F

‖X ‖2F
, qk =

‖X:k ‖
2
F

‖X ‖2F
,

then we have

σi =
θmλ

3‖X ‖2F
, τk =

θmγi
3‖X ‖2F

.

If we further normalize the rows of X , and let R be the norm of each row, then (with θ = 1/3)

σi =
θλ

3R2
m
N
=

λ

9R2
m
N
, τk =

θγi

3R2
m
N
=

γi

9R2
m
N
.

For distributed ERM, we have γi = N
m γ, thus τk =

γ

9R2 as in (29).

Appendix B. Proof of Theorem 2

Consider the following saddle-point problem with doubly separable structure:

min
w∈RD

max
α∈RN

{
L(w, α) ≡

1
m

m∑
i=1

n∑
k=1

αTi Xikwk −
1
m

m∑
i=1

f ∗i (αi) +
n∑

k=1
gk(wk)

}
. (87)

Under Assumption 1, L has a unique saddle point (w?, α?). We define

P̃k(wk) ≡
1
m
(α?)T X:kwk + gk(wk) −

1
m
(α?)T X:kw

?
k − gk(w

?
k), k = 1, . . . , n, (88)

D̃i(αi) ≡
1
m

(
αTi Xi:w

? − f ∗i (αi) − (α
?
i)

T Xi:w
? + f ∗i (α

?
i)

)
, i = 1, . . . ,m. (89)

We note that w?
k
is the minimizer of P̃k with P̃k(w

?
k
) = 0 and α?i is the maximizer of D̃i with

D̃i(α
?
i) = 0. Moreover, by the assumed strong convexity,

P̃k(wk) ≥
λ

2
‖wk − w

?
k ‖

2, D̃i(αi) ≤ −
γi
2m
‖αi − α

?
i ‖

2. (90)

40

Moreover, we have the following lower bound for the duality gap P(w) − D(α):
n∑

k=1
P̃k(wk) −

m∑
i=1

D̃i(αi) = L(w, α?) − L(w?, α) ≤ P(w) − D(α). (91)

We can also use them to derive an upper bound for the duality gap, as in the following lemma.

Lemma 8 Suppose Assumption 1 holds. Let (w?, α?) be the saddle-point of L(w, α) and define

P(w) = sup
α

L(w, α), D(α) = inf
w

L(w, α).

Then we have

P(w) − D(α) ≤ L(w, α?) − L(w?, α) +
(

1
m

m∑
i=1

‖Xi:‖
2

2γi

)
‖w − w?‖2 +

‖X ‖2

2m2λ
‖α − α?‖2.

Proof By definition, the primal function can be written as P(w) = F(w) + g(w), where

F(w) =
1
m

m∑
i=1

fi(Xi:w) =
1
m

max
α

{
αT Xw −

m∑
i=1

f ∗i (αi)
}
.

From the optimality conditions satisfied by the saddle point (w?, α?), we have

∇F(w?) =
1
m

XTα?.

By assumption, ∇F(w) is Lipschitz continuous with smooth constant 1
m

∑m
i=1
‖Xi: ‖

2

γi
, which implies

F(w) ≤ F(w?) + 〈∇F(w?), w − w?〉 +
(

1
m

m∑
i=1

‖Xi:‖
2

2γi

)
‖w − w?‖2

=
1
m

(
(α?)T Xw? −

m∑
i=1

f ∗i (α
?
i)

)
+

1
m
(α?)T X(w − w?) +

(
1
m

m∑
i=1

‖Xi:‖
2

2γi

)
‖w − w?‖2

=
1
m

(
(α?)T Xw −

m∑
i=1

f ∗i (α
?
i)

)
+

(
1
m

m∑
i=1

‖Xi:‖
2

2γi

)
‖w − w?‖2.

Therefore,

P(w) = F(w) + g(w)

≤
1
m
(α?)T Xw −

1
m

m∑
i=1

f ∗i (α
?
i) + g(w) +

(
1
m

m∑
i=1

‖Xi:‖
2

2γi

)
‖w − w?‖2

= L(w, α?) +
(

1
m

m∑
i=1

‖Xi:‖
2

2γi

)
‖w − w?‖2.

Using similar arguments, especially that ∇g∗(α) has Lipschitz constant ‖X ‖
m2λ

, we can show that

D(α) ≥ L(w?, α) −
‖X ‖2

2m2λ
‖α − α?‖2.

Combining the last two inequalities gives the desired result.

The rest of the proof follow similar steps as in the proof of Theorem 1. The next two lemmas
are variants of Lemmas 5 and 6.

41

Lemma 9 Under the same assumptions and setup in Lemma 5, we have

m∑
i=1

(
1
pi

(
1

2σi
+
γi
2

)
−
γi
2

)
‖α
(t)
i − α

?
i ‖

2 −
m∑
i=1

(
1
pi
− 1

)
mD̃i(α

(t)
i)

≥
m∑
i=1

1
pi

(
1

2σi
+
γi
2

)
Et [‖α

(t+1)
i − α?i ‖

2] +
m∑
i=1

1
2piσi

Et [‖α
(t+1)
i − α

(t)
i ‖

2] −
m∑
i=1

m
pi

Et

[
D̃i(α

(t+1)
i)

]
+

〈
w(t) − w?, XT (α? − α(t))

〉
−

m∑
i=1

1
pi

Et

[〈
α
(t+1)
i − α

(t)
i , u(t+1)

i − Xi:w
?
〉]
. (92)

Proof We start by taking conditional expectation Et on both sides of the inequality (61), and would
like to replace every term containing α̃(t+1)

i with terms that contain only α(t)i and α(t+1)
i . In addition

to the relations in (63), (64) and (65), we also need

Et

[
f ∗i (α

(t+1)
i)

]
= pi f ∗i (α̃

(t+1)
i) + (1 − pi) f ∗i (α

(t)
i).

After the substitutions and rearranging terms, we have(
1
pi

(
1

2σi
+
γi
2

)
−
γi
2

)
‖α
(t)
i − α

?
i ‖

2 +

(
1
pi
− 1

) (
f ∗i (α

(t)
i) − f ∗i (α

?
i)

)
≥

1
pi

(
1

2σi
+
γi
2

)
Et [‖α

(t+1)
i − α?i ‖

2] +
1

2piσi
Et [‖α

(t+1)
i − α

(t)
i ‖

2] +
1
pi

Et

[(
f ∗i (α

(t+1)
i) − f ∗i (α

?
i)

)]
Et

[
〈α?i − α

(t)
i , u(t+1)

i 〉
]
−

1
pi

Et

[〈
α
(t+1)
i − α

(t)
i , u(t+1)

i

〉]
.

Next, we use the assumption Et

[
u(t+1)
i

]
= Xi:w

(t) and the definition of D̃i(·) in (89) to obtain(
1
pi

(
1

2σi
+
γi
2

)
−
γi
2

)
‖α
(t)
i − α

?
i ‖

2 −

(
1
pi
− 1

)
mD̃i(α

(t)
i)

≥
1
pi

(
1

2σi
+
γi
2

)
Et [‖α

(t+1)
i − α?i ‖

2] +
1

2piσi
Et [‖α

(t+1)
i − α

(t)
i ‖

2] −
m
pi

Et

[
D̃i(α

(t+1)
i)

]
+

〈
α?i − α

(t)
i , Xi:

(
w(t) − w?

)〉
−

1
pi

Et

[〈
α
(t+1)
i − α

(t)
i , u(t+1)

i − Xi:w
?
〉]
.

Summing up the above inequality for i = 1, . . . ,m gives the desired result (92).

Lemma 10 Under the same assumptions and setup in Lemma 6, we have

K∑
k=1

(
1
qk

(
1

2τk
+
λ

2

)
−
λ

2

)
‖w
(t)
k
− w?k ‖

2 +
n∑

k=1

(
1
qk
− 1

)
P̃k(w

(t)
k
)

≥
n∑

k=1

1
qk

(
1

2τk
+
λ

2

)
Et [‖w

(t+1)
k
− w?k ‖

2] +
n∑

k=1

1
2qkτk

Et [‖w
(t+1)
k
− w

(t)
k
‖2] +

n∑
k=1

1
qk

Et

[
P̃k(w

(t+1)
k
)
]

+
1
m

〈
X(w(t) − w?), α(t) − α?

〉
+

n∑
k=1

1
qk

Et

[〈
w
(t+1)
k
− w

(t)
k
, v
(t+1)
k
−

1
m
(X:k)

Tα?
〉]
.

42

Based on Lemma 9 and Lemma 10, we can prove the following proposition. The proof is very
similar to that of Proposition 7, thus we omit the details here.

Proposition 11 The t-th iteration within the s-th stage of Algorithm 2 guarantees

n∑
k=1

(
1
qk
− 1

)
P̃k(w

(t)
k
) −

m∑
i=1

(
1
pi
− 1

)
D̃i(α

(t)
i)

+
m∑
i=1

1
m

[
1
pi

(
1

2σi
+
γi
2

)
−
γi
2
+

n∑
k=1

3τk ‖Xik ‖
2

mpi

]
‖α
(t)
i − α

?
i ‖

2 +
m∑
i=1

n∑
k=1

2τk ‖Xik ‖
2

m2pi
‖ᾱ
(s)
i − α

?
i ‖

2

+
n∑

k=1

[
1
qk

(
1

2τk
+
λ

2

)
−
λ

2
+

m∑
i=1

3σi ‖Xik ‖
2

mqk

]
‖w
(t)
k
− w?k ‖

2 +
m∑
i=1

n∑
k=1

2σi ‖Xik ‖
2

mqk
‖w̄
(s)
k
− w?k ‖

2

≥
n∑

k=1

1
qk

Et

[
P̃k(w

(t+1)
k
)
]
−

m∑
i=1

1
pi

Et

[
D̃i(α

(t+1)
i)

]
+

m∑
i=1

1
mpi

(
1

2σi
+
γi
2

)
Et

[
‖α
(t+1)
i − α?i ‖

2] + n∑
k=1

1
qk

(
1

2τk
+
λ

2

)
Et

[
‖w
(t+1)
k
− w?k ‖

2] . (93)

Now we proceed to prove Theorem 2. Let θ ∈ (0, 1) be a parameter to be determined later, and
let Γ and η be two constants such that

Γ ≥ max
i,k

{
1
pi

(
1 +

6Λ
θqkλγi

)
,

1
qk

(
1 +

6nΛ
θpimλγi

)}
, (94)

η = 1 −
1 − θ
Γ

. (95)

It is easy to check that Γ > 1 and η ∈ (0, 1). The choices of σi and τk in (32) and (33) satisfy

1
pi

(
1
2
+

1
2σiγi

)
=
Γ

2
, i = 1, . . . ,m, (96)

1
qk

(
1
2
+

1
2τkλ

)
=
Γ

2
, k = 1, . . . , n. (97)

Comparing them with the definition of Γ in (94), and using the assumption Λ ≥ ‖Xik ‖
2
F ≥ ‖Xik ‖

2,
we get

6‖Xik ‖
2

θqkλγi
≤

6Λ
θqkλγi

≤
1

σiγi
and

6n‖Xik ‖
2

θpimλγi
≤

6nΛ
θpimλγi

≤
1
τkλ

,

which implies
3σi ‖Xik ‖

2

qk
≤ θ

λ

2
and

3nτk ‖Xik ‖
2

mpi
≤ θ

γi
2
,

for all i = 1, . . . ,m and k = 1, . . . , n. Therefore, we have
n∑

k=1

3τk ‖Xik ‖
2

mpi
=

1
n

n∑
k=1

3nτk ‖Xik ‖
2

mpi
≤ θ

γi
2
, i = 1, . . . ,m, (98)

m∑
i=1

3σi ‖Xik ‖
2

mqk
=

1
m

m∑
i=1

3σi ‖Xik ‖
2

qk
≤ θ

λ

2
, k = 1, . . . , n. (99)

43

Nowweconsider the inequality (93), and examine the ratio between the coefficients of ‖α(t)i −α
?
i ‖

2

and Et [‖α
(t+1)
i − α?i ‖

2]. Using (98) and (96), we have

1
pi

(
1

2σi
+
γi
2

)
−
γi
2 +

∑n
k=1

3τk ‖Xik ‖
2

mpi

1
pi

(
1

2σi
+
γi
2

) ≤ 1 −
(1 − θ)γi2

1
pi

(
1

2σi
+
γi
2

) = 1 −
1 − θ
Γ
= η. (100)

Similarly, the ratio between the coefficients of ‖w(t)
k
−w?

k
‖2 and Et [‖w

(t+1)
k
−w?

k
‖2] can be bounded

using (99) and (97):

1
qk

(
1

2τk +
λ
2

)
− λ

2 +
∑m

i=1
3σi ‖Xik ‖

2

mqk

1
qk

(
1

2τk +
λ
2

) ≤ 1 −
(1 − θ)λ2

1
qk

(
1

2τk +
λ
2

) = 1 −
1 − θ
Γ
= η. (101)

In addition, the ratio between the coefficients of ‖ᾱ(s)i − α
?
i ‖

2 and Et [‖α
(t+1)
i − α?i ‖

2] and that of
‖w̄
(s)
k
− w?

k
‖2 and Et [‖w

(t+1)
k
− w?

k
‖2] can be bounded as

∑n
k=1

2τk ‖Xik ‖
2

mpi

1
pi

(
1

2σi
+
γi
2

) ≤ (2/3)θ γi2
1
pi

(
1

2σi
+
γi
2

) = (2/3)θ
Γ
=

2θ(1 − η)
3(1 − θ)

, (102)

∑m
i=1

2σi ‖Xik ‖
2

mqk

1
qk

(
1

2τk +
λ
2

) ≤ (2/3)θ λ2
1
qk

(
1

2τk +
λ
2

) = (2/3)θ
Γ
=

2θ(1 − η)
3(1 − θ)

. (103)

Also, the ratios between the coefficients of P̃k(w
(t)
k
) and Et

[
P̃k(w

(t+1)
k
)
]
is 1−qk , and that of D̃k(α

(t)
i)

and Et

[
D̃i(α

(t+1)
i)

]
is 1 − pi. From the definition of Γ and η in (94) and (95), we have

1 − pi ≤ η for i = 1, . . . ,m, and 1 − qk ≤ η for k = 1, . . . , n. (104)

Using the relations in (96) and (97) and the inequalities (100), (101), (102), (103) and (104), we
conclude that the inequality (93) implies

η

(
n∑

k=1

1
qk

P̃k(w
(t)
k
) −

m∑
i=1

1
pi

D̃i(α
(t)
i)

)
+ η

(
m∑
i=1

Γγi
2m
‖α
(t)
i − α

?
i ‖

2 +
n∑

k=1

Γλ

2
‖w
(t)
k
− w?k ‖

2

)
+

2θ(1 − η)
3(1 − θ)

(
m∑
i=1

Γγi
2m
‖ᾱ
(s)
i − α

?
i ‖

2
n∑

k=1

Γλ

2
‖w̄
(s)
k
− w?k ‖

2

)
≥

n∑
k=1

1
qk

Et

[
P̃k(w

(t+1)
k
)
]
−

m∑
i=1

1
pi

Et

[
D̃i(α

(t+1)
i)

]
+

m∑
i=1

Γγi
2m

Et [‖α
(t+1)
i − α?i ‖

2] +
n∑

k=1

Γλ

2
Et [‖w

(t+1)
k
− w?k ‖

2],

44

which is equivalent to

η

(
n∑

k=1

1
qk

P̃k(w
(t)
k
) −

m∑
i=1

1
pi

D̃i(α
(t)
i) +

Γλ

2
‖w(t) − w?‖2 +

1
m

m∑
i=1

Γγi
2
‖α
(t)
i − α

?
i ‖

2

)
+

2θ(1 − η)
3(1 − θ)

(
Γλ

2
‖w̄(s) − w?‖2 +

1
m

m∑
i=1

Γγi
2
‖ᾱ
(s)
i − α

?
i ‖

2

)
(105)

≥ Et

[
n∑

k=1

1
qk

P̃k(w
(t+1)
k
) −

m∑
i=1

1
pi

D̃i(α
(t+1)
i) +

Γλ

2
‖w(t+1)− w?‖2 +

1
m

m∑
i=1

Γγi
2
‖α
(t+1)
i − α?i ‖

2

]
.

To simplify further derivation, we define

∆
(t) =

n∑
k=1

1
qk

P̃k(w
(t)
k
) −

m∑
i=1

1
pi

D̃i(α
(t)
i) +

Γλ

2
‖w(t) − w?‖2 +

1
m

m∑
i=1

Γγi
2
‖α
(t)
i − α

?
i ‖

2,

∆̄
(s) =

n∑
k=1

1
qk

P̃k(w̄
(s)
k
) −

m∑
i=1

1
pi

D̃i(ᾱ
(s)
i) +

Γλ

2
‖w̄(s) − w?‖2 +

1
m

m∑
i=1

Γγi
2
‖ᾱ
(s)
i − α

?
i ‖

2.

Using the facts that P̃k(w̄
(s)
k
) ≥ 0 and −D̃i(ᾱ

(s)
i) ≥ 0, the inequality (105) implies

2θ(1 − η)
3(1 − θ)

∆̄
(s) + ηE

[
∆
(t)

]
≥ E

[
∆
(t+1)],

where the expectation is taken with respect to all randomness in the s-th stage, that is, the random
variables {(j(0), l(0)), (j(1), l(1)), . . . , (j(M−1), l(M−1))}. Next we choose θ = 1/3 and follow the same
arguments as in the proof for Theorem 1 to obtain E

[
∆(M)

]
≤ 2

3∆
(0), provided M ≥ log(3)Γ. This

further implies

E
[
∆̄
(s)

]
≤

(
2
3

)s
∆̄
(0). (106)

From the definition of Γ in (94), we have 1
qk

< Γ for k = 1, . . . , n and 1
pi
< Γ for i = 1, . . . ,m.

Therefore,

∆̄
(0) ≤ Γ

(
n∑

k=1
P̃k(w̄

(0)
k
) −

m∑
i=1

D̃i(ᾱ
(0)
i) +

λ

2
‖w̄(0) − w?‖2 +

1
m

m∑
i=1

γi
2
‖ᾱ
(0)
i − α

?
i ‖

2

)
≤ 2Γ

(
n∑

k=1
P̃k(w̄

(0)
k
) −

m∑
i=1

D̃i(ᾱ
(0)
i)

)
≤ 2Γ

(
P(w̄(0)) − D(ᾱ(0))

)
, (107)

where the second inequality used (90) and the last inequality used (91). On the other hand, we can
also lower bound ∆̄(s) using P(w̄(s)) − D(ᾱ(s)). To this end, we notice that with θ = 1/3,

Γ ≥ max
i,k

{
1
pi

(
1 +

18Λ
qkλγi

)
,

1
qk

(
1 +

18nΛ
pimλγi

)}
≥ max

i,k

{
18Λ

piqkλγi
,

18nΛ
piqkmλγi

}
.

Noticing that maxk{1/qk} ≥ n and nΛ ≥ ‖Xi:‖
2
F for all i = 1, . . . ,m, we have

Γ ≥ max
i,k

{
18Λ

qkλγi

}
≥ max

i

{
18nΛ
λγi

}
≥

18
mλ

m∑
i=1

nΛ
γi
≥

18
mλ

m∑
i=1

‖Xi:‖
2
F

γi
≥

18
mλ

m∑
i=1

‖Xi:‖
2

γi
.

45

Moreover, since Γ ≥ maxk
{

18Λ
piqkλγi

}
≥ 18nΛ

piλγi
for all i and mnΛ ≥ ‖X ‖2F , we have

1
m

m∑
i=1
Γγi ‖ᾱ

(s)
i − α

?
i ‖

2 ≥
1
m

m∑
i=1

18nΛ
piλγi

γi ‖ᾱ
(s)
i − α

?
i ‖

2 =
18mnΛ

m2λ

m∑
i=1

‖ᾱ
(s)
i − α

?
i ‖

2

pi

≥
18‖X ‖2F

m2λ

(m∑
i=1
‖ᾱ
(s)
i − α

?
i ‖

)2

≥
18‖X ‖2

m2λ

m∑
i=1
‖ᾱ
(s)
i − α

?
i ‖

2 =
18‖X ‖2

m2λ
‖ᾱ(s) − α?‖2.

Therefore, from the definition of ∆̄(s),

∆̄
(s) =

n∑
k=1

1
qk

P̃k(w̄
(s)
k
) −

m∑
i=1

1
pi

D̃i(ᾱ
(s)
i) +

Γλ

2
‖w̄(s) − w?‖2 +

1
m

m∑
i=1

Γγi
2
‖ᾱ
(s)
i − α

?
i ‖

2

≥
n∑

k=1
P̃k(w̄

(s)
k
) −

m∑
i=1

D̃i(ᾱ
(s)
i) +

(
18
m

m∑
i=1

‖Xi:‖
2

γi

)
‖w̄(s) − w?‖2 +

18‖X ‖2

m2λ
‖ᾱ(s) − α?‖2

= L(w̄(s), α?) − L(w?, ᾱ(s)) +
(
18
m

m∑
i=1

‖Xi:‖
2

γi

)
‖w̄(s) − w?‖2 +

18‖X ‖2

m2λ
‖ᾱ(s) − α?‖2

≥ P(w̄(s)) − D(ᾱ(s)), (108)

where the last inequality is due to Lemma 8. Combining (106), (107) and (108) gives the desired
result:

E
[
P(w̄(s)) − D(ᾱ(s))

]
≤

(
2
3

)s
2Γ

(
P(w̄(0)) − D(ᾱ(0))

)
.

Appendix C. Proof of Theorem 3

To facilitate the analysis of DSCOVR-SAGA in Algorithm 3, we define two sequences of matrices
recursively. The first is {W (t)}t≥0, where each W (t) ∈ Rm×d. They are partitioned into m× n blocks,
and we denote each block as W (t)

ik
∈ R1×dk . The recursive updates for W (t) are as follows:

W (0) = 1m ⊗
(
w(0)

)T
,

W (t+1)
ik

=

{ (
w
(t)
l

)T if i = j and k = l,

W (t)
ik

otherwise,
t = 0, 1, 2, . . . , (109)

where 1m denotes the vector of all ones inRm. and ⊗ denotes the Kronecker product of twomatrices.
The second sequence is {A(t)}t≥0, where each A(t) ∈ RN×n. They are partitioned into m × n blocks,
and we denote each block as A(t)

ik
∈ RNi×1. The recursive updates for A(t) are as follows:

A(0) = α(0) ⊗ 1Tn,

A(t+1)
ik

=

{
α
(t)
j if i = j and k = l,

A(t)
ik

otherwise,
t = 0, 1, 2, (110)

The matrices W (t) and A(t) consist of most recent values of the primal and dual block coordinates,
updated at different times, up to time t.

46

Notice that in Algorithm 3, thematricesU(t) ∈ RN×n follow the same partitioning as thematrices
A(t), and the matrices V (t) ∈ Rm×d follow the same partitioning as the matrices W (t). According to
the updates of U(t), V (t), ū(t) and v̄(t) in Algorithm 3, we have for each t ≥ 0,

U(t)
ik
= Xik

(
W (t)

ik

)T
, i = 1, . . . ,m, k = 1, . . . , n,

V (t)
ik
=

1
m

(
A(t)
ik

)T Xik, i = 1, . . . ,m, k = 1, . . . , n.

Proposition 12 Suppose Assumption 1 holds. The t-th iteration of Algorithm 3 guarantees

m∑
i=1

1
m

[
1
pi

(
1

2σi
+ γi

)
− γi +

n∑
k=1

3τk ‖Xik ‖
2

mpi

]
‖α
(t)
i − α

?
i ‖

2 +
m∑
i=1

n∑
k=1

2τk ‖Xik ‖
2

m2pi
‖A(t)

ik
− α?i ‖

2

+
n∑

k=1

[
1
qk

(
1

2τk
+ λ

)
− λ +

m∑
i=1

3σi ‖Xik ‖
2

mqk

]
‖w
(t)
k
− w?k ‖

2 +
m∑
i=1

n∑
k=1

2σi ‖Xik ‖
2

mqk
‖
(
W (t)

ik

)T
− w?k ‖

2

≥
m∑
i=1

1
mpi

(
1

2σi
+ γi

)
Et

[
‖α
(t+1)
i − α?i ‖

2] + n∑
k=1

1
qk

(
1

2τk
+ λ

)
Et

[
‖w
(t+1)
k
− w?k ‖

2] (111)

Proof The main differences between Algorithm 2 and Algorithm 3 are the definitions of u(t+1)
j and

v
(t+1)
l

. We start with the inequality (68) and revisit the bounds for the following two quantities:

Et

[
‖u(t+1)

i − Xi:w
(t)‖2

]
and Et

[

v(t+1)
k
−

1
m
(X:k)

Tα(t)

2

]
.

For Algorithm 3, we have

u(t+1)
i = ū(t)i −

1
ql

U(t)
il
+

1
ql

Xilw
(t)
l
, i = 1, . . . ,m,

v
(t+1)
k

= v̄
(t)
k
−

1
pj
(V (t)

jk
)T +

1
pj

1
m
(Xjk)

Tα
(t)
j , k = 1, . . . , n.

We can apply the reasoning in (39) and (40) to every block coordinate and obtain

Et

[
u(t+1)
i

]
= Xi:w

(t), i = 1, . . . ,m,

Et

[
v
(t+1)
k

]
=

1
m
(X:k)

Tα(t), k = 1, . . . , n.

Therefore they satisfy the assumptions in Lemma 5 and Lemma 6, respectively. Moreover, following
similar arguments as in (69) and (70), we have

Et

[
‖u(t+1)

i − Xi:w
(t)‖2

]
≤

n∑
k=1

2‖Xik ‖
2

qk

(

(W (t)ik)T
− w?k

2
+ ‖w

(t)
k
− w?k ‖

2
)
,

Et

[

v(t+1)
k
−

1
m
(X:k)

Tα(t)

2

]
≤

m∑
i=1

2‖Xik ‖
2

m2pi

(

(A(t)ik)T
− α?i

2
+ ‖α

(t)
i − α

?
i ‖

2
)
.

The rest of the proof are the same as in the proof of Proposition 7.

47

Now we are ready to prove Theorem 3. By the definition of W (t) in (109) and A(t) in (110), we
have

Et

[

(W (t+1)
ik
)T − w?k

2
]
= piqk

w(t)
k
− w?k

2
+ (1 − piqk)

(W (t)
ik

)T
− w?k

2
, (112)

Et

[

A(t+1)
ik
− α?i

2
]
= piqk

α(t)i − α?i

2
+ (1 − piqk)

A(t)
ik
− α?i

2
. (113)

For all i = 1, . . . ,m and k = 1, . . . , n, let

ξik =
3σi ‖Xik ‖

2

mpiq2
k

and ζik =
3τk ‖Xik ‖

2

m2p2
i qk

. (114)

We multiply (112) by ξik and (113) by ζik and add them to (111) to obtain
m∑
i=1

1
m

[
1
pi

(
1

2σi
+ γi

)
− γi +

n∑
k=1

6τk ‖Xik ‖
2

mpi

]
‖α
(t)
i − α

?
i ‖

2

+
n∑

k=1

[
1
qk

(
1

2τk
+ λ

)
− λ +

m∑
i=1

6σi ‖Xik ‖
2

mqk

]
‖w
(t)
k
− w?k ‖

2

+
m∑
i=1

n∑
k=1

(
1 −

1
3

piqk

)
ζik

A(t)
ik
− α?i

2
+

m∑
i=1

n∑
k=1

(
1 −

1
3

piqk

)
ξik

(W (t)
ik

)T
− w?k

2

≥
m∑
i=1

1
mpi

(
1

2σi
+ γi

)
Et

[
‖α
(t+1)
i − α?i ‖

2] + n∑
k=1

1
qk

(
1

2τk
+ λ

)
Et

[
‖w
(t+1)
k
− w?k ‖

2]
+

m∑
i=1

n∑
k=1

ζikEt

[

A(t+1)
ik
− α?i

2]
+

m∑
i=1

n∑
k=1

ξikEt

[

(W (t+1)
ik

)T
− w?k

2]
. (115)

Let θ ∈ (0, 1) be a parameter to be determined later, and Γ be a constant such that

Γ ≥ max
i,k

{
1
pi

(
1 +

3‖Xik ‖
2

2θqkλγi

)
,

1
qk

(
1 +

3n‖Xik ‖
2

2θpimλγi

)
,

1
piqk

}
. (116)

The choices of σi in (42) and τk in (43) satisfy

1
pi

(
1 +

1
2σiγi

)
=

1
qk

(
1 +

1
2τkλ

)
= Γ. (117)

Comparing the above equality with the definition of Γ in (116), we have

3‖Xik ‖
2

2θqkλγi
≤

1
2σiγi

and
3n‖Xik ‖

2

2θpimλγi
≤

1
2τkλ

,

which implies that

6σi ‖Xik ‖
2

qk
≤ 2θλ and

6nτk ‖Xik ‖
2

mpi
≤ 2θγi (118)

hold for all i = 1, . . . ,m and k = 1, . . . , n. Therefore, we have
n∑

k=1

6τk ‖Xik ‖
2

mpi
=

1
n

n∑
k=1

6nτk ‖Xik ‖
2

mpi
≤ 2θγi, i = 1, . . . ,m, (119)

m∑
i=1

6σi ‖Xik ‖
2

mqk
=

1
m

m∑
i=1

6σi ‖Xik ‖
2

qk
≤ 2θλ, k = 1, . . . , n. (120)

48

Nowwe consider the inequality (115), and examine the ratio between the coefficients of ‖α(t)i −α
?
i ‖

2

and Et [‖α
(t+1)
i − α?i ‖

2]. Using (119) and (117), we have

1
pi

(
1

2σi
+ γi

)
− γi +

∑n
k=1

6τk ‖Xik ‖
2

mpi

1
pi

(
1

2σi
+ γi

) ≤ 1 −
(1 − 2θ)γi

1
pi

(
1

2σi
+ γi

) = 1 −
1 − 2θ
Γ

. (121)

Similarly, the ratio between the coefficients of ‖w(t)
k
−w?

k
‖2 and Et [‖w

(t+1)
k
−w?

k
‖2] can be bounded

using (120) and (117):

1
qk

(
1

2τk + λ
)
− λ +

∑m
i=1

6σi ‖Xik ‖
2

mqk

1
qk

(
1

2τk + λ
) ≤ 1 −

(1 − 2θ)λ
1
qk

(
1

2τk + λ
) = 1 −

1 − 2θ
Γ

. (122)

Wenotice that in (115), the ratios between the coefficients of ζik

A(t)

ik
−α?i

2 and ζikEt

[

A(t+1)
ik
− α?i

2
]
,

as well as and that of ξik

(W (t)

ik

)T
− w?

k

2 and ξikEt

[

(W (t+1)
ik

)T
− w?

k

2] , are all 1 − 1
3 piqk . By

definition of Γ in (116), we have

1 −
1
3

piqk ≤ 1 −
1

3Γ
, i = 1, . . . ,m, k = 1, . . . , n. (123)

We choose θ = 1/3 so that the ratios in (121) and (122) have the same bound 1 − 1
3Γ . Therefore, it

follows from inequality (115) that

m∑
i=1

Γγi
m

Et

[
‖α
(t+1)
i − α?i ‖

2] + n∑
k=1
ΓλEt

[
‖w
(t+1)
k
− w?k ‖

2]
+

m∑
i=1

n∑
k=1

ζikEt

[

A(t+1)
ik
− α?i

2]
+

m∑
i=1

n∑
k=1

ξikEt

[

(W (t+1)
ik

)T
− w?k

2]
.

≤

(
1 −

1
3Γ

) (
m∑
i=1

Γγi
m
‖α
(t)
i − α

?
i ‖

2 +
n∑

k=1
Γλ‖w

(t)
k
− w?k ‖

2

+
m∑
i=1

n∑
k=1

ζik

A(t)

ik
− α?i

2
+

m∑
i=1

n∑
k=1

ξik

(W (t)

ik

)T
− w?k

2
)
. (124)

Let’s define

∆
(t) = λ‖w(t)− w?‖2 +

1
m

m∑
i=1

γi ‖α
(t)
i − α

?
i ‖

2 +
m∑
i=1

n∑
k=1

ζik
Γ

A(t)
ik
− α?i

2
+

m∑
i=1

n∑
k=1

ξik
Γ

(W (t)
ik

)T
− w?k

2
.

Then (124) implies

E
[
∆
(t)

]
≤

(
1 −

1
3Γ

)t
∆
(0), (125)

where the expectation is taken with respect to all random variables generated by Algorithm 3 up to
iteration t.

49

By the definition of ξik in (114), we have

ξik
Γ
=

3σi ‖Xik ‖
2

mpiq2
k

1
Γ
≤

θλ

mpiqk

1
Γ
≤
θλ

m
=

λ

3m
,

where the first inequality is due to (118) and the second inequality is due to the relation Γ ≥ 1
piqk

from the definition of Γ in (116). Similarly, we have

ζik
Γ
=

3τk ‖Xik ‖
2

m2p2
i qk

1
Γ
≤

θγi
mnpiqk

1
Γ
≤

θγi
3mn

=
γi

3mn
.

Moreover, by the construction in (109) and (110), we have for t = 0,

A(0)
ik
= α

(0)
i , for k = 1, . . . , n and i = 1, . . . ,m,(

W (0)
ik

)T
= w

(0)
k
, for i = 1, . . . ,m and k = 1, . . . , n.

Therefore, the last two terms in the definition of ∆(0) can be bounded as
m∑
i=1

n∑
k=1

ζik
Γ

A(0)
ik
− α?i

2
+

m∑
i=1

n∑
k=1

ξik
Γ

(W (0)
ik

)T
− w?k

2

≤
m∑
i=1

n∑
k=1

γi
3mn

α(0)i − α
?
i

2
+

m∑
i=1

n∑
k=1

λ

3m

w(0)
k
− w?k

2

=
1

3m

m∑
i=1

γi

α(0)i − α

?
i

2
+
λ

3

w(0) − w?

2

,

which implies

∆
(0) ≤

4
3

(
λ

w(0) − w?

2

+
1
m

m∑
i=1

γi

α(0)i − α

?
i

2
)
.

Finally, combining with (125), we have

E
[
∆
(t)

]
≤

(
1 −

1
3Γ

) t 4
3

(
λ

w(0) − w?

2

+
1
m

m∑
i=1

γi

α(0)i − α

?
i

2
)
,

which further implies the desired result.

Appendix D. Proof of Theorem 4

To simplify the presentation, we present the proof for the case γi = γ for all i = 1, . . . ,m. It is
straightforward to generalize to the case where the γi’s are different.

Lemma 13 Let g : RD → R be λ-strongly convex, and f ∗i : RNi → R ∪ {∞} be γ-strongly convex
over its domain. Given any w̃ ∈ Rd and α̃ ∈ RN , we define the following two functions:

L(w, α) = g(w) +
1
m
αT Xw −

1
m

m∑
i=1

fi ∗ (αi), (126)

Lδ(w, α) = L(w, α) +
δλ

2
‖w − w̃‖2 −

δγ

2m
‖α − α̃‖2. (127)

50

Let (w?, α?) and (w̃?, α̃?) be the (unique) saddle points of L(w, α) and Lδ(w, α), respectively. Then
we have

λ‖w̃ − w̃?‖2 +
γ

m
‖α̃ − α̃?‖2 ≤ λ‖w̃ − w?‖2 +

γ

m
‖α̃ − α?‖2, (128)(

λ‖w̃? − w?‖2 +
γ

m
‖α̃? − α?‖2

)1/2
≤

δ

1 + δ

(
λ‖w̃ − w?‖2 +

γ

m
‖α̃ − α?‖2

)1/2
. (129)

Proof This lemma can be proved using the theory of monotone operators (e.g., Rockafellar, 1976;
Ryu and Boyd, 2016), as done by Balamurugan and Bach (2016). Here we give an elementary proof
based on first-order optimality conditions.

By assumption, we have

(w?, α?) = arg min
w

max
α

L(w, α),

(w̃?, α̃?) = arg min
w

max
α

Lδ(w, α).

Optimality conditions for (w̃?, α̃?) as a saddle point of Lδ:

−
1
m

XT α̃? − δλ
(
w̃? − w̃

)
∈ ∂g(w̃?), (130)

Xw̃? − δγ
(
α̃? − α̃

)
∈ ∂

m∑
i=1

f ∗i (α̃
?). (131)

For any ξ ∈ ∂g(w̃?), it holds that ξ + 1
m XTα? ∈ ∂wL(w̃?, α?). Therefore using (130) we have

1
m

XT (α? − α̃?) − δλ
(
w̃? − w̃

)
∈ ∂wL(w̃?, α?).

Since L(w, α?) is strongly convex in w with convexity parameter λ, we have

L(w̃?, α?) +
(

1
m

XT (α? − α̃?) − δλ
(
w̃? − w̃

))T
(w? − w̃?) +

λ

2
‖w̃? − w?‖2 ≤ L(w?, α?). (132)

Similarly, we have

1
m

XT (w̃? − w?) −
δγ

m
(
α̃? − α̃

)
∈ ∂α

(
−L(w?, α̃?)

)
,

and since −L(w?, α) is strongly convex in α with convexity parameter γ
m , we have

−L(w?, α̃?)+
(

1
m

XT (w̃? − w?) −
δγ

m
(
α̃? − α̃

))T
(α?−α̃?)+

γ

2m
‖α̃?−α?‖2 ≤ −L(w?, α?). (133)

Adding inequalities (132) and (133) together gives

L(w̃?, α?) − L(w?, α̃?)

+ δλ(w̃? − w̃)T (w̃? − w?) +
δγ

m
(α̃? − α̃)T (α̃? − α?) +

λ

2
‖w̃? − w?‖2 +

γ

2m
‖α̃? − α?‖2 ≤ 0.

51

Combining with the inequality

L(w̃?, α?) − L(w?, α̃?) ≥
λ

2
‖w̃? − w?‖2 +

γ

2m
‖α̃? − α?‖2,

we obtain

λ‖w̃? − w?‖2 +
γ

m
‖α̃? − α?‖2 + δλ(w̃? − w̃)T (w̃? − w?) +

δγ

m
(α̃? − α̃)T (α̃? − α?) ≤ 0. (134)

Proof of the first claim. We can drop the nonnegative terms on the left-hand side of (134) to
obtain

λ(w̃? − w̃)T (w̃? − w?) +
γ

m
(α̃? − α̃)T (α̃? − α?) ≤ 0.

The two inner product terms on the left-hand side of the inequality above can be expanded as follows:

(w̃? − w̃)T (w̃? − w?) = (w̃? − w̃)T (w̃? − w̃ + w̃ − w?) = ‖w̃? − w̃‖2 + (w̃? − w̃)T (w̃ − w?) ,

(α̃? − α̃)T (α̃? − α?) = (α̃? − α̃)T (α̃? − α̃ + α̃ − α?) = ‖α̃? − α̃‖2 + (α̃? − α̃)T (α̃ − α?).

Combining them with the last inequality, we have

λ‖w̃? − w̃‖2 +
γ

m
‖α̃? − α̃‖2 ≤ −λ(w̃? − w̃)T (w̃ − w?) −

γ

m
(α̃? − α̃)T (α̃ − α?)

≤
λ

2

(
‖w̃? − w̃‖2 + ‖w̃ − w?‖2

)
+

γ

2m

(
‖α̃? − α̃‖2 + ‖α̃ − α?‖2

)
,

which implies

λ

2
‖w̃? − w̃‖2 +

γ

2m
‖α̃? − α̃‖2 ≤

λ

2
‖w̃ − w?‖2 +

γ

2m
‖α̃ − α?‖2.

Proof of the second claim. We expand the two inner product terms in (134) as follows:

(w̃? − w̃)T (w̃? − w?) = (w̃? − w? + w? − w̃)T (w̃? − w?) = ‖w̃? − w?‖2 + (w? − w̃)T (w̃? − w?),

(α̃? − α̃)T (α̃? − α?) = (α̃? − α? + α? − α̃)T (α̃? − α?) = ‖α̃? − α?‖2 + (α? − α̃)T (α̃? − α?).

Then (134) becomes

(1 + δ)λ‖w̃? − w?‖2 + (1 + δ)
Γ

m
‖w̃? − w?‖2

≤ δλ(w̃ − w?)T (w̃? − w?) +
δγ

m
(α̃ − α?)T (α̃? − α?)

≤ δ
(
λ‖w̃ − w?‖2 +

γ

m
‖α̃ − α?‖2

)1/2 (
λ‖w̃? − w?‖2 +

γ

m
‖α̃? − α?‖2

)1/2
,

where in the second inequality we used the Cauchy-Schwarz inequality. Therefore we have(
λ‖w̃? − w?‖2 +

γ

m
‖α̃? − α?‖2

)1/2
≤

δ

1 + δ

(
λ‖w̃ − w?‖2 +

γ

m
‖α̃ − α?‖2

)1/2
,

which is the desired result.

52

To simplify notations in the rest of the proof, we let z = (w, α) and define

‖z‖ =
(
λ‖w‖2 +

γ

m
‖α‖2

)1/2
.

The results of Lemma 13 can be written as

‖ z̃ − z̃?‖ ≤ ‖ z̃ − z?‖, (135)

‖ z̃? − z?‖ ≤
δ

1 + δ
‖ z̃ − z?‖. (136)

Next consider the convergence of Algorithm 4, and follow the proof ideas in Balamurugan and Bach
(2016, Section D.3).

If we use DSCOVR-SVRG (option 1) in each round of Algorithm 4, then Algorithm 2 is called
with initial point z̃(r) = (w̃(r), α̃(r)) and after S stages, it outputs z̃(r+1) as an approximate saddle point
of L(r)δ (w, α), which is defined in (46). Then Theorem 1 implies

E
[
‖ z̃(r+1) − z̃?(r)‖2

]
≤

(
2
3

)S
E
[
‖ z̃(r) − z̃?(r)‖2

]
, (137)

where z̃?(r) denotes the unique saddle point of L(r)δ (w, α). By Minkowski’s inequality, we have(
E
[
‖ z̃(r+1) − z?‖2

])1/2
≤

(
E
[
‖ z̃(r+1) − z̃?(r)‖2

])1/2
+

(
E
[
‖ z̃?(r) − z?‖2

])1/2
,

where z? is the unique saddle point of L(w, α). Using (137), (135) and (136), we obtain(
E
[
‖ z̃(r+1) − z?‖2

])1/2
≤

(
2
3

)S/2 (
E
[
‖ z̃(r) − z̃?(r)‖2

])1/2
+

(
E
[
‖ z̃?(r) − z?‖2

])1/2

≤

(
2
3

)S/2 (
E
[
‖ z̃(r) − z?‖2

])1/2
+

δ

1 + δ

(
E
[
‖ z̃(r) − z?‖2

])1/2

=

[(
2
3

)S/2
+

δ

1 + δ

] (
E
[
‖ z̃(r) − z?‖2

])1/2
, (138)

Therefore, if S ≥ 2 log(2(1+δ))
log(3/2) , we have(

2
3

)S/2
+

δ

1 + δ
≤

1
2(1 + δ)

+
δ

1 + δ
=

1 + 2δ
2(1 + δ)

= 1 −
1

2(1 + δ)
,

which implies

E
[
‖ z̃(r+1) − z?‖2

]
≤

(
1 −

1
2(1 + δ)

)2
E
[
‖ z̃(r) − z?‖2

]
. (139)

If we useDISCOVR-SAGA (option 2) inAlgorithm 4, thenAlgorithm 3 is calledwith initial point
z̃(r) = (w̃(r), α̃(r)) and after M steps, it outputs z̃(r+1) as an approximate saddle point of L(r)δ (w, α).
Then Theorem 3 implies

E
[
‖ z̃(r+1) − z̃?(r)‖2

]
≤

4
3

(
1 −

1
3Γδ

)M
E
[
‖ z̃(r) − z̃?(r)‖2

]
.

53

Using similar arguments as in (138), we have(
E
[
‖ z̃(r+1) − z?‖

]2
)1/2

≤

[
4
3

(
1 −

1
3Γδ

)M/2
+

δ

1 + δ

] (
E
[
‖ z̃(r) − z?‖2

])1/2
.

Therefore, if M ≥ 6 log
(

8(1+δ)
3

)
Γδ , we have

4
3

(
1 −

1
3Γδ

)M/2
+

δ

1 + δ
≤

1
2(1 + δ)

+
δ

1 + δ
=

1 + 2δ
2(1 + δ)

= 1 −
1

2(1 + δ)
,

which implies the same inequality in (139).
In summary, using either option 1 or option 2 in Algorithm 4, we have

E
[
‖ z̃(r) − z?‖2

]
≤

(
1 −

1
2(1 + δ)

)2r
‖ z̃(0) − z?‖2.

In order to have E
[
‖ z̃(r) − z?‖2

]
≤ ε , it suffices to have r ≥ (1 + δ) log

(
‖ z̃(0) − z?‖2/ε

)
.

References

A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In Advances in Neural
Information Processing Systems (NIPS) 24, pages 873–881, 2011.

Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In Proceedings
of 49th Annual ACM Symposium on the Theory of Computing (STOC), pages 1200–1205, 2017.

Y. Arjevani and O. Shamir. Communication complexity of distributed convex learning and opti-
mization. In Advances in Neural Information Processing Systems (NIPS) 28, pages 1756–1764.
2015.

A. Aytekin, H. R. Feyzmahdavian, and M. Johansson. Analysis and implementatino of an asyn-
chronous optimization algorithm for the parameter server. arXiv:1610.05507, 2016.

P. Balamurugan and F. Bach. Stochastic variance reduction methods for saddle-point problems. In
Advances in Neural Information Processing Systems (NIPS) 29, pages 1416–1424, 2016.

A. Beck and M. Teboulle. A fast iterative shrinkage-threshold algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends in Machine
Learning, 3(1):1–122, 2011.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problemswith applications
to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

54

A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual algorithm.
Mathematical Programming, pages 1–35, 2015.

W. Chen, Z. Wang, and J. Zhou. Large-scale L-BFGS using MapReduce. In Advances in Neural
Information Processing Systems (NIPS) 27, pages 1332–1340. 2014.

J. Dean andS.Ghemawat. MapReduce: Simplfied data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support
for non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems (NIPS) 27, pages 1646–1654. 2014.

J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed optimization:
convergence analysis and network scaling. IEEE Transactions on Automatic Control, 57(3):
592–606, 2012.

R.-E. Fan and C.-J. Lin. LIBSVM data: Classification, regression and multi-label. URL:
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets, 2011.

R. Frostig, R. Ge, S. Kakade, andA. Sidford. Un-regularizing: approximate proximal point and faster
stochastic algorithms for empirical risk minimization. In Proceedings of The 32nd International
Conference on Machine Learning (ICML), pages 2540–2548. 2015.

R. Hannah and W. Yin. More iterations per second, same quality — why asynchronous algorithms
may drastically outperform traditional ones. CAM Report 17-50, University of California at Los
Angeles, 2017.

J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer, 2001.

M. Jaggi, V. Smith, M. Takac, J. Terhorst, S. Krishnan, T. Hofmann, and M. I. Jordan.
Communication-efficient distributed dual coordinate ascent. In Advances in Neural Informa-
tion Processing Systems (NIPS) 27, pages 3068–3076. 2014.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance re-
duction. In Advances in Neural Information Processing Systems (NIPS) 26, pages 315–323.
2013.

G. Lan and Y. Zhou. An optimal randomized incremental gradient method. Technical report,
Department of Industrial and System Engineering, University of Florida, July 2015.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence
rate for finite training sets. InAdvances in Neural Information Processing Systems 25, pages 2672–
2680. 2012.

C.-P. Lee, P.-W. Wang, W. Chen, and C.-J. Lin. Limited-memory common-directions method for
distributed optimization and its application on empirical risk minimization. In Proceedings of the
2017 SIAM International Conference on Data Mining, pages 732–740, 2017.

J. D. Lee, Q. Lin, T. Ma, and T. Yang. Distributed stochastic variance reduced gradient methods and
a lower bound for communication complexity. arXiv:1507.07595, 2015.

55

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,
and B.-Y. Su. Scaling distributed machine learning with the parameter server. In Proceedings of
the 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI), pages
583–598, 2014.

C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin. Large-scale logistic regression and linear support
vector machines using Spark. In Proceedings of the IEEE Conference on Big Data, Washington
DC, USA, 2014.

H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In Advances
in Neural Information Processing Systems (NIPS) 28, pages 3384–3392. 2015.

Q. Lin and L.Xiao. An adaptive accelerated proximal gradientmethod and its homotopy continuation
for sparse optimization. Computatoinal Optimization and Applications, 60(3):633–674, 2015.

J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic coordinate
descent algorithm. In Proceedings of the 31st International Conference on Machine Learning
(ICML), pages 469–477, 2014.

C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takáč. Adding vs. averaging in
distributed primal-dual optimization. In Proceedings of the 32Nd International Conference on
International Conference on Machine Learning (ICML), pages 1973–1982, 2015.

C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takáč. Distributed optimization with
arbitrary local solvers. Optimization Methods and Software, 32(4):813–848, 2017.

S. Matsushima, H. Yun, X. Zhang, and S. V. N. Vishwanathan. Distributed stochastic optimization
of the regularized risk. arXiv:1406.4363, 2014.

H. B. McMahan and M. J. Streeter. Delay-tolerant algorithms for asynchronous distributed online
learning. In Advances in Neural Information Processing Systems (NIPS) 27, pages 2915–2923,
2014.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai, M. Amde,
S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar. MLlib: Machine
learning in Apache Spark. Journal of Machine Learning Research, 17(34):1–7, 2016.

MPI Forum. MPI: a message-passing interface standard, Version 3.0. Document available at
http://www.mpi-forum.org, 2012.

A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE
Transactions on Automatic Control, 54(1):48–61, January 2009.

A. Nedić, A. Olshevsky, and W. Shi. Achieving geometric convergence for distributed optimizaiton
over time-varying graphs. arXiv:1607.03218, 2016.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston,
2004.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

56

Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming,
Ser. B, 140:125–161, 2013.

OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 3.1. Avail-
able at http://www.openmp.org, July 2011.

Z. Peng, Y. Xu, M. Yan, and W. Yin. ARock: An algorithmic framework for asynchronous parallel
coordinate updates. SIAM Journal on Scientific Computing, 38(5):2851–2879, 2016.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In Advances in Neural Information Processing Systems (NIPS) 24, pages 693–
701, 2011.

S. J. Reddi, A. Hefny, S. Sra, B. Póczós, and A. J. Smola. On variance reduction in stochastic
gradient descent and its asynchronous variants. In Advances in Neural Information Processing
Systems (NIPS) 28, pages 2647–2655. 2015.

S. J. Reddi, J. Konečný, P. Richtárik, B. Póczós, and A. Smola. AIDE: Fast and communication
efficient distributed optimization. arXiv:1608.06879, 2016.

P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods
for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization. Mathe-
matical Programming, 156(1):433–484, 2016.

R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control
and Optimization, 14(5), 1976.

E. K. Ryu and S. P. Boyd. A primer on monotone operator methods. Applied and Computational
Mathematics: an International Journal, 15(1):3–43, 2016.

K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié. Optimal algorithms for smooth and
strongly convex distributed optimization in networks. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 3027–3036, Sydney, Australia, 2017.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14:567–599, 2013.

O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using an ap-
proximate newton-type method. In Proceedings of the 31st International Conference on Machine
Learning (ICML), pages 1000–1008, Bejing, China, 2014.

W. Shi, Q. Ling, G. Wu, and W. Yin. EXTRA: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

S. Sra, A. W. Yu, M. Li, and A. J. Smola. Adadelay: Delay adaptive distributed stochastic optimiza-
tion. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
pages 957–965, 2016.

57

J. Wang and L. Xiao. Exploiting strong convexity from data with primal-dual first-order algorithms.
In Proceedings of the 34th International Conference on Machine Learning (ICML), pages 3694–
3702, Sydney, Australia, 2017.

L. Xiao and S. P. Boyd. Optimal scaling of a gradient method for distributed resource allocation.
Journal of Optimization Theory and Applications, 129(3):469–488, June 2006.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24(4):2057–2075, 2014.

E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum:
A new platform for distributed machine learning on big data. IEEE Transactions on Big Data, 1
(2):49–67, 2015.

T. Yang. Trading computation for communication: Distributed stochastic dual coordinate ascent. In
Advances in Neural Information Processing Systems (NIPS) 26, pages 629–637. 2013.

A. W. Yu, Q. Lin, and T. Yang. Doubly stochastic primal-dual coordinate method for bilinear
saddle-point problem. arXiv:1508.03390, 2015.

H. Yun, H.-F. Yu, C.-J. Hsieh, S. V. N. Vishwanathan, and I. Dhillon. NOMAD: Non-locking,
stochastic multi-machine algorithm for asynchronous and decentralized matrix completion. In
Proceedings of the VLDB Endowment, volume 7, pages 975–986, 2014.

M. Zaharia, R. Xin, P.Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkataraman,
M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica. Apache Spark: A unified engine
for big data processing. Communications of the ACM, 59(11):56–65, 2016.

Y. Zhang and L. Xiao. DiSCO: Distributed optimization for self-concordant empirical loss. In
Proceedings of the 32nd International Conference on Machine Learning (ICML), pages 362–370,
Lille, France, 2015.

Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical risk
minimization. Journal of Machine Learning Research, 18(84):1–42, 2017.

Y. Zhang, J. C. Duchi, and M. J. Wainwright. Communication-efficient algorithms for statistical
optimization. Journal of Machine Learning Research, 14:3321–3363, 2013.

58

	Introduction
	The DSCOVR Framework and Main Results
	Summary of Main Results
	Related Work

	The DSCOVR-SVRG Algorithm
	The DSCOVR-SAGA Algorithm
	Accelerated DSCOVR Algorithms
	Proximal Mapping for Accelerated DSCOVR

	Conjugate-Free DSCOVR Algorithms
	Asynchronous Distributed Implementation
	Implementation of DSCOVR-SVRG
	Implementation of DSCOVR-SAGA
	Implementation of Accelerated DSCOVR

	Experiments
	Conclusions and Discussions
	Proof of Theorem 1
	Alternative bounds and step sizes

	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

