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Abstract—This paper describes a micro-stress intervention
system for information office workers in the workplace, their
responses to the interventions and machine learning models
to predict the most opportune timing for providing the in-
terventions. We studied 30 office workers for 10 days and
examined their work patterns by monitoring their computer
and application usage, sleep, activity, heart rate and its vari-
ability, as well as the history of micro-stress interventions
provided through our desktop software. We analyzed temporal
patterns of stress intervention acceptance/rejection and the
relationships between their subjective and objective responses
to the interventions and perceived work engagement, challenge
and stress levels. We then developed machine learning models
to predict better stress intervention delivery timing based on
this multi-modal data. We found that features from computer
and application usage, activity, heart rate variability and
stress intervention history showed up to 80.0% accuracy in
predicting good or bad intervention timing using a multi-kernel
support vector machine algorithm. These findings could help
practitioners design the most effective, just-in-time, closed-
loop, stress interventions. To our knowledge, this is one of the
first papers to review opportune stress interventions’ delivery
timing research, which could have a big influence in designing
stress intervention technologies.

1. Introduction

Can we design a system to provide stress management
advice with minimal interruption to office workers in the
workplace? With IT technology advances, work productivity
has increased; on the other hand, high negative stress in
the workplace has been a serious problem. The continuous
connection to our computing devices and the high demands
for responding to emails/instant messengers promptly has
added to perceived workplace stress.

When we design stress interventions, there are at least
3 factors we need to consider. First, one needs to consider
what types of interventions are provided (content). Secondly,
we need to consider how the intervention is delivered (i.e.,
modality). Finally, we need to consider when a system pro-
vides the intervention for maximal impact and effectiveness
(e.g., timing). Even when a designer has appropriated the
most effective interventions, presenting them at the most

appropriate times could have a significantly positive benefit
regarding effectiveness.

Just-In-Time Adaptive Interventions (JITAIs) have been
investigated to support people while they manage their in-
dividual, daily stress experience [1]. It has been mentioned
that, “A JITAI can be used to (a) remind people to engage in
stress management techniques as they experience stress, (b)
help people better identify and address emotionally laden
situations as they occur, in their natural environment; and
(c) support long-term learning of stress-management”.

Providing stress interventions while users are experienc-
ing high stress situations might not be a good strategy. For
instance, users might be working on important tasks for
which they do not want to be interrupted. Interruptions on IT
workers’ performance and emotion has been investigated in
several HCI studies. Mark et al. investigated interruption at
work and found that interruptions change work patterns and
could add stress and frustration [2]. Czerwinski et al. studied
responses to instant messenger (IM) notifications and found
that the delays associated with an IM disruption depend on
the computer tasks one is engaged in [3]. They found that
a good time for notifications was early in the task, before
the user became deeply engaged in the task goal; and that
evaluation, planning, and execution phases in tasks were the
most disruptive.

These findings show that designing the right timing of
notifications is very important to provide less damaging
interruptions; however, when it comes to stress interven-
tions, the interruption that occurs while users were in the
early phase of tasks could also make users more aware
of the benefits of taking a break. Providing stress inter-
ventions with inappropriate timings could annoy users and
increase their stress levels. However, long-term, continuous
computer usage without such advice could lead to adverse
health outcomes and reduce attention and performance. As
described in the previous paragraph, JITAI could play a
role in reminding people of how to manage their stress.
Stress intervention with personalized and optimal timing
could increase users’ productivity and health.

In this paper, we approached this problem by answering
the following research questions.

• RQ1 a) How do people respond to stress interven-
tions over the course of the day?
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• RQ1 b) Does it relate to their emotion, stress, work
engagement, and challenges?

• RQ1 c) Are stress interventions provided at oppor-
tune timing more effective in reducing stress?

• RQ2 a) With multi-modal data from information
workers, how accurately can we predict better stress
intervention delivery timing? Which signals can best
predict that delivery timing?

To answer these questions, we (1) developed a system
that provides micro-stress interventions to office workers in
the office environment, (2) collected multi-modal, physio-
logical and behavioral data from 30 office workers through
a 10 business day study, (3) analyzed the data to understand
their stress profiles and responses to micro-stress interven-
tions presented on their computers and then (4) designed
models to predict the optimal time to provide stress inter-
ventions. We found that the combination of computer and
application usage, intervention history, users’ activity and
their heart rate variability features showed the best accuracy,
at 80.0%.

2. Related Work

Here we review previous studies about stress detection,
just-in-time stress intervention and users’ availability de-
tection and describe how our study is novel compared to
previous related work.

Stress has been intensively studied in ubiquitous comput-
ing and HCI research fields. One of the active research topics
is about detecting stress conditions using passively collected
data from a mouse [4], a keyboard [5], [6], a smartphone
and wearable sensors [7]. Hovsepian et al. developed a stress
model using ECG and respiration data from a laboratory
stress induced study and validated the model using the data
from both in a laboratory in a week-long field study [8].
Sarker also build a model to predict stress episodes from
time series data including physiology, activity, GPS and
previous stress history data [9].

There have been studies about providing just-in-time
stress interventions. Sharmin et al. visualized physiological
sensor data on stress to inform the design of JITAIs [1].
Their findings revealed the importance of contextual and
temporal visualizations for making decisions on the timing
of interventions. Other studies have developed models to
predict stress levels or provide interventions with appro-
priate timing, automatically using physiological, contextual
and user self-report data. Jaimes et al. used Hidden Markov
Models to predict heart rate variability, a proxy of stress up
to 3 minutes in advance, and developed a just-in-time stress
intervention system using reinforcement learning [10].

Ubiquitous computing research has been done to
automatically identify/predict users’ availability and design
notifications which are less interruptible or more effective
for users on mobile phones and computers. Fogarty
et al. examined predicting when IT workers can be
interrupted using sensors and found microphone, time of
day, phone usage and mouse and key-board usage can

estimate it with 76.3% accuracy [11]. Pejovic and Musolesi
developed “InterruptMe”, a mobile phone interruption
system using user activity, location, time of day, emotions
and engagement to increase user satisfaction and reduce
response time [12]. Sarker et al. modeled user availability
by analyzing physiological, behavioral and self-report data
in a week-long field study [13]. They used the delay in
responding to a system prompt to objectively measure
user availability. They found the 30 most discriminating
features to train a machine learning model for predicting
availability, including location, affect, activity type, stress,
time, and day of the week. Their model showed an
accuracy of 74.7% in 10-fold cross-validation and 77.9%
with leave-one-subject-out training techniques.

These related prior studies revealed the importance of
leveraging multi-modal data to detect stress, design just-
in-time interventions and users’ availability; however,
providing interventions when high stress is observed might
disrupt workers. That is why in our paper, we designed
models for detecting “good timing of stress intervention
delivery” rather than detecting stressful moments. We
included user’s availability (whether they had time or
cognitive capacity to receive stress interventions) and
physiological stress and cognitive load levels in our
models.

Furthermore, when we consider designing practical mod-
els, we need to reduce the users’ active input, which can be
a burden for users and must rely more on passive data to be
usable. Therefore, in our paper, we minimized users’ input
and leverage multi-modal passive data as much as possible.

In addition, there are several reasons why we designed
this study specialized to office workers on their computers,
not on their mobile phones. 1) many IT workers tend to
keep staring at their computers without taking a break and
providing interventions to them could reduce adverse health
outcomes and promote their attention and performance, 2)
they might dismiss just-in-time interventions provided on the
phone as they use their computers as a primary machine,
3) we are able to design a in-situ semi-controlled study
where the participants mostly sat or stood then we were
able to collect relatively clean data, 4) we can also get rich
contextual information from their computer and application
usage.

There are computer applications available to tell users
to take a break; however, they are simply timer-based or
require blacklists from the user and dont take into account
users’ activity or contextual information.

3. Methods

3.1. Measurements

Thirty participants (male: 12, female: 18, age: ¡ 25 years
old: N=3, 25-29: 8, 30-49: 14, 50-59: 5) joined the Health
Aware study, as it was called at the time. All the participants
were employees at a technology company in the United



States. They were compensated with $250 giftcard on the
study completion.

The study consisted of two parts. The first phase was a
five-day emotional state and work profile, activity and physi-
ology monitoring period. The second phase, also lasting five
days, continued with activity and physiology monitoring and
micro-stress interventions were provided on their computers
at work.

3.1.1. First Week. At the beginning of the first week, par-
ticipants filled out pre-study surveys about gender, marital
status, race, age, height, weight, and job titles. They also
completed the Perceived Stress Scale (PSS) [14], a well-
validated screener for stress at the beginning of the study.

During the first week were participants’ emotional state,
work engagement and challenges surveyed on their com-
puters a few times per hour and whenever participants un-
locked their computer screens. The participants sometimes
dismissed it and the sampling frequency was lower. Their
emotional states were measured with the conventional 2
axes of arousal and valence [15] (-200: less arousal/negative
valence) to 200 (more arousal/positive valence) and engage-
ment and challenge were measured with 6 Likert scales (0:
Not at all - 5: Extremely). All participants wore an activity
tracker (Fitbit, USA) and a heart rate monitor (Zephyr, USA)
to monitor their activity, sleep and heart rate and heart
rate variability (HRV).In addition, their computer activity
(keyboard, mouse, touch panel usage) and application usage
(email, website and all applications) were monitored. The
sensor and computer activity data were sent to our server
and used for further offline analysis.

3.1.2. Second Week. During the second week, the partici-
pants continued with activity, sleep, heart rate and computer
activity monitoring (no emotion, engagement and challenge
monitoring). Our HealthAware application was also installed
on their desktop computers to provide interventions (sugges-
tions and recommendations) for stress. The details about the
application are described in the next section.

3.2. Micro-stress Intervention Design

The HealthAware application was run in the background
of participants’ computers throughout the second week of
the study.

3.2.1. Stress Intervention. We designed micro-stress in-
terventions which can be done in a short time (¡ 3 min-
utes). The interventions were grouped into 4 categories
(positive psychology, cognitive behavioral, meta-cognitive
and somatic practices) and subdivided each category into
“individual” and “social” (activities that people perform
alone and with others) interventions (5 (interventions per
each subcategory) x 2 (individual or social) x 4 (categories)
= 40 interventions in total) [16] [17]. See some examples
of the interventions in the papers. On each day, the first
stress intervention window popped up between 30 and 60
minutes after the first computer activity of the day. After

Figure 1. Example of stress intervention (Individual somatic practice).

that, the stress interventions, chosen randomly from those
that had not yet been provided to the participant, were
popped up at a randomly chosen time between 90 and
150 minutes after the previous intervention (some studies
have shown that human alertness and performance includes
ultradian rhythm). Here we show one example of the stress
interventions that suggests a quick stretch categorized as
an individual somatic intervention (Figure 1). Participants
were first asked if this was good timing for receiving a stress
intervention using a 7-point Likert scale (1: Extremely bad
- 7: Extremely good). If they said “good timing”, they were
then asked to rate their stress level (1: Not stressed at all
- 7: Extremely stressed). They were then provided with a
stress intervention and asked to evaluate how much they
liked the advice, whether they found it effective or not, and
then self-rated their stress level again. We also designed
another option of stress interventions; whenever participants
wanted to receive interventions, they could also request one
by clicking the “stress advisor” button in the HealthAware
application. The responses to the interventions were sent to
our server and used for further analysis.

4. Opportune Intervention Delivery Timing
Prediction Model

In this section, we describe machine learning models to
predict good or bad timing for providing stress interventions.
Note that we did not use participants’ self-reported mea-
surements, such as affect, engagement, arousal, and valence
because we aimed to fully automate designing this model
mostly with passive data. We included both behavioral and
physiological features because we wanted to incorporate
participants’ behavioral availability (whether they had the
time or cognitive capacity to receive stress interventions) and
participants’ physiological stress and cognitive load levels to
our models.

4.1. Feature Extraction

Based on the measurements described in the section
3.1, we extracted 6 different modalities of participants’
physiological and behavioral features from data on week2.
Table 1 shows a list of features. We used 1, 2, 5 and 10
minutes prior to the intervention pops-ups as windows with
which to compute the features.



TABLE 1. A LIST OF FEATURES FOR TIMING PREDICTION

Modality # of features Features
Time 2 Time and minutes
Heart rate 6 HeartRate (mean, median, variance), RMSSD (mean, median, variance)
Application Usage 8 Email and Calendar usage [seconds] (1, 2, 5, 10 mins before)
Computer Usage 12 Mouse + keyboard + touch panel usage, mouse usage, keyboard usage [seconds] (1, 2, 5, 10 mins before)
Activity 5 Last night sleep start time and duration, # of awakenings, Steps yesterday, Steps today
Stress
Intervention History 5 # of interventions prior on the day, # of good timing interventions prior on the day, # of voluntary interventions

prior on the day, time elapsed since last intervention, time elapsed since last good timing intervention [minutes]

4.1.1. Heart Rate and Heart Rate Variability. We com-
puted mean, median and variance of heart rate and HRV to
capture participants’ autonomic nervous activity. For HRV,
we used the square root of the mean squared differences
of successive NN intervals (RMSSD), which is a well
validated measure of time domain HRV features [18] and
one of the most robust features historically used to measure
autonomous nervous activity.

4.1.2. Computer and Application Usage. We counted
mouse, keyboard and touch activities for each of the time
windows used in the model. We also used the number of
seconds that the primary email and calendar applications in
the company were in the foreground window, ending when
the user either changed windows or the computer had no
keyboard or mouse activity for a period of five minutes. We
used only the data for when the computer was actively used.
We chose email and calendar applications since they are 2
of the top 3 software applications used by IT workers [19].

4.1.3. Activity. We also included activity features about
sleep and steps, because sleep and physical activity are also
well validated as to be related to stress levels [20] [21].

4.1.4. Stress Intervention History. From stress interven-
tions, we extracted # of interventions and time latencies
from prior interventions provided on the day. To minimize
the use of users’ active input in the model, we decided
to use features (# of voluntary interventions, # of good
timing interventions prior on this day and time latencies
from prior good timing interventions on the day) which are
least burdensome to users and still practical to develop actual
models.

4.2. Models

We used the participants’ answers to a 7-point Likert
scale prompt “Is this a good timing?” (1:Very Bad - 7:Very
Good timing) and the data the participants missed answering
the question to split out data into good timing and bad
timing. When they missed responding to the interventions,
they were engaged in their tasks and did not want to be
interrupted. We defined good timing as answers 5-7 to the
good timing prompt and bad timing as missed and 1-3. We
obtained 362 sets of data. where 58% of all events were
categorized as occurring at a bad timing.

Figure 2. Participants’ self-reported emotion and work profiles vs Time in
Week 1 (Error bars: +/- 1 Standard Error of the mean).

We compared the following algorithms (1) Neural Net-
work (a two-layer feedforward neural network with 10 hid-
den layers) (2) Random Forest and (3) Support Vector Ma-
chine (radial base function (RBF) Kernel) for each modality
of data and all features (the combination of all modalities)
which were used in previous stress/availability detection
studies. We also applied a multi-kernel learning (MKL)
algorithm [22] to all feature data, saw which features showed
higher weights on the kernel and integrated different features
by simultaneously learning an optimal linear combination of
RBF kernels. We used 10-cross validation to repeat training
a model with 90% of the data and testing it with the remain-
ing 10% of the data. Within training with 90% of the data,
we also used 10-cross validation to optimize parameters.
In addition, for algorithms except Random Forest, we used
random sampling to balance the numbers of samples for 2
classes. We compared the performance (accuracy and F1
score) of the models with the 6 different modalities of
features and all features.

5. Results

5.1. Participants’ Emotion and Work Profile

During week 1, we surveyed participants’ valence,
arousal, engagement and perceived challenge at work, sub-
jectively. We examined the difference of the self-reported
measures at different times of the day using Linear Mixed-
Effect models that use random and fixed effects to account
for the repeated measures within participants. (Figure 2).

As we observed individual differences in these self-
reported measures, we normalized the data within partici-



Figure 3. Stress intervention profiles vs Time.

pants (using a z-score transformation). Our results showed
that challenge and engagement was lowest at the begin-
ning of the day and highest around 3-4pm (p < 0.05) for
challenge and 2-3pm for engagement (p < 0.05). Valence
increased toward the afternoon and dropped at 4pm. Arousal
was not statistically different in different times of days but
engagement increased in the morning and in the afternoon
toward the end of the day except 12-1pm and 6pm.

Overall, averaged PSS, perceived stress scores, at the
start of the study among our population was at 13.6, which
was around the average compared to the population norm
for the same age group (age:18-64, PSS mean: 11.9-14.2)
[14].

5.2. Participants’ Response to Stress Interventions

Next, we describe stress intervention profiles. First, we
examined the responses to stress interventions. Overall, 36%
of the stress interventions were rated as good timing (Ex-
tremely/very/slightly good timing), 8% were missed and the
rest 58% were rated as bad timing. We captured response
time from the moment the experience sampling window
popped up to the moment participants reacted to it. The
response time was not statistically significantly associated
with their self-reported timing and stress ratings or PSS
scores (a well validated stress measurement tool) at the
beginning of the study. We plotted time-series stress inter-
vention profiles (the percentages of good timing, bad timing,
neutral, missed and requests) for our users (Figure 3).

In the early morning, the percentage of good timing
opportunities for stress interventions (orange line in Figure
3) was higher than for that of suboptimal timing (blue line in
Figure 3); however, the perceived percentage of suboptimal
intervention timings gradually increased toward the end of
the day and the percentages of good timing opportunities
decreased once and slightly increased toward 1pm and
decreased again. Interestingly, participants requested stress
interventions more frequently in the early morning and the
early afternoon (2pm) timeframes (green line in Figure 3).

If we compare z-scored averaged self-reported measures
on week 1 vs stress intervention profiles on week2, we found
engagement and challenge are highly related with the per-
centages of “Not Good” timing interventions (r=0.83, 0.79)

and “missed” interventions (r = 0.69, 0.65) and inversely re-
lated with the percentage of “Good” timing interventions (r=
-0.80, -0.74). The percentage of “Requested” interventions
was neither related with engagement nor with challenge.

These findings confirm that intervention timing can be an
important factor in the design of better intervention delivery
and that information about time of day and engagement
and challenge are associated with good timing of stress
intervention deliver.

Among our micro-stress interventions, somatic individ-
ual (e.g. breathing exercise) and social (e.g. taking a walk
with someone) interventions were rated as the most pre-
ferred (mean: 4.1 and 4.2 out of 7, respectively) and effective
(mean: 3.8 and 3.7 out of 7, respectively) of all; however
the effectiveness was much lower than likeness. Somatic
social intervention also showed the largest percentage of
self-reported stress reduction, the difference between pre-
and post- self-reported stress levels, followed by somatic
individual intervention. On the other hand, the least likable
and least effective interventions were social positive psy-
chology. Likeness and effectiveness for somatic individual
and social interventions were statistically higher than for
social positive psychology. Effectiveness was statistically
higher at 10 am and 1pm than 5pm (lowest) (p < 0.05
respectively, Linear Mixed-Effects Models).

We also analyzed if participants’ self-reported likeness
and effectiveness were higher when the interventions were
provided at good timing. In our study, we collected self-
reported likeness and effectiveness only when participants
rated good or neutral timing and they requested stress in-
terventions voluntarily. Therefore, we compared their like-
ness and effectiveness among the following 3 cases: (1)
good timing (2) neutral timing (3) voluntary request (Linear
Mixed-Effects Models). Effectiveness was higher when in-
terventions were provided at good timing (mean: 3.4) than at
neutral timing and voluntarily (mean: 3.2, 3.3, respectively).
The average likeness was highest when the interventions
were provided voluntarily (3.8), followed by when rated
good timing (3.7) and rated neutral timing (3.6); however,
we could not find statistical significant differences. These
results suggest providing stress interventions at opportune
timing could become more effective.

Furthermore, participants with higher PSS scores (stress
scores measured in the pre-study survey) showed higher
averaged likeness scores for stress interventions (correlation
analysis, r = 0.40, statistically significant p < 0.05). In other
words, participants were experienced higher levels of stress
did like getting the stress interventions.

5.3. Predicting Stress Intervention Timing

Table 2 shows a summary of our model’s performance
in predicting good intervention timing with the different
modalities of model features (accuracy and F1 score). Ran-
dom Forest showed the best results, followed by SVM. In
comparing different modalities, the combination of all fea-
tures showed the best results. Different algorithms showed
slightly different orders of performance in different features.



TABLE 2. A SUMMARY OF PERFORMANCE IN PREDICTING GOOD
INTERVENTION TIMING

Neural
Network

SVM
(RBF kernel)

Random
Forest

Modality Acc F1 Acc F1 Acc F1
Time 50.9 0.49 60.1 0.60 61.7 0.51
Stress
intervention history 62.4 0.61 60.6 0.60 65.2 0.55

Computer usage 56.0 0.53 58.3 0.55 58.7 0.48
Activity 52.9 0.53 69.3 0.69 72.0 0.70
Heart rate 56.7 0.59 56.3 0.53 64.3 0.50
Application usage 55.9 0.53 60.1 0.60 64.2 0.55
All 66.7 0.63 64.3 0.64 71.7 0.53

In random forest and SVM, activity features showed the
best performance, followed by stress intervention history.
In neural networks, stress intervention history features were
the best and heart rate features were the second.

5.4. Finding the Better Contributing Features

With MKL SVM, we obtained 80.0% accuracy with F1
score 0.80. Figure 4 showed the top features with highest
average kernel weights for SVM. Computer usage, calendar
and email usage, intervention history, activity and heart rate
variability features highly contributed to the model.

We also considered including participants’ voluntarily
chosen stress intervention requests from the app or including
participants’ neutral rating for the stress intervention timing
as good timing indicators and computed the performance
of the good intervention timing prediction models based on
these labeled data. The results showed that accuracy for all
features using multi kernel SVM was 71.4 % (F1 score:
0.71) and 59.8% (F1 score: 0.58). The performance was
better in the model using labels excluding voluntary stress
intervention requests or neutral rating as good timing (80%,
0.8).

6. Discussion

6.1. Stress and Intervention Profiles

Our stress intervention profiles showed that the highest
intervention acceptance rate (orange line in Figure 4) oc-
curred at the beginning of the day, with a decreasing trend
throughout the day except a peak around 1pm, which can be
considered similar to previous findings where interruptions
in the early stages of tasks are the least disruptive. This
trend is inversely related with the trend of engagement and
challenge. We observed slight increases of the intervention
acceptance rate around noon when people tended to take
breaks for lunch. We also found increases of requested
interventions from 2pm to 3pm (green line). It is also
known that there is a post-lunch dip in circadian rhythm
that lowers performance and increases sleepiness. That could
explain why people were amenable to interventions around
or after noon [23]. At the end of the day, we assumed our
participants wanted to finish their work before they left for

Figure 4. Kernel Weights for good timing prediction.

home, rather than receiving the stress interventions (highest
engagement and challenge at the end of the day (Figure
2). Therefore, if we designed better intervention delivery
carefully around 2-3pm, we would most likely be able
to increase acceptance rates. We also confirmed that self-
reported engagement profile was consistent with the focus
profile of IT workers from a previous study [24].

Some previous papers used response time to interrup-
tions as an objective user availability measure [12]; however,
in our analysis, we did not find the relationship between
response time and self-reported user availability. This might
be because, in our in-situ study, we did not set up our users’
natural work environment to ask participants to respond to
the notifications we sent as quickly as possible; however,
participants with higher perceived stress levels at the start of
the study self-reported wanting to receive the interventions
more frequently. This implies that people with higher stress
could be more open to receive interventions.

As described in [25], “Poor engagement and burden
are likely to hinder intervention effectiveness. Burden is
an indication that intervention requirements exceed the mo-
mentary personal resources of the participant.” In our study,
participants found our interventions more effective when
they were provided at good timing than at neutral timing.
With more data, the results could be statistically significant.
In addition, participants preferred somatic interventions con-
sistently with previous finding [16].



6.2. Good Timing Prediction for Stress Interven-
tions

Our results showed that computer and application us-
age, intervention history, and activity are the top features
in predicting better intervention delivery timing. We also
found HRV (median and mean RMSSD) could help explain
predicting opportune timing to receive interventions.

We discuss similarities and discrepancies between our
findings and previous findings. Computer and application
usage 1 or 2 minutes prior affected the model. Consistent
with previous findings, mouse and keyboard usage is one of
the strongest predictor to user availability or stress [26] [27].
As previous study showed, our data also showed that email
use decreases heart rate variability that can be a sign of high
cognitive load or high stress [28]. Activity features such as
yesterday steps and last night awakening count could affect
users’ stress baseline of the day. “Steps today” could tell
us how long they have been sitting. If they walk around for
attending meetings or meeting their colleagues, they might
rather prefer focusing on their work without trying stress
interventions.

Our results also indicated heart rate variability features
contribute to predicting opportune timing. Hovsepian et
al. found heart rate features (e.g. 80th Percentage of RR
Intervals and mean of RR Intervals from ECG) contribute
to recognize stress [8]; however our model is not designed to
recognize stress, but rather recognize good timing to receive
stress interventions, where people’s stress level is high but
their cognitive load is low and they are available to be
interrupted. Heart rate variability could help explain auto-
matic stress responses as well as cognitive load [29] [30].
Another study found heart rate variability feature (median
absolute deviation, a measure of ECG variability) was the
one of the best predictors for cognitive load [31]. Jaimes et
al. used heart rate variability as an objective physiological
stress marker to optimize stress interventions using a Hidden
Markov Model and a reinforcement learning model [32]
[10].

In addition, we also considered building models using
only passive data without using any of users’ active input
(users’ responses to stress interventions (e.g., good or bad
timing ratings)). The model with intervention history includ-
ing only # of interventions prior on this day, # of voluntary
interventions, and time elapsed since last intervention re-
duced the performance to predict opportune timing (random
forest: accuracy 60.6%, F1 score 0.45, with all features,
MKL SVM: 61.1%, F1 score 0.59). Therefore, we showed
that some users’ input which is less burdensome than their
self-reported mood helps improve the model performance.

6.3. Limitations and Future Work

Regarding limitations and future work in this paper,
the length of our study (10 days) and the number of the
participants (N=30) are limited. The results from the 5-day
intervention period could be biased by the novelty effect.
Second, We provided interventions with random timing;

however the responses to the interventions could include
delayed effect of earlier interventions. Third, We built gen-
eral models for predicting the optimal timing for delivering
stress interventions. However, if we collect longer-term data
and consider inter-individual differences in stress related
behaviors and physiological responses, we could improve
the performance of our models. We are also able to build a
model to predict self-reported effectiveness of interventions.
In the study, we measured heart rate using a chest-band
sensor which can be a burden for users. In designing more
practical system as a next step, a wrist band heart rate sensor
or non-contact physiological sensing with a camera on the
computer would be less burdensome but it can be more sen-
sitive to noise. In addition, other modalities of measurement
could also be used for this system to improve performance,
such as the user’s calendar information including deadlines
and meetings [33].

7. Conclusions

In this paper, we developed a micro-stress intervention
system for IT office workers, studied 30 IT office workers
for 10 days, and examined their work patterns, emotion and
stress profiles and responses to stress interventions by mon-
itoring their computer and application usage, sleep, activity
patterns and heart rate, as well as micro-stress intervention
history provided through our desktop software application.

We examined our participants’ likeness/effectiveness to
the interventions and temporal patterns of stress interven-
tion acceptance/rejection. We also analyzed the relationships
among their self-reported responses to the interventions as
well as response time as a objective measure and perceived
stress levels.

IT workers’ reported challenge levels were lowest in
the morning and elevated with a peak at 4pm at work;
their voluntary stress intervention requests were highest at
2pm. Our participants preferred individual and social so-
matic interventions and social somatic intervention showed
the largest self-reported stress reduction after they received
them. People with higher perceived stress levels also showed
higher self-reported stress intervention acceptance rates.
They also reported high effectiveness in stress interventions
when they were delivered at opportune timing.

We also developed machine learning models to predict
good/bad timing to provide stress interventions using multi-
modal data. We found that a combination of the features
(mouse and keyboard usage, application usage, stress inter-
vention history, activity, and heart rate variability) was best
and provided 80.0% accuracy (F1 score : 0.8) using a multi-
kernel support vector machine algorithm in predicting good
or bad timing of the interventions for stress.

We believe that our results provide the first, basic and
practical information on stress intervention timings in the
workplace and that these findings could help designers of
just-in-time, closed-loop, stress intervention systems.
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